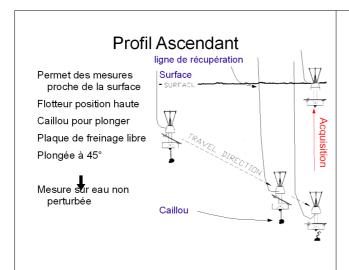
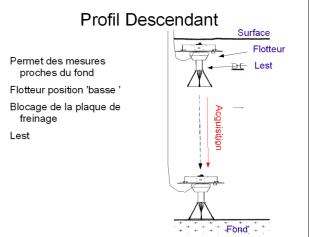


Le SCAMP a pour caractéristiques :

- Mesures à très petite échelle (≈ 1 mm)
- Fréquence de mesures: 100Hz
- Léger ≈ 6 kg
- Déploiement à partir de petits bateaux
- Déplacement libre (chute et montée)
- Vitesse de déplacement≈ 10cm/s
- Profondeur max: 100m
- 2 modes d'acquisition possible


Pour un SCAMP basique on fait des mesures de:


- o Température (Rapide / Précise)
- o gradient de température :
 - mesure de puis dérivation de avec la vitesse
- o Conductivité (Rapide !! / Précise) → Salinité
- \circ Pression \rightarrow Profondeur \rightarrow Vitesse

En option on peut faire des mesures de:

- Turbidité
- Fluorimètre
- Photosynthetically Active Radiation (PAR)
- Concentration en oxygène

Il existe deux principes de fonctionnement :

Traitement des mesures Détermination du flux turbulent Le spectre de Batchelor Détermination de k_b

Détermination de K_z

Détermination du flux turbulent

Le flux turbulent F d'une quantité

$$F = K_z^i \frac{\partial C_i}{\partial z}$$
 avec i= v,T ou S

Nécessité de déterminer Ki

Existence de différentes méthodes pour déterminer K_{z}^{v}

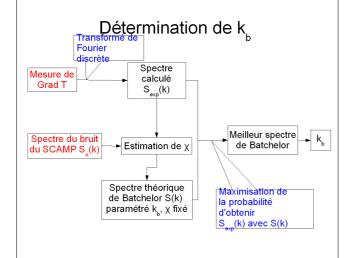
Existence de différentes méthodes pour déterminer
$$K_z^v$$
 e.g. Méthode de Osborn(1980): $K_z^v = \frac{Ri}{1 - Ri} \frac{\varepsilon}{N^2}$ avec $Ri = \frac{N^2}{\left(\frac{\partial u}{\partial z}\right)^2}$

Détermination de N

 $\epsilon \approx 7 \ 10^{-10} \ watt.kg^{-1} \ (Gregg, \ 1989)$ Avec le SCAMP: estimation de ϵ

Le spectre de Batchelor

$$\begin{split} &\frac{\partial \overline{E}_{ct}}{\partial t} = -\overline{\rho} K_z^{\nu} \frac{\overline{\partial^2 u}}{\partial z^2} - g \overline{\rho' w'} - \overline{\rho} \varepsilon \\ &\frac{\partial (\overline{T'})^2}{\partial t} = -2K_z^T \frac{\partial^2 T}{\partial z^2} - \chi \end{split} \qquad \qquad K_z' \approx K'$$


 χ : dissipation de la température due à la diffusivité moléculaire : dissipation de l'En Cin turbulente due à la viscosité moléculaire

Batchelor (1959): solution analytique équation de l'advectiondiffusion pour T

Spectre théorique de gradT (spectre de Batchelor) $S(k) = f(k, k_b, \chi)$

Relation entre ϵ et $k_{_{\! b}}$ (nombre d'onde de Batchelor):

$$\varepsilon = v D^2 k^4$$

Détermination de K

Turbulence différente selon la profondeur ightarrow segmentation de la colonne d'eau

 $N^2 = \frac{g}{\rho_0} \frac{\partial \rho}{\partial z}$ ρ =f(T,C) mesuré Détermination de N

Détermination de ε $\varepsilon = v D^2 k_b^4$

 $K_z = \frac{R_i}{1 - R_i} \frac{\varepsilon}{N^2} \text{avec}$ $R_i = \frac{N^2}{\left(\frac{\partial u}{\partial z}\right)^2}$ Méthode de Osborn(1980): Pour déterminer le flux F d'une quantité

[Ruddick, Barry, Anis, Ayal, Thompson, Keith. 2000: Maximum Likelihood Spectral Fitting: The Batchelor Spectrum. Journal of Atmospheric and Oceanic Technology] Echange avec PME (Routine Matlab)

Applications:

Sharples et al. (2003): Détermination de ϵ et K_z flux d'O₂ dissous (Estuaire au sud de l'Australie)

MacIntyre et al. (1999): Détermination de ϵ et K_z flux d'ammonium (NH $^+_4$) (Lac Mono en Californie)

Anis et al. (2006): Étude de la turbulence dans un lac mexicain Détermination de ϵ , χ et K_z et comparaison avec un modèle