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Résumeé : La connectivité marine traite du transfert de larves et/ou d’individus entre
des habitats marins éloignés. Grace a la connectivité, les populations marines éloignées
peuvent faire face a la pression de I'habitat en s’appuyant sur le transfert qui vient des
populations éloignées de la méme espece.

Le transfert entre des populations éloignées de 'océan est possible par le transport di
aux courants. Cependant, il n’est pas encore clair si le champ des courants détermine
totalement la persistance des espéces marines ou si la démographie locale joue un role.
Les mesures in situ de la connectivité sont extrémement difficiles. Par conséquence, notre
connaissance de la connectivité est déduite des simulations numériques de dispersion.
Mais on sait bien que les modéles numériques font plusieurs approximations dans la sim-
ulation du champ des courants. Le but de cette thése est de préciser si nous pouvons
déduire la persistance de la connaissance du champ des courants et étudier l'effet des
paramétrisations numériques de turbulence dans l’estimation de la connectivité.
Premiérement, 1’analyse en théorie des graphes et en modéle de métapopulation a per-
mis de déterminer que les courants ont un réle prédominant dans la determination de la
connectivité. Dans notre cas d’étude d’une espece benthique, la quantité des connections
d’un site de reproduction avec d’autres sites peut contenir jusqu’au 77% de I'information
sur la persistence.

Deuxiémement, le comparaison avec des mesures de microstructure des simulations numé-
riques a permis d’identifier la configuration de modéle numérique Symphonie qui repro-
duit le mieux l'activité turbulente observée in situ. Ce résultat a été obtenu avec une
procédure de comparaison que j'ai developée et qui peut etre appliquée a tout modéle
numérique. Un résultat novateur de cette analyse est la mise en évidence de 'importance
de Teffet de la composante biologique, via la pénétration de la lumiére, sur 'intensité de
la turbulence.

Troisiémement, I'implémentation d’un modéle 2-D et sa comparaison avec les donnés in
situ de dispersion d’un traceur passif a permis d’identifier un nouveau mécanisme de

génération de turbulence au fond qui explique le mélange vertical observé dans 'océan
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profond. Cela a permis de déterminer le coefficient de frottement de I’ écoulement au-
dessus d’une topographie rugueuse. Plus important, je montre que, dans certaines condi-
tions, les modéles numériques actuels sous-estiment le coefficient de frottement au fond

par trois ordres de grandeur.

Mots clés : Connectivité, Persistence, Théorie des Graphes, Modéle de Métapopulation,

Turbulence, Schémas de Fermeture de Turbulence, Mélange au Fond.




Abstract: Marine connectivity is the transfer of larvae and /or individuals between dis-
tant marine habitats. Thanks to connectivity, distant marine population can face habitat
pressure by relying on the transfer from distant populations of the same species.

The transfer between distant populations in the ocean is made possible by the transport
due to the currents. However, it is still not clear if the current field totally determines
the persistence of the marine species or if the local demography plays a role.

In situ measurements of connectivity are extremely difficult. Therefore, our knowledge
about connectivity is generally inferred from numerical dispersal simulations. However,
numerical models make several approximations in simulating the current field. The aim of
this thesis is to clarify if we can deduce the persistence from the knowledge of the current
field and study the numerical modelling of surface and bottom turbulence mechanisms
that can influence connectivity.

Firstly, the use of graph theory and metapopulation model permits to determine that
currents have a predominant role in determining connectivity. In our case of the study of
a benthic species, the amount of connections of a reproductive site with other reproduc-
tive sites could contain, with specific larval durations, up to 77% of the information about
persistence. Furthermore, a specific graph theory tool identifying clusters in networks is
able to identify sub-populations.

Secondly, the comparison of microstructure data with numerical simulations permits to
identify the configuration of the numerical model Symphonie that best reproduces the
observed turbulent activity. This result is achieved through a comparison procedure that
I developed and that can be applied to all numerical models. A novel finding is the im-
portance of the effect of the biological component, here via the light penetration, on the
turbulence intensity.

Thirdly, the implementation of a 2-D numerical model and its comparison with in situ
tracer dispersal data permits to identify a new generating mechanism of bottom bound-

ary turbulence that accounts for the vertical mixing observed in the deep ocean. This
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allows to determine an effective drag coefficient due to flow over rough topography. More
importantly, I show that -in some conditions- present numerical models underestimate

by three orders of magnitude the bottom drag coefficient.

Keywords: Connectivity, Persistence, Graph Theory, Metapopulation Model, Tur-

bulence, Turbulence Closure Schemes, Boundary Mixing.










Contents

1 Introduction 1
1.1 Defining connectivity . . . . . . . .. ..o 1
1.1.1 Connectivity and marine populations persistence . . . . . . . . .. 1
1.1.2  Study of connectivity matrices and graph theory . . . . . . . . .. 3
1.2 Numerical models and turbulence . . . . . . .. ... ... ... ... .. 4
1.3 Bottom boundary turbulence and dispersion . . . . . . ... .. .. ... 8
1.4 Aims and strategy . . . . . ... 10
2 Study of marine connectivity and marine populations persistence with

graph theory 13

2.1 On the Calculation of Betweenness Centrality in Marine Connectivity
Studies Using Transfer Probabilities . . . . . . . ... ... .. ... ... 16
2.1.1 Abstract . . . . .. 16
2.1.2 Imtroduction . . . . . .. ..o 17
2.1.3 Materials and Methods . . . . . . . . . ... ... ... ... 18
214 Results. . . . .. o 21
2.1.5 Conclusion . . . . . . ... 22

2.2 Tuning the interpretation of graph theory measures in analyzing marine
larval connectivity: The Gulf of Lion study case. . . . . . . ... ... .. 25
2.2.1 Introduction . . . . . . . ... 25
2.2.2  Materials and Methods . . . . . .. .. ... 27
223 Results. . . .. . 39
2.2.4 Discussion and conclusions . . . . . . ... 43
2.3 Extra Material . . .. . ..o A7
2.3.1 Bridging centrality . . . . . .. ... 0oL 47

2.3.2 Visual explanation of graph theory measures . . . . . . . .. ... 50



xii Contents

3 Numerical Models and Turbulence 55
3.1 Comparison of in situ microstructure measurements to different turbulence

closure schemes in a 3-D numerical ocean circulation model . . . . . . . . 29

3.1.1 Abstract . . . ... 59

3.1.2 Introduction . . . . . ..o 60

3.1.3 Materials and Methods . . . . . .. ... ... ... 64

3.14 Results. . . . .. o 73

3.1.5 Discussion . . . . . ..o 84

3.1.6 Conclusions . . . . . .. ... 93

3.2 Appendices . . ... 97

3.2.1 Boundary conditions . . . . . . . ... ... L 97

3.2.2 Surface boundary conditions for & . . . . . . ... ... 97

3.2.3 Closure schemes . . . . . . . . ... ... 98

3.3 Segmentation and quality fit . . . . ... ... 101
3.4 Extra Materials for "Comparison of in situ microstructure measurements
to different turbulence closure schemes in a 3-D numerical ocean circulation

model" . .. 104

3.5 Extra Material . . . . . ... 109

3.5.1 Additional Simulations . . . . . . .. ... 109

3.5.2 Data analysis toolbox . . . . . . . ... L 109

4 Bottom boundary mixing and diffusion 117
4.1 Spatially Inhomogeneous and Temporally Intermittent Boundary Mixing

along the Northern Deepwater Gulf of Mexico . . . . . . ... ... ... 123
4.1.1 Abstract . . . . ... 123
4.1.2 Introduction . . . . . .. ..o 124
4.1.3 Data and Methods . . . . . . ... ... . oL 128
4.1.4 Observations . . . . . . . . ... 133

4.1.5 Boundary Mixing . . . . . . . .. .. L oo 135



Contents xiii
4.1.6  Summary and Discussion . . . . . .. ... 140

4.2 Extra Material . . . . . . ... 154
5 Conclusions and perspectives 157
5.1 Conclusions . . . . . . . . .. 157
5.2 Perspectives . . . . ..o 161
Bibliography 165






List of Figures

1.1 Upper panel - Example of Lagrangian trajectories idealizing larval dispersal (data
from Berline et al. 2014). Middle panel - Example of connectivity matrix storing
the transfer probability of larvae of benthic polychaete between the 32 reproduc-

tive sites in the Gulf of Lion (lower panel). Data from Guizien et al. (2014). . . 2

1.2 (a) "Observe the motion of the surface of water, which resembles the behavior of
hair, which has two motions, of which one depend on the weight of the strands,
the other on the line of its revolving; thus water makes revolving eddies, one
part of which depends upon the impetus of the principal current, and the other
depends on the incident and the reflected motions." (Leonardo da Vinci 1513) As
Davidson (2004) asks himself: "Did Leonardo da Vinci foresee Reynolds’ idea of
dividing a turbulent flow into two components: a mean velocity and the turbulent
fluctuations?". (b) This figure represents a one-dimensional simplification of the
cascade process in which bigger eddies becomes unstable and break up in smaller
eddies till when the scale of the eddies matches the scale at which dissipation
dominates the dynamics. € is the kinetic energy dissipation rate determining the

energy flux from large to small scales. This figure was modified from Frisch (1995). 6

1.3 DNS: Very small scale flow (ex:turbulent boundary layers) but currently compu-
tationally intractable for most problems. LES: Aims to solve the computational
cost that DNS poses and reveals the eddies hidden behind the mean in RANS.
Good for small scale applications in both coastal and open ocean. RANS: The
least computationally expensive method that is used for turbulent modeling.
However, it is really not very good when certain phenomena cannot be aver-
aged, such as instabilities. This figure is taken from André Bakker’s lectures:
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1.1 Defining connectivity

1.1.1 Connectivity and marine populations persistence

Marine life is increasingly threatened by anthropogenic stressors. A broad range of ocean-
based activities, anthropic pressure and climate change are rapidly modifying and/or de-
grading the ocean biodiversity (Lubchenco et al. 1999; Duraiappah et Shahid 2005).

A key weakness of marine populations is the habitat discontinuity due to both natural rea-
sons (e.g. marine ridges, geographical distance) or either direct and indirect anthropogenic
disturbances (e.g. coastal development, climate change). As a consequence, marine pop-
ulations rely on the long-range exchange of larvae and/or individuals (i.e., connectivity)

in order to maintain their spatial distribution (Hanski, 1999).
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Connectivity permits the dispersion of
larvae and the transfer of individuals
across the network formed by distant
populations of the same species. Pre-
vious studies have demonstrated how
connectivity may enhance the persis-
tence of a metapopulation after dis-
turbances, by enhancing their recov-
ery and/or recolonization (Hastings et
Botsford, 2006; Guizien et al., 2014).
It follows that understanding the de-
gree and patterns of connectivity be-
tween populations plays a central role
in conservation planning, like the de-
sign of marine protected areas (Sale
et al., 2006) and spatial planning poli-
cies (Boersma et Parrish, 1999).

A widely used connectivity estimation
method is the modeling of larvae and
individual dispersal with biophysical
modeling that couple ocean dynamics
with a number of biological features of
the species at study. The approach most
commonly used in literature to study
larval dispersal trajectories computed
with biophysical models is the study
of connectivity matrices (Figure 1.1).
With the origin sites on the columns

and destination sites on the rows, con-

3a°M [ trajectoires tni=ler ................................ .........

#*  positions initiales

+  positions finales
T T

30°N

Source Sites
Trasfer Probability

Latitude

Longitude

Figure 1.1: Upper panel - Example of Lagrangian
trajectories idealizing larval dispersal (data from
Berline et al. 2014). Middle panel - Example of con-
nectivity matrix storing the transfer probability of
larvae of benthic polychaete between the 32 repro-
ductive sites in the Gulf of Lion (lower panel). Data

from Guizien et al. (2014).
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nectivity matrices stores either the average time that an individual from a given source
site need to arrive to a destination (or sink) site (e.g., Berline et al., 2014) or the prob-
ability that an individual disperses from a given origin site to a destination site (e.g.,

Burgess et al., 2014).

1.1.2 Study of connectivity matrices and graph theory

A variety of techniques has been developed for the study of connectivity matrices: metapop-
ulation models (Caswel, 2001), hierarchical clustering (Jacobi et al., 2012), circuit theory
(McRae et al., 2008) and graph theory (Urban et Keitt, 2001) among others. In par-
ticular, graph theory has received an increasing amount of attention in the last decade
(Moilanen, 2011). More and more classical graph theory concept has found an applica-
tion to the study of marine connectivity: betweenness centrality (Urban et Keitt, 2001),
eigenvalues centrality (Andrello et al., 2014) and modularity (Kininmonth et al., 2010a;
Thomas et al., 2014) among others. The use of such mathematical tools is appealing to
the scientific community because, while other connectivity study methods, like metapop-
ulation models, depend on the estimation of various biological parameters (see Guizien
et al., 2014, for example) and therefore need to be finely tuned in order to be applied to
different species and geographical contexts, graph theory can be directly transposed to
other study cases by just recalculating the connectivity matrices. Moreover, by relying on
numerical simulation, graph theory can effectively be complementary to genetic studies
and supply information on boundaries of genetically based communities when sampling
of genetic diversity is sparse (Kininmonth et al., 2010a).

However, the interpretation of the results obtained with graph theory still relies on the
intuition we build on the study of social networks. In the scientific community, a definitive
consensus on whether such intuition directly applies to the study of marine connectivity is

still not achieved (Moilanen, 2011). I addressed this problem in the first part of my thesis.



4 Chapter 1. Introduction

A large part of the literature studying marine connectivity via biophysical model-
ing is focused on species with dispersal abilities directly proportional to their pelagic
larval duration (PLD). Apart from horizontal currents, important physical factors that
can influence the dispersal of the larvae during their PLD are temperature and vertical
movements. While temperature can modify the duration of the PLD itself (Houde 1989;
Cowen et al. 2000; O’Connor et al. 2007), vertical movements can expose the larvae to
different ambient temperature conditions and to a more variable velocity field. Both these
aspects can significantly modify the larvae’s dispersal pattern (sensu Butler et al., 2011,
Qiu et al., 2011).

Due to the sensitivity of the dispersal on such factors, it is important that the numerical
models that we use in the biophysical models used to calculate connectivity matrices

make accurate predictions of such factors.

1.2 Numerical models and turbulence

Many validations of numerical models have been done in the past about the accuracy
of the prediction of temperature and velocity fields (e.g., Peters et al., 2004, chapter 39;
Warner et al., 2005; Peters et Baumert, 2007). Less studies have assessed the effect of
the numerous choices on which depend the correct prediction of vertical overturnings and
turbulence modelling. In particular, their prediction and modelling depend on the reli-
ability of the Turbulence Closure Scheme (TCS) employed to numerically integrate the
Navier-Stokes equations and on its interplay with the type of surface boundary conditions

that is specified. I address this question in the second part of my thesis.

While it is very easy to grasp the idea of the turbulent nature of geophysical flows,
it is very difficult to give a precise definition of turbulence. In general, we can list some
characteristics that are proper to turbulent flows (see for example Tennekens et Lumley,

1972, for a detailed discussion of them): i) randomness; ii) enhanced diffusivity of physical
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properties; iii) three-dimensional fluctuations of vorticity; iv) decaying; and v) a continu-
ous wide range of spatial scales. All these aspects can be linked to the nonlinearity of the
equations describing fluid motion: the so-called Navier-Stokes Equations (NS Equations).
From case to case, we are forced to make ad hoc assumptions in order to make the study
of turbulence tractable. Two often-made assumptions in oceanographic studies are: i) the
homogeneity of turbulence (Kelvin, 1887); and ii) its steadiness on temporal scales that
permits to divide the fluid motion in an average component and a random one (Figure
1.2a): the so-called Reynold’s decomposition (Reynolds, 1895). From these assumptions
a number of results can be derived (see Davidson, 2004, for a comprehensive discussion).
The first assumption permits to obtain the classical view of turbulence as an eddy cascade
process (the so-called Richardson’s cascade; Figure 1.2b) while the second one permits
to define some length scales characterizing all the turbulent flows at high Reynolds num-
ber (Kolmogorov, 1942; Obukhof 1949; Corrsin 1951; Kolmogorov 1962). Kolmogorov’s
results can be further expanded to obtain an exact equation for the equilibrium scalar
spectrum at very high spatial wave numbers by integrating the linear scalar diffusion
equation for a typical small scalar Fourier element in pure strain (Batchelor, 1959).

The second assumption allows many different strategies in order to approximate the
Navier-Stokes equations and solve them numerically (e.g., Burchard et Bolding, 2001).
This last result is maybe the most important for the modern studies of geophysical turbu-
lence. In fact, a large part of the numerical models of oceanic and atmospheric circulation

are built upon it; it is the so-called Reynolds Averaged Navier-Stokes (RANS) models.

Typically, one model cannot resolve the whole spectrum of the flow dynamics. Thus,
it resolves only one portion of it while modelling the rest (Figure 1.3). Generally, we can
distinguish between i) Direct Numerical Simulations that cover all the spatial scales but
are limited in the range of Reynolds number (e.g., Smyth et al., 2001); ii) Large Eddy
Stmulations that solve spatially filtered Navier-Stokes equations and are typically limited
to the investigation of near-surface mixed layers (e.g., Skyllingstad et al., 1998); and iii)

Statistical Turbulence Models that solve Reynolds-Averaged Navier-Stokes equations usu-
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Figure 1.2: (a)"Observe the motion of the surface of water, which resembles the behavior of
hair, which has two motions, of which one depend on the weight of the strands, the other on
the line of its revolving; thus water makes revolving eddies, one part of which depends upon
the impetus of the principal current, and the other depends on the incident and the reflected
motions." (Leonardo da Vinci 1513) As Davidson (2004) asks himself: "Did Leonardo da Vinci
foresee Reynolds’ idea of dividing a turbulent flow into two components: a mean velocity and
the turbulent fluctuations?". (b) This figure represents a one-dimensional simplification of the
cascade process in which bigger eddies becomes unstable and break up in smaller eddies till
when the scale of the eddies matches the scale at which dissipation dominates the dynamics. € is
the kinetic energy dissipation rate determining the energy flux from large to small scales. This

figure was modified from Frisch (1995).

ally simplified by local equilibrium assumptions and truncated at a certain order (e.g.,
Simpson et al., 2000).

It is on some aspects of this last class of models that I focused part of my thesis. To
implement this kind of models, the velocity in the NS equations is decomposed in mean
and fluctuating part in order to express the viscous term as a function of the velocity.
Nevertheless, once we time average the resulting equation in order to get rid of the fast
fluctuating part, a nonlinear term containing the correlation of the velocity fluctuation

does not vanish (e.g., Davidson, 2004). Boussinesq (1872) proposed to model this term
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Figure 1.3: DNS: Very small scale flow (ex:turbulent boundary layers) but currently compu-
tationally intractable for most problems. LES: Aims to solve the computational cost that DNS
poses and reveals the eddies hidden behind the mean in RANS. Good for small scale applica-
tions in both coastal and open ocean. RANS: The least computationally expensive method that
is used for turbulent modeling. However, it is really not very good when certain phenomena
cannot be averaged, such as instabilities. This figure is taken from André Bakker’s lectures:

http://www.bakker.org/dartmouth06/engs150/10-rans.pdf

in term of a turbulent viscosity so that the turbulence stresses can be related to the
mean flow. This is still the modern approach to the problem. But we must notice that
in this way we have just shifted the problem from modelling the velocity fluctuations
to modelling the turbulent viscosity. In the literature, many different ways —in jargon
called turbulence closure schemes (TCSs)— of doing this have been proposed. The most
frequently found TCSs in the ocean modelling community’s literature are the k& — k¢ by
Mellor et Yamada, 1982; the k — e by Rodi, 1987; the k — kw by Wilcox, 1988; the k — /¢
by Gaspar et al., 1990 and the KPP by Large et al., 1994.

Furthermore, different stability functions can be chosen in order to include the effect of
the parametrized non-local moments and pressure strain correlations in the dynamical

equations when employing certain TCSs (e.g., Galperin et al., 1988; Kantha et Clayson,
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1994; Canuto et al., 2001). Also, additional complexity is added to the modelling by the
interplay of the TCS and the choice of boundary conditions (b.c.). The choice of the
surface and bottom boundary conditions can profit of a vast literature (e.g., Craig et
Banner, 1994; Stacey et Pond, 1997; Estournel et al., 2001; Warner et al., 2005), aiming

at modelling different forcing mechanisms.

The effectiveness of the different possible choices and of the different ways of im-
plementing the RANS models really need to be experimentally verified. Thanks to the
aforementioned theoretical results by Batchelor (1959), this has been made recently pos-
sible by microstructure shear and temperature probes. These lasts have permitted to
develop an ever growing set of turbulence measurements to be compared to the models
(see Burchard et al., 2008, for a review). This is the approach that we used in this thesis
relatively to the validation of the model Symphonie (Marsaleix et al., 2008).

1.3 Bottom boundary turbulence and dispersion

Turbulence could also have an important role in the bottom boundary layer in determin-
ing the settling site of larvae. Moreover, deep ocean marine communities are currently
viewed as a potential —if not the only one— candidate for sustaining the ones living in
a coastal environment endangered by a variety of anthropogenic stressors. In order to
establish the potential of the deep ocean communities to sustain the coastal ones through
marine connectivity, we must improve our understanding of bottom boundary turbulence
and develop new parameterizations of it in the numerical models used for the dispersion

numerical experiments.

In fact, bottom boundary turbulence is an open field of research. Its relevance extends
till to synoptic scales and turbulent mechanisms that were overlooked in the past and are

gaining renewed attention since recent studies have highlighted the important role it can
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play in sustaining the global overturning circulation (Naveira Garabato et al., 2004).
More and more evidence is accumulating that a significant amount of mixing is generated
in the bottom layer above rough topography (e.g., Polzin et al., 1997; Ledwell et al., 2016).
Often, the differences between the amount of mixing that is needed to explain the ocean
circulation and tracer vertical diffusion differs by more than one order of magnitude with
respect to the amount of mixing measured with microstructure probes (Figure 1.4).
However, the understanding of the processes generating near-bottom turbulence remain
incomplete (Polzin et al., Submitted) and the comprehension of how small scale processes
translate into large-scale impacts on the fate and transport of pollutants in the ocean is
still lacking. Moreover, microstructure probes are hardly deployed in the near bottom
layer of the ocean (Waterhouse et al., 2014). A major difficulty in studying these pro-
cesses is their intrinsic patchiness and intermittency.

The principal physical mechanisms candidate to explain the mixing above topography
are essentially all the possible interactions between ocean currents and internal wave field
with the topography; principally lee waves and form drag. These kind of phenomena are
well studied in the atmospheric community (Palmer et al., 1986; Alexander et al., 2010),
but their comprehension is limited to the flow over isolated bumps (Scinocca et McFar-

lane, 2000). This is an idealization that is justified by the typical scales ratio between
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the atmospheric flows and land orography but is not the case of the oceanic flows above
rough topography (Polzin et al., Submitted). In the third part of my thesis I address the

role of form drag as generating mechanism of bottom boundary mixing.

1.4 Aims and strategy

My thesis is divided in three parts. In Chapter 2, I present a new interpretation of graph
theory in the framework of connectivity studies. My applied case study is the connectiv-
ity of a polychaete metapopulation in the Gulf of Lion (GoL). This is a benthic species
that disperses mainly during its pelagic larval stage (that varies from 3 to 5 weeks). This
characteristic of polychaete permits to model its larvae’s dispersion as the dispersion
of passive particles in a Lagrangian simulation. Note that the assumption of a passive
dispersion is not completely realistic because polychaete’s larvae display a diel vertical
migration (e.g., Hensler et Jude, 2007). However, this behavior is not yet well understood
and thus it is not considered by literature studies.

I then analyzed the connectivity matrices obtained with the Lagrangian simulations with
different graph theory measures that in the literature are assumed to highlight reproduc-
tive sites important for persistence. Afterwards, I compared our results with other persis-
tence and ecological studies in the literature. In particular, we exploited a metapopulation
model study (Guizien et al., 2014), a genetic structuring study (Padron et Guizien, 2015)
and a sedimentary study (Labrune et al., 2007) in the GoL. The rationale behind this
comparison is that these studies have a much less debated interpretation than graph the-
ory when studying connectivity. So that, if graph theory measures supposed to indicate
sites important for persistence are in agreement with these precedent studies, I can con-
clude that the the current interpretation of graph theory is actually correct. Otherwise,
I can obtain useful indications to start to re-think the interpretation of graph theory in

the framework of connectivity studies.
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In Chapter 3, I tried to answer the question about the limitations of current numerical
schemes in modelling turbulence by comparing in situ data with the predictions made by
the numerical model Symphonie when using different combinations of TCSs, boundary
conditions and modeling of the light penetration. In particular, in situ measurements
of kinetic energy dissipation rate ¢ and eddy viscosity K, were acquired with a Self-
Contained Autonomous Microstructure Profiler (SCAMP) during various campaigns in

the Gulf of Lion.

In Chapter 4, I focused on the bottom boundary layer mixing, studying a dataset is-
sued from a tracer release experiment in the Gulf of Mexico (Ledwell et al., 2016). These
data highlighted the fact that a relevant portion of the observed diapycnal mixing takes

place in the bottom boundary.
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In particular, this approach demonstrates that

bottom boundary mixing permits to close the mixing budget —the ratio of observed to
required mixing ratio— that otherwise was off by more than an order of magnitude (Figure

1.4).
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marine populations persistence with

graph theory

This work resulted in one publication : On the Calculation of Betweenness Centrality in
Marine Connectivity Studies Using Transfer Probabilities, A. Costa, A.A. Petrenko,
A.M. Doglioli, K. Guizien; PlosONE.

Another manuscript will be submitted to Ecological Modelling soon: Tuning the

interpretation of graph theory measures in analyzing marine larval connectivity, A.

Costa, A.M. Doglioli, K. Guizien, A.A. Petrenko.
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Graph theory is a mathematical theory that idealizes a network of elements linked
by pairwise relations, by representing the elements as nodes and the connections as links
between the nodes. As I will show in more detail later, graph theory offers a variety of
tools in order to identify nodes playing specific roles in the network under study.

A huge advantage of graph theory is that it is extremely flexible and can be adapted to
a plethora of different problems by just redefining in a convenient way the value of the
links (e.g., Barrat et al. 2008; Barbasi 2016). For this reason it is more and more applied
in connectivity studies (Moilanen, 2011). However, its application is not straightforward
and the scientific community still does not agree on how to interpret the results of the

analysis of ecological networks with graph theory.

The first part of this chapter reports a study I conducted on developing a metric to
quantify the distance between nodes when using connectivity matrices containing trans-
fer probabilities. In particular, I point to two previous literature studies that employed
incorrect metrics falsifying the physical interpretation of graph theory’s results. More-
over, [ propose a new metric that permits to correctly apply graph theory to connectivity
matrices storing transfer probabilities.

In these two literature papers, the authors quantify the distance between nodes with the
transfer probability between those two nodes. However, such a method does not allow to
correctly calculate the probability of transfer between nodes more than one step apart.
This latter probability is at the base of many graph theory measures (c.f. Section 2.3).

The error cannot be avoided without modifying the way of quantifying the distance
between nodes. In fact, all the algorithms that permit to find the most probable path
between a pair of nodes, calculate the value of the path by summing the values of the
connections between nodes and look for the shortest one. However, when the connections
are defined in term of probabilities, the path with the minimum values results from the
sum of the lower probabilities. As it will be shown in more detail later, this invalidates
the interpretation of different graph theory measures because these measures typically are

interested in highlighting the most probable paths. Moreover, summing probabilities is a
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correct procedure when we consider the total probability of independent events. However,
this is not the case of larval transfers between distant sites. Both the above problems can

be avoided by carefully define a new metric to define the distance between nodes.

The second part of this chapter reports a study I am conducting in order to clarify
the interpretation of graph theory measures in the context of marine connectivity and
marine species persistence studies. The study takes advantage of the comparison of a
metapopulation of benthic polychaete in the Gulf of Lion with graph theory. The data
analysis is still being developed. Therefore, the results presented here are still temporary
as well as the version of the manuscript that I report here. I will incorporate the final
version as soon as it will be completed. We envision to submit the final version of the

manuscript to Ecological Modeling.

2.1 On the Calculation of Betweenness Centrality in
Marine Connectivity Studies Using Transfer Prob-

abilities

2.1.1 Abstract

Herein we highlight a lack of methodological information we encountered in two literature
papers concerning the application of graph theory to marine connectivity studies. We show
the consequences of a possible error in those papers and propose the use of a metric for the
node-to-node distance that solves the inconsistency at the base of it. Our argumentation

is illustrated by the analysis of a literature data set.
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2.1.2 Introduction

In the last decade, graph theory has increasingly been used in ecology and conservation
studies Moilanen (2011) and particularly in marine connectivity studies (e.g., Treml et al.
2008; Kininmonth et al. 2010b; Kininmonth et al. 2010a; Andrello et al. 2013; Rossi et al.
2014). Graphs are a mathematical representation of a network of entities (called nodes)
linked by pairwise relationships (called edges). Graph theory is a set of mathematical
results that permit to calculate different measures to identify nodes, or set of nodes, that
play specific roles in a graph. Graph theory application to the study of marine connec-
tivity typically consists in the representation of portions of sea as nodes. Then, the edges
between these nodes represent transfer probabilities between these different portions of
sea.

Transfer probabilities estimate the physical dispersion of propagulae (Jacobi et al. 2012;
Andrello et al. 2013; Berline et al. 2014; Jonsson et al. 2015), nutrients or pollutants
(Doglioli et al., 2004), particulate matter (Mansui et al., 2015), or other particles either
passive or interacting with the environment (see Ghezzo et al. 2015; Bacher et al. 2016 and
references therein). As a result, graph theory already proved valuable in the identifica-
tion of hydrodynamical provinces (Rossi et al., 2014), genetic stepping stones (Rozenfeld
et al., 2008), genetic communities (Kininmonth et al., 2010a), sub-populations (Jacobi
et al., 2012), and in assessing Marine Protected Areas (MPAs) connectivity (Andrello
et al., 2013).

In many marine connectivity studies, it is of interest to identify specific portions of
the sea where a relevant amount of the transfer across the graph passes through. A well-
known graph theory measure is frequently used for this purpose: betweenness centrality.
In the literature, high values of this measure are commonly assumed to identify nodes
sustaining the connectivity of the whole network. For this reason betweenness has been
used in the framework of marine connectivity in order to identify migration stepping

stones (Treml et al., 2008), genetic gateways (Rozenfeld et al., 2008), and MPAs ensuring
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a good MPAs connectivity (Andrello et al., 2013).

Our scope in the present letter is to highlight some errors that can occur in imple-
menting graph theory analysis. Especially we focus on the definition of edges when one is
interested in calculating the betweenness centrality and other related measures. We also
point out two papers in the literature in which this methodological inconsistency can be

found: Kininmonth et al. (2010b) and Andrello et al. (2013).

In Materials and Methods, we introduce the essential graph theory concepts for our
scope. In Results, we present our argument on the base of the analysis of a literature data

set. In the last section, we draw our conclusions and provide perspectives.

2.1.3 DMaterials and Methods

A graph G is a couple of sets (V, E), where V' is the set of nodes and E is the set of edges.
The set V' represents the collection of objects under study that are pair-wise linked by an
edge a;;, with (¢, 7) € V, representing a relation of interest between two of these objects.
If a;; = aj;, ¥(i,7) € V, the graph is said to be ‘undirected’, otherwise it is ‘directed’. The
second case is the one we deal with when studying marine connectivity, where the edges
values represent the transfer probabilities between two marine zones (e.g., Kininmonth

et al. 2010a; Kininmonth et al. 2010b; Andrello et al. 2013; Rossi et al. 2014).

In a graph, there can be multiple ways (called paths) to go from a node i to a node j
passing by other nodes. The value of a path is the sum of the weights of the edges com-
posing the path itself (e.g., Bondy et Murty 1976). In general, it is of interest to know
the shortest or fastest path o;; between two nodes, i.e. the one with the lowest value.
But it is even more instructive to know which nodes participate to the greater numbers

of shortest paths. This can be known by calculating the betweenness value for each node
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in the graph. The betweenness value of a node k, BC(k), is defined as the fraction of
shortest paths existing in the graph, o;;, with ¢ # j, that effectively pass through £,

oij(k), with i # j # k:

BC(k) =) 0;—0{:) (2.1)

ithti Y

with (i,j,k) € V. Betweenness is then normalized by the total number of possible
connections in the graph once excluded node k: (N — 1)(N — 2), where N is the number
of nodes in the graph, so that 0 < BC' < 1.

Although betweenness interpretation is seemingly straightforward, one must be care-
ful in its calculation. In fact betweenness interpretation is sensitive to the node-to-node
metric one chooses to use as edge weight. If, as frequently the case of the marine con-
nectivity studies (e.g., Kininmonth et al. 2010a; Kininmonth et al. 2010b; Andrello et al.
2013; Rossi et al. 2014), one uses transfer probabilities as edge weight, betweenness loses
its original meaning. Based on the details given in their Methods sections, this seems to
be the case of Kininmonth et al. (2010b) and Andrello et al. (2013). In this case, edge
weight would decrease when probability decreases and the shortest paths would be the
sum of edges with lowest value of transfer probability. As a consequence, high between-
ness would be associated to the nodes through which a high number of improbable paths

pass through. Exactly the opposite of betweenness original purpose.

We propose to solve this inconsistency by using a new metric for the edge weights. It
is still based on transfer probabilities a;;, but it transforms it in order to conserve the
original meaning of betweenness, by ensuring that a larger transfer probability between
two nodes corresponds to a smaller node-to-node distance. Therefore, the shortest path
between two nodes effectively is the most probable one. So that high betweenness is as-

sociated to the nodes through which a high number of probable paths pass through.
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In the first place, in defining the new metric, we need to reverse the order of the proba-
bilities in order to have higher values of the old metric a;; correspond to lower values of
the new one. In the second place we also consider three other facts: (i) transfer proba-
bilities a;; are commonly calculated with regards to the position of the particles only at
the beginning and at the end of the advection period; (ii) the probability to go from i
to j does not depend on the node the particle is coming from before arriving in ¢; and
(iii) the calculation of the shortest paths implies the summation of a variable number of
transfer probability values. Note that, as the a;; values are typically calculated on the
base of the particles’ positions at the beginning and at the end of a spawning period, we
are dealing with paths whose values are calculated taking into account different numbers
of generations. Therefore, the transfer probabilities between sites are independent from
each other and should be multiplied by each other when calculating the value of a path.
Nevertheless, the classical algorithms commonly used in graph theory analysis calculate
the shortest paths as the summation of the edges composing them (e.g., the Dijkstra al-
gorithm, Dyjikstra 1959 or Brandes 2006). Therefore, these algorithms, if directly applied
to the probabilities at play here, are incompatible with their independence.

As a consequence, we define the weight of an edge between two nodes i and j as:

di; = In (%) (2.2)

This definition is the composition of two functions: h(z) = 1/z and f(z) = In(x). The
use of h(x) allows one to reverse the ordering of the metric in order to make the most
probable path the shortest. The use of f(x), thanks to the basic property of logarithms,
allows the use of classical shortest-path finding algorithms while dealing correctly with
the independence of the connectivity values. In fact, we are de facto calculating the value
of a path as the product of the values of its edges.

It is worth mentioning that the values d;; = co, coming from the values a;; = 0, do not
influence the calculation of betweenness values via the Dijkstra algorithm. Note that d; is

both homogeneous: ad;; = In (%), for any constant « and any (i,7) € V; and additive:

3
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di + djj = In (a_ L > =1In (L) = d;;, for any (i,1,7) € V. So that it has the physical
il"Qlj Aij

properties of a distance. Also, note that both a;; and d;; are both dimensionless.

We explicitly note that, a priori, other metrics permit to make the weight decrease when

probability increases: 1 —a;;, 1/a;j, log(1 —a;;) and —a;; are the most intuitive. However,

with some simple examples it is possible to show that: 1 — a;; is biased towards paths

with fewer edges; 1/a;; can fail when calculating shortest paths as sum of their edges; and

log(1 —a;;) and —a;; fail when there are negative cycles in the graph. See XXX Appendix

A or the Supporting Information for a complete discussion of these metrics.

2.1.4 Results

The consequences of the use of the raw transfer probability (a;;) rather than the distance
we propose (d;;) are radical. To show this, we used 20 connectivity matrices calculated
for Guizien et al. (2014). They were calculated from Lagrangian simulations using a 3D
circulation model (see Marsaleix et al. 2006) with a horizontal resolution of 750 m. Spawn-
ing was simulated by releasing 30 particles in the center of each of 32 reproductive sites
(hereafter identified as nodes) for benthic polychaetaes alongshore the Gulf of Lion (NW
Mediterranean Sea), on the 30 m isobath, every hour from January 5 until April 13 in
2004 and 2006. The proportions of particles coming from an origin node and arriving at
a settlement node after 3, 4 and 5 weeks were weight-averaged to compute a connectivity

matrix for larvae with a competency period extending from 3 to 5 weeks.

As an example, in Fig 2.1 we show the representation of the graph corresponding to
the 7" of the 20 connectivity matrices. The arrows starting from a node i and ending in
a node j represent the direction of the element a;; (in Fig 2.1a) or d;; (in Fig 2.1b). The
arrows’ color code represents the magnitude of the edges’ values. The nodes’ color code

indicates the betweenness values calculated using the metric a;; (in Fig 2.1a) or d;; (in

Fig 2.1b).
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In Fig 2.1a the edges corresponding to the lower 5% of the weights a;; are represented.
These are the larval transfers that, though improbable, are the most influential in deter-
mining high betweenness values when using a;; as metric. In Fig 2.1b the edges corre-
sponding to the lower 5% of the weights d;; are represented. These are the most probable
larval transfers that —correctly— are the most influential in determining high between-
ness values when using d;; as metric. While in figure Fig 2.1a the nodes with highest
betweenness are the nodes 31 (0.26), 27 (0.25) and 2 (0.21); in Fig 2.1b the nodes with
highest betweenness are nodes 21 (0.33), 20 (0.03) and 29 (0.03).

As we show in Fig 2.2, betweenness values of the 32 nodes calculated using the two
node-to-node distances a;; and log(1/a;;) are drastically different between each other.
Moreover, in 10 out of 20 connectivity matrices, the correlation between node ranking
based on betweenness values with the two metrics were not significant (p-value > 0.05).
In the 10 cases it was (p-value < 0.05), the correlation coefficient was lower than 0.6 (data
not shown). Such partial correlation is not unexpected as the betweenness of a node with
a lot of connections could be similar calculated with a;; or d;; if among these connections
there are both very improbable and highly probable ones, like in node 21 in the present
test case. Furthermore, it is noticeable that if one uses the a;; values (Fig 2.2a), the
betweenness values are much more variable than the ones obtained using d;; (Fig 2.2b).
This is because, in the first case, the results depend on the most improbable connections

that, in the ocean, are likely to be numerous and unsteady.

2.1.5 Conclusion

We highlighted a lack of methodological information in the works by Kininmonth et al.
(2010b) and Andrello et al. (2013), applying graph theory to marine connectivity study.
The methodological information in those work suggest that the authors did not reverse
the probability when calculating shortest paths. Such an error would lead to consider the

most improbable paths as the most probable ones. We showed the potential consequences
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Figure 2.1: Representation of the connectivity matrix 7 and corresponding betweenness values
using different metrics. The left side colorbars indicates betweenness values, the right side col-
orbars indicate the metric values. (a) Results obtained by using a;; as edge weight, (b) results
obtained by using d;; as edge weight. In (a) the lowest 5% of edges weights are represented. In

(b) the lowest 5% of edges weights are represented. Note the change in the colorbars’ ranges.
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Figure 2.2: Betweenness nodes in the Gulf of Lion for the 32 sites using 20 different connectivity
matrices obtained with Lagrangian simulations by Guizien et al. (2014). (a) Results obtained
by using a;; as edge weight; (b) results obtained by using d;;. Note the change in the colorbars’

ranges.
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of this methodological error by analyzing a published data set of connectivity matrices
for the Gulf of Lion Guizien et al. (2014). Therefore, we invite the reader to reconsider
the part of methodology regarding the betweenness calculation proposed by Kininmonth
et al. (2010b) and Andrello et al. (2013) and consequent results. In particular, the con-
clusions drawn by the authors about the importance of specific MPAs in maintaining the
connectivity across the MPAs network in the Mediterranean Sea need to be revisited in
order not to mislead eventual conservation policies.

Accordingly to these results, we proposed the use of a node-to-node metric for graph the-
ory studies on marine connectivity that solves the inconsistency and provides a meaningful
way to calculate shortest paths and —as a consequence— betweenness, when relying on
transfer probabilities issued from Lagrangian simulations. In particular, this new metric
permits to reverse the probability and to calculate the value of a path as the product
of its edges. Moreover, this metric is not limited to the calculation of betweenness alone
but is also valid for the calculation of every graph theory measure related to the concept
of shortest paths: for example, shortest cycles and bridging centrality Costa et al. (In

Preparation).
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2.2 Tuning the interpretation of graph theory measures
in analyzing marine larval connectivity: The Gulf

of Lion study case.

2.2.1 Introduction

In the ocean, habitat fragmentation leads to the geographical separation of marine popu-
lations. However, most marine species exhibit a dispersive larval stage (Horson, 1946)
which ensures the maintenance of the spatial coverage of these populations. This is
made possible by the exchange of individuals during reproduction events, forming a so-
called metapopulation (Hanski, 1999). Nowadays, oceans are increasingly threatened by
multiple anthropogenic stressors (Lubchenco et al., 1999), among which the increase of
fragmentation due to habitat destruction. This process alters the connectivity within a
metapopulation and may endanger the persistence of the latter. Indeed, connectivity is
the mechanism that permits to a spatially isolated population to resist to local pertur-
bations through the supply of individuals from other populations when self-recruitment
is depleted. Moreover, connectivity promotes gene flow to balance genetic drift and avoid
inbreeding ( Wright, 1931). It follows that, setting up adequate spatial planning policies
(Boersma et Parrish, 1999), with minimal impact on marine species persistence, should

include connectivity assessment.

Consequently, in recent years, different methodologies have been developed for tack-
ling marine connectivity assessment; each with their own advantages and shortcomings
(see Kool et al., 2013 and Lagabrielle et al., 2014). Among these methodologies, graph
theory has been increasingly employed due to its adaptability to different contexts (Moila-
nen, 2011). For example, it was applied to the study of landscape connectivity (Urban et
Keitt, 2001); to the study of the connection between marine reefs (Treml et al., 2008);

to infer gene flux in marine populations networks (Rozenfeld et al., 2008); to examine
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network topology of species (Kininmonth et al., 2010b); for the identification of marine
sub-populations (Jacobi et al., 2012); and for the estimation of connectivity among ma-

rine Marine Protected Areas (Andrello et al., 2013).

Moreover, in connectivity studies many different graph theory measures have been
proposed to identify the sites playing certain functions within an ecological network ( Ray-
field et al., 2010; and Galpern et al., 2011). In the literature, some graph theory measures
highlighting sites ensuring a large transfer in ecological networks have been proposed as
relevant for conservation (e.g., Treml et al., 2008; Rozenfeld et al., 2008; Andrello et al.,
2013). However, this point is not bereft of controversies. For example, the equivalence
between large transfer and conservation relevance remains unproven (sensu Moilanen,

2011; and Lagabrielle et al., 2014).

Herein we want to reexamine the ecological interpretation of some graph theory mea-
sures in the context of marine metapopulations of three species of benthic invertebrate
(sedentary adult stage with dispersion during the larval stage). For doing this, graph
theory measures are compared with results of existing ecological studies assessing the
regional persistence (Guizien et al., 2014), the genetic structuring (Padron et Guizien,
2015) and regional assemblages structure of soft-bottom benthic invertebrates in the Gulf
of Lion (Labrune et al., 2007). Moreover, we extend the analysis in Guizien et al. (2014)
to the multiple-species case.

The goal is to assess which of the graph theory measures that we consider in this study
is in better agreement with the information provided by these studies. As a result, the

conservation relevance of the different graph theory measures will be clarified.

The Gulf of Lion was selected because of the numerous studies, both physical and
biological, already performed in this area that can be used to interpret and validate our
results. In the 10 to 30 m bathymetric depth range, the GoL is characterized by a large

continental margin dominated by soft-bottoms forming a continuous habitat for soft-
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bottom invertebrates. Its hydrodynamics is complex and highly variable (Millot, 1990).
Depending on wind forcing, currents in the study zone can be either eastward or south-
westward (Estournel et al., 2003; Petrenko et al., 2008). The circulation is strongly influ-
enced by the Northern Current, which constitutes an effective dynamical barrier blocking
coastal waters on the continental shelf (Petrenko, 2003) and delimits the regional scale of
hydrodynamic connectivity. Exchanges between the GoL. and offshore waters are mainly
induced by processes associated with the Northern Current (Petrenko et al., 2005).

Moreover the recent study by Rossi et al. (2014) supports the choice of spatial scales of
the size of the Gol. as an appropriate closure scale for a metapopulation, meaning that
the GoL populations are not fueled by populations outside the GoL. In fact, for month-
long periods of larval dispersal, larval transfer was higher within the GoL that with areas

outside it (Rossi et al., 2014).

The paper is organized as follows. In the Materials section, we discuss the main char-
acteristics of the graph theory input: 60 connectivity matrices issued from Lagrangian
dispersal simulations. In the Procedures section, we detail the graph theory measures we
tested. In the Assessment section, we present the systematic analysis of the hydrological
connectivity matrices with graph theory measures. The graph theory measures’ conser-
vation meaning that descends from the comparison with previous ecological studies is

finally discussed.

2.2.2 Materials and Methods

The common input to metapopulation model and graph theory analyses are the connec-
tivity matrices specifying the larval transfer probabilities between 32 reproductive sites
along the shore of the Gulf of Lion (Figure 2.3). These sites cover a substantial part
of the available habitat in the GoL for soft-bottom benthic species Aloisi et al. (1973).

Larval transfer probabilities were determined by means of Lagrangian simulations, that
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Figure 2.3: Schematic representation of the typical circulation in the Gulf of Lion. The
thick arrow represents the dominant alongshore Northern Current. The thinner arrow
represents the eastward current that can be detected in stratified conditions or under
particular wind field conditions. The positions of the 32 studied sites are plotted. The
sites 1, 10, 18 and 32, used for the habitat loss scenario in Guizien et al. (2014), are
highlighted by bigger gray dots. Node 21 is the smallest of the gray dots. The gray lines
correspond to the 100 m, 200 m, 1000 m and 2000 m isobaths.
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were obtained using a 3-D circulation model (see Marsaleiz et al., 2006) with a horizon-
tal resolution of 750 m. Spawning was simulated by releasing 30 particles in the center
of each of 32 sites alongshore the GoL, on the 30 m isobath, every hour from January
5 until May 16 in 2004 and 2006. The final positions of larvae after 3, 4 and 5 weeks
(corresponding to the pelagic larval period) were processed to compute the proportion
of the larvae coming from an origin site and arriving at a settlement site. Connectivity
matrices were then built for ten consecutive 10-day spawning periods in each year and

for each of the three different pelagic larval periods, for a total of 60 connectivity matrices.

2.2.2.1 Metapopulation Model

The spatio-temporal dynamics of benthic invertebrate populations with a dispersive
pelagic larval stage were simulated with the spatially explicit metapopulation model of
Guizien et al. (2014). The model describes explicitly, in discrete times and for a set of
patches with different areas, the spatial density dynamics of only the sedentary adult
stage resulting from local survivorship, and reproductive input potentially contributed
by all the other patches forming the metapopulation. Reproductive input results from
offspring production rate in source patches, its redistribution among the different patches
through a larval flow connectivity matrix and recruitment success in destination patches,

the latter being regulated by intra-specific competition for space.

The model was parameterized to describe the spatio-temporal dynamics of a 2-year
life expectancy species dwelling in the soft-bottom habitat of the Gulf of Lion. The species
was assumed to reproduce once a year with a dispersive pelagic larval phase lasting from
3 to 5 weeks. Such trait correspond to Ditrupa arietina, the dominant polychaetes species
of the infralittoral soft-bottom benthic communities of the gulf (Labrune et al., 2007). In
the simulations, demographic parameters were assumed to be spatially uniform for the
10-30 m depth range to more clearly reveal the effect of connectivity on spatial structure.

Propagule production rate was set to 500 and site saturating density was set to 25,000
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ind m~? Recruitment success was also considered to be spatially uniform, and used to
quantify species persistence to metapopulation connections breakdown.

The continuous sand facies bed spanning the 10 to 30 m isobaths along the gulf was
discretized into thirty-two contiguous sites as in Guizien et al. (2014) to describe larval
transfer within the infralittoral soft-bottom habitat of the gulf. Connectivity matrices,
with local retention rates on the diagonal, and transfer rates between distant sites off of
the diagonal, were quantified from Lagrangian larval dispersal simulations. Simulations of
larval dispersal in the gulf used three-dimensional currents and turbulent kinetic energy
computed at a resolution of 750 m x 750 m following interpolation between the hourly
outputs (Guizien et al., 2006). Spawning was simulated by releasing thirty neutrally
buoyant larvae in the center of each of the 32 sites, on the 20 m isobath, every hour
during the reproductive season. As Ditrupa arietina reproduce in late winter-early spring
in the NW Mediterranean Sea (Charles et al., 2003), a 100-day reproductive season (from
January 5 at Oh until April 13 at 23h) was considered and divided into ten consecutive 10-
day spawning events in 2004 and 2006 (see details in Guizien et al., 2012). In the absence
of knowledge regarding sinking or swimming behaviour of the trocophore Ditrupa arietina
larvae (no shell), larvae were considered neutrally buoyant. Three connectivity matrices
corresponding to the three different pelagic larval durations (PLD) were built for each
spawning period, and the proportion of larvae coming from the center of any site and
arriving in each of the thirty-two sites was multiplied by the ratio of the areas of origin
to the destination sites.

Three groups of simulations of Ditrupa arietina population density spatial distribution
over a duration of 50 life-expectancy cycles were carried out, starting with a low uniform
spatial density of 0.4% of the site’s carrying capacity. Asymptotic stable equilibrium was
defined as the average of the population density between the 45 and 50 life-expectancy
cycles. Connectivity was either set deterministically (the same matrix repeated every
year) or stochastically (a random matrix picked up every year among the twenty variants).
When connectivity was set stochastically, ensembles of 500 simulations were performed

for each set of the other parameters in order to evaluate the variability arising from the
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connectivity sequence. The average regional coverage was defined as the ratio between
the regional average of population density and the saturating capacity.

Simulation settings are summarized in Table 2.1.

Simulations group 1 explored the resistance of a Ditrupa arietina to the removal of
sets contiguous patches among the 32 patches forming the metapopulation for each of the
20 different connectivity variants. For each connectivity variant, the recruitment success
value corresponding to the limit for regional persistence of Ditrupa arietina in the full
network i.e. with all 32 habitat patches was determined by varying recruitment success
from 107 to 1 (10 regular steps within each log,,-interval), similarly as in (Guizien et al.,
2012). Then, applying this recruitment success value uniformly in all patches, the proce-
dure consists in gradually increasing the number of patches removed from the network
(lost habitat patches) starting from any location in the metapopulation. For each of the
32 initial patches, the minimum number of lost habitat patches around it causing average

regional coverage at equilibrium of a 2-year lifespan species pass below 0.4% was detected.

Simulations group 2 explored the resistance of Ditrupa arietina to the removal of one
patch among the 32 patches forming the metapopulation considering the inter-annual
variability in connectivity patterns. For each patch removed, the recruitment success
value was varied from 1.8% to 3% by step of 0.05%. The largest recruitment success value
for which the average regional coverage at equilibrium of the ensemble of 500 simulations
yielded pass below 0.4% (species disappearance) was seeked for.It is used to rank patches
importance in Ditrupa arietina regional persistence: the larger the recruitment success,

the more important the site is.

Simulations group 3 explored the resistance of a Ditrupa arietina to the removal of
sets contiguous patches among the 32 patches forming the metapopulation, similarly
to simulations group 1, except considering the inter-annual variability in connectivity
patterns. Thus, connectivity was no more the same every year but varied randomly from

year to year (stochastic connectivity case). The fixed and uniform recruitment success of
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3%, that was determined as the limit for regional persistence of Ditrupa arietina in the 32
patches network (Guizien et al., 2012) was applied. The same procedure as in simulations
group 1 was applied that is gradually increasing the number of patches removed from
the network (lost habitat patches) starting from any location in the metapopulation. For
each of the 32 initial patches, the minimum number of lost habitat patches around it
causing average regional coverage at equilibrium of a 2-year lifespan species pass below

0.4% in 10%, 50% and 90% of 500 simulations were seeked for.

Group 1 Group 2 Group 3
Connectivity D S S
Propagule production rate 500 500 500
Life expectancy 2 years 2 years 2 years
Disturbance varying number of habitat loss one habitat loss varying number of habitat loss
Number of simulations 20 500 500
Recruitment success fixed to persistence threshold with all habitat patches  [1.8:0.05:3]|% 3%

Table 2.1: Settings for the three simulation groups.

2.2.2.2 Graph Theory

A graph G is a couple of sets (V, E') where V is the set of nodes and F is the set of edges.
The set V represents the collection of objects under study that are pair-wise linked by an
edge representing a relation of interest between these two objects. When the relation is
symmetric, the graph is said to be ‘undirected’, otherwise it is ‘directed’. An example of
an undirected graph in the context of ecological networks is the genetic distance among
populations used in Rozenfeld et al. (2008), while an example of directed graph is the
probability of connections due to the current field between two Marine Protected Areas
as in Andrello et al. (2013). If every existing edge has the same importance as the others,
the graph is said to be ‘binary’ (e.g, Rozenfeld et al., 2008): the edges can exist or not. If
each edge has a specific relative importance, a weight can be associated to each of them
and the graph will then be called ‘weighted’ (e.g, Andrello et al., 2013). In the present
study, we deal with directed weighted graphs. The nodes of our graphs represent the 32
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sites in the Gol.. Thus, henceforth we will only use the term ‘sites’. The edges of our
graphs represent the not null probability that a Lagrangian particle released in one site
is transported to another site, after a certain amount of time corresponding to its larval
duration period. It follows that the edge weight quantifies the amount of larvae exchanged

between two sites in one generation.

Typically, one is interested to identify the nodes that are more important in a network.
This can be done by calculating different so-called centrality measures, each targeting
nodes with different characteristics.

A simple centrality measures is strength centrality. The total weight of the connections
of a node 7 € V is called strength k;. In a directed graph, it is possible to distinguish
between in-strength, out-strength and total strength. The first one is the sum of the val-
ues of the edges terminating in the node: k" = 3 ;aj; with j € V' and 4 # j, where the
values a;; are the terms of the connectivity matrix A. The second one is the sum of the
values of the edges starting from the node: k¢t = Zj a;;. The total strength of a node ¢ is
ki = ki" + ko', Nodes with high strength values are said to have high strength centrality.

In classical graph theory studies, . In connectivity studies,.. andrello or kinni.

A more refined version of the same concept is eigenvector centrality. Where strength
centrality gives a simple count of the intensity of connections a site has, eigenvector
centrality is based on the idea that not all connections are equal. In general, connections
to sites who are themselves important will give to a site more influence than connections
to less important nodes. If the centrality of a site i is x;, we can allow for this effect by

prescribing z; to be proportional to the average of the centralities of i’s network neighbors:

1 N
Tr; = X E al-jxj
j=1

where A is a constant. Defining the vector of centralities x = (x1, 23, ... ), we can rewrite

this equation in matrix form as

Ax = Ax
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Hence, x is an eigenvector of the adjacency matrix with eigenvalue A. In order to have x
positive, A must be the largest eigenvalue of the adjacency matrix and x the corresponding
eigenvector. The eigenvector centrality defined in this way accords each site a centrality
that depends both on the number and the intensity of its connections: having a large
number of connections is still relevant, but a site with a smaller number of high-quality
contacts may be more important than one with a larger number of middling contacts.
In classical graph theory studies, eigenvector centrality has been used to identify the
most influential people in a social network, key nodes in the Internet, electrical or urban
networks, and diseases super-spreaders (see Barrat et al., 2008, and references therein).
Also, a modified eigenvector centrality is employed by web search engines (Altman et
Tennenholtz, 2005).

In connectivity studies, Andrello et al. (2014) uses eigenvector centrality to identify sites

contributing the most to population persistence.

The k-core is the largest subnetwork comprising nodes of degree at least k. A vertex
1 has coreness c if it belongs to a c-core in which all sites have strength at least equal to
¢ but not to any (¢ + Ac)-core in which sites have strength at least equal to ¢+ Ac.
The concept of a k-core was introduced to study the clustering structure of social net-
works (Seidman, 1983); to describe the evolution of random graphs (Bollobds, 1984); and

to identify large functional assemblages in proteins (Bader et Hogue, 2003).

The clustering coefficient CC, as defined by Fagiolo (2007), is the the geometric mean
of all triangular linkages within the set of neighbors for a selected site divided by the
maximum possible neighbor linkages that the site could possibly form. For a directed

weighted graph the clustering coefficient of a node i, C'C(7), can be written as:

. [A1/3 + (AT)1/3];/3
CC(i) = Tt 2/ (2.3)

where AT is the transpose of the connectivity matrix and d; counts the pair of edges

both pointing to the same node (e.g., i < j and i + j) that does not generate triangles:
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fi = 220 0ajai.

Intuitively, the clustering coefficient measures the local cohesiveness of the network. In
classical graph theory studies, CC is normally used to infer the behavior of sites with
certain CC characteristics (e.g., trading countries, Fagiolo, 2007). In marine connectivity
it has been proven useful in determining the small-world behavior of the dispersion in the
Great Barrier Reef: describe how community formation can facilitate the effective inter-
action of distant individuals across an entire population where there are only interactions

between small groups of neighbors (Kininmonth et al., 2010Db).

In a connected directed-unweighted graph (i.e., directed-unweighted with no discon-
nected parts), it is possible to define the shortest path o;; connecting two sites i € V' and
J € V as the shortest possible alternating sequence of sites and edges, beginning with
site ¢ and ending with site j, such that each edge connects the preceding site with the
succeeding one. The definition can be extended to directed weighted graphs: the shortest
path has the lowest cost between two sites. The most frequent choice to define the cost
of a path is the sum of its edges’ weights. Nonetheless, when defining edges as larval
transfer probabilities, one has to define the cost of a path as the product of its edges’
weights (Costa et al., In Preparation). So that, when calculating shortest paths and other

measures based on them, we transform the connectivity matrix according to:

dy =1ox (- (2.4)

@i
Cycles are defined as those paths that, starting from site ¢« € V| end up to the site 7 itself,
after a certain number L of steps. In order to neglect the effect of the particles remaining
at the same site with respect to the effect of the ones leaving the site and coming back,
we only consider cycles with L > 2. In connectivity studies, one of the essential requisites
for ensuring the persistence of a species in a given zone is the high probability to see the
larvae returning home after a certain number of generations (see Hastings et Botsford,

2006, for details). This means that the more probable the cycle starting from a given site,
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the more likely the site is important for persistence. In fact, in this case, the site survival
would be quite independent from the import of larvae from other sites. Thus it can act
as a source in our graph (Hastings et Botsford, 2006). Once transformed the connectivity
matrices according to Equation 2.4, we can identify the more probable cycles for each
node by looking for the shortest cycles of a certain length L departing from each node.

In this study we considered L = 4.

The efficiency of a network measures how efficient is the flow over the network by
calculating the average shortest path of a network:

E(V) = 7= 2% (25)

i#]
(i,5)eV

One can also restrict the calculation of E to the neighborhood of a given node. In this

case we refer to the concept of local efficiency:
1
Bioe(Vi) = 7 2_ (V) (2.6)

where V; is the neighborhood of i.
Local efficiency reveals how much the system is fault tolerant (ref), thus it shows how
efficient the communication is between the first neighbors of ¢ when 7 is removed. In

classical graph theory studies, .

Betweenness centrality BC(i), i € V, is based on the concept of shortest path. Be-
tweenness estimates the importance of a site ¢ by counting the fraction of existing short-

est paths in the graph o,;,V(l,j) € V | | # j that effectively pass through this site
0i5(1),Y(l,i,7) € V [ i # 1 #

BC() =Y ‘”;—l(z) (2.7)
o

We then normalized the betweenness value by the total number of possible connections

in the graph: (N — 1)(N — 2), where N is the number of sites in the graph so that
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0< BC < 1.

In classical graph theory studies, High values of the betweenness indicate that a site can
be linked with others on short paths. If one removes a site with high betweenness value it
will worsen the efficiency of the transfer across a graph by lengthening the paths between
many pairs of sites. For this reason, in connectivity studies it has been considered to be
a proxy for migration stepping-stones (Treml et al., 2008), genetic gateways (Rozenfeld
et al., 2008) and dispersion gateways (Andrello et al., 2013).

The mean average path & is commonly used to characterize the topology of a network

(Albert et Bardbasi, 2002):

_ 1
o = m;(h‘j (28)
7]

A low mean average path means that the network is more concentrated and sites are not
far from each other. On the other hand a high value indicate that on average there are

many steps (i.e., generations in our case) between distant sites.

A widely used method for identifying clusters in physical networks is the maximum
modularity criterion introduced by Newman et Girwan (2004). Modularity ) is defined,
up to a multiplicative constant, as the difference between the number of edges falling
within given groups of sites and the expected value in a network that conserves the
strength values of the sites but with randomly placed edges (further details can be found
in  Newman, 2006). Intuitively, random connections between groups of sites are unlikely
to be a meaningful cluster structure. Rather, we expect sites of a cluster to communicate
more with other sites belonging to the same cluster rather than with external ones.
Therefore, we can investigate the cluster structure of a graph by looking for the divisions
of the graph that most differ from a random pattern.

Given a network, let ¢; be the cluster in which site 7 is assigned. For a directed weighted
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graph the modularity assumes the form (see Nicosia et al., 2009, for details):

Q=23 o= steey 29

ijev

where k; and k; are the strengths of the sites ¢ and j, m = ), k; and 6(¢;,¢;) is the
Kronecker §-function.

In particular, the first term in the summation indicates the real value of the connec-
tion between two sites. Instead, the second term indicates the value we expect by chance.
Therefore positive values of modularity will indicate the possible presence of cluster struc-
tures in our network. In classical graph theory studies, modularity has been used to . In

connectivity studies, it has been used by Kininmonth et al. (2010a).

The within-module degree z-score is a within-module version of degree centrality. If
k; is the strength of a site ¢ to other nodes in its module s;, k;, is the average of k over
all the nodes in s;, and Ok, is the standard deviation of k in s;, then:

N 2.10
z o (2.10)

The within-module degree z-score measures how well-connected node i is to other nodes

in the module.

2.2.2.3 Comparing metapopulation model and graph theory

In order to determine the graph theory measures that give the most reliable identification
of sites important for persistence, we calculated the correlation coefficient between the
minimum recruitment success of each site with the value of the different graph theory
measures. Indeed, the higher the minimum recruitment success R,,;, needed in a certain
site to preserve the metapopulation after the removal of a sites around it, the more im-
portant the site is. So that, if a graph theory measure actually gives information about

persistence we expect a high value of that measure for the same node as well. Therefore,
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a high correlation between R,,;, and the graph theory measure is expected. The only
exception are the shortest cycles. Indeed, the shortest a cycle the most probable it is; so
that a low value of the shortest cycles is expected to correlate with high values of R,;,.
Also, in order to calculate R,,;, in a way consistent with the shortest path calculation,
the metapopulation model analysis removed each time the all the nodes composing the

shortest cycle (with L=4) starting from each nodes.

We calculated the correlation on 20 connectivity matrices for each PLD. Successively,
we calculated the mean value of the Spearman correlation coefficient (or rank correlation
coefficient) associated to a significant p-value (< 0.05) for each PLD. In the following,
the number of significant p-values (out of 20) is denoted as #vals. The rank correlation
coefficient aims to identify the graph theory measures that better reproduces the hierar-
chy calculated by the metapopulation model analysis. However, for conservation policies
it could be of greater interest to just identify the most important sites and eventually
discard the information on the relative importance between sites. In order to identify the
graph theory measures that best identifies the most important nodes we calculate, for
each metric, the swapping score between the hierarchy of the most important site for
metapopulation modelling and the hierarchy based on the different graph theory mea-
sures. In particular, we define the swapping score as the number of differences between a

couple of hierarchies.

2.2.3 Results

The connectivity matrices calculated with a PLD of 1 and 2 weeks correspond to net-
works with a significantly higher average path length & than the networks obtained with
a PLD of 3, 4 and 5 weeks. in fact, the average path length for a PLD of 1 and 2 weeks
were 01, = 0.25 and 75, = 0.15 respectively. Instead, for PLDs of 3, 4 and 5 weeks we

obtain: 73, = 0.05, 74, = 0.10 and 75, = 0.05. We can see that the latter ones are lower
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than the former. Moreover, while for PLDs of 1 and 2 weeks we found —by modularity
maximization— that the sites in the Gol. are organized in three clusters, for PLDs of 3, 4
and 5 weeks we found only two clusters (see Table 2.2). These facts indicate that while
for PLDs of 1 and 2 weeks the network is more sparse and divided, for PLDs of 3,4 and 5
weeks the network is more dense and interconnected. Accordingly, the modularity value
decreases as PLD augments. Modluarity values is 0.22 for a 3-weeks PLD, 0.17 for 4 weeks
and 0.14 for 5 weeks. The reason for this is we can expect a particle in the GoL to travel
a maximum 300km per week in the GoL (considering an average velocity of 50cm/s in
Northern current, see Figure 2.3). Therefore, for more than 2 weeks a particle can easily
travel across the GoL even if it travels at a lower average speed. As a consequence, the

network is more connected than in the previous case.

The correlation coefficient and the number of significant p-values obtained for each
graph theory measure and each PLD are reported in Table 2.3.
Strength is always significantly correlated in the most part of cases. However, the number
of significant correlation coefficients is lowest for a 1 week-PLD. This last fact seems to be
valid in general for all the graph theory measures. The mean correlation coefficient ranges
between 0.45 for a 1 week-PLD and augment with the PLD up to 0.77. In particular, for
PLDs of 3, 4 and 5 weeks, strength is the better correlated graph theory measure.
Eigenvector centrality is significantly correlated with the metapopulation model analysis
in few cases and its mean correlation coefficient is always below 0.54.
The core number is well correlated for all PLDs even though, for a 1 week-PLD its corre-
lation is significant in just two cases out of 20. However, the minimum mean correlation
coefficient (0.57) is obtained for a 2 weeks-PLD and the maximum one (0.70) for a PLD
of 5 weeks.
Clustering coefficient’s mean correlation coefficient ranges between the 0.49 and the 0.58.
Also, it is significantly correlated in more than half of the cases for PLDs of 2, 3, 4 and
5 weeks. Only in the 1 week-PLD case it is correlated in less than half (9) of the cases.

Shortest cycles overall not correlated with R,,;, and its correlation coefficient is signifi-
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PLD
# clusters | Sites
[weeks|
1-15
1 3 16-24
25-32
1-12
2 3 13-19
20-32
1-17
3 2
18-32
1-16
4 2
17-32
1-17
5 2
18-32

Table 2.2: Number of clusters found by modularity maximization for each PLD and nodes

composing them.



Chapter 2. Study of marine connectivity and marine populations
42 persistence with graph theory

cant in half or less of the half of the cases independently of PLD.

Betweenness’ mean correlation coefficient ranges between 0.45 for a 1 week-PLD to 0.62
for a b-weeks PLD. Its correlation coefficient is significant in more than half of the cases
for all PLD, but the 1 week one.

Z-score’s mean correlation coefficient increases from 0.45 to 0.70 with the PLD. Also, it

is significantly correlated in most of cases for all PLDs, but the 1 week one.

The swapping scores between the hierarchy based on the different graph theory mea-
sures and the one based on metapopulation model analysis are reported in Table 2.4.
Therein, we also report the most important site that was most frequently found by the
different graph theory measures and by metapopulation model.

In the case of a 1 week-PLD, betweenness is the graph theory measure that, on average,
better identifies the first three most important sites for persistence. Also, it is the only
graph theory measure that most frequently identifies the site 21 as more important for
betweenness as the metapopulation model analysis does.

In the case of a 2 weeks-PLD, core number is the graph theory measure that better iden-
tifies the first three most important sites for persistence. However, betweenness is still the
only graph theory measure that most frequently identifies the site 21 as more important
for betweenness as the metapopulation model analysis does.

In the case of a 3 weeks-PLD, strength and clustering coefficient are the graph theory
measures that better identifies the first three most important sites for persistence. How-
ever, betweenness is the only graph theory measure that most frequently identifies the
site 21 as more important for betweenness as the metapopulation model analysis does.
In the case of a 4 and 5 weeks-PLD, betweenness both better identifies the first three
most important sites for persistence and identifies the site 21 as more important for be-

tweenness as the metapopulation model analysis does.

Overall, the graph theory measures that are better correlated with R,,;, for PLDs of

1 and 2 weeks are core number, clustering coefficient and strength. For longer PLDs, they
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are strength, Z-score and core number. The graph theory measures that more reliably
identifies the most important site for persistence is betweenness. Betweenness is also the
graph theory measure that generally better identifies the first three most important sites
for persistence; even though, occasionally, other metrics (core number for a 2 weeks-PLD;

strength and clustering coefficient for a 3-weeks PLD) perform slightly better.

2.2.4 Discussion and conclusions

Connectivity estimation is crucial in order to set up effective conservation policies to
face the deleterious effects of anthropic pressure and climate change on coastal marine
populations. Graph theory has increasingly been applied in the context of connectivity
studies but a general consensus on its interpretation has not yet been reached. In order
to clarify which among the different graph theory measures that can be applied to the
study of connectivity, we compared graph theory analysis’ results with the results issued
from a metapopulation model. Indeed, metapopulation model have been extensively used
in the context of connectivity estimation and its interpretation is settled.

Our study, considered species with a passive PLD ranging from 1 to 5 weeks, the study
area being the Gulf of Lion. We considered two spawning events in two different years
and calculated the connectivity matrices between 32 reproductive sites by means of a
numerical ocean circulation model. These connectivity matrices were used as common

input of metapopulation models and graph theory analyses.

For short PLDs (1 and 2 weeks) the communities in the Gol are not solidly connected
over the whole GoL. Indeed, we observe three clusters with higher modularity values
with respect to the modularity value of the two clusters we observe with longer PLDs.
For short PLDs we observe rather low correlations between the graph theory measures
and the metapopulation model analysis’ results. A reason for this is probably the fact

that the communities are not well connected. Therefore, the effects of local demography
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1 week

2 weeks

3 weeks

4 weeks

5 weeks

< p> Hvals.

< p> HFvals.

< p> HFvals.

< p> Hvals.

< p> HFvals.

Strength 0.45 11 0.50 16 0.69 18 0.70 19 0.77 19
Eigenvector Centr.  0.26 7 0.54 11 0.37 9 0.28 8 0.18 11
Core Number 0.62 2 0.57 13 0.64 17 0.61 18 0.70 18
Clustering Coeft. 0.51 9 0.58 15 0.60 13 0.49 13 0.58 13
Local Efficiency -0.19 3 -0.40 9 -0.62 13 -0.59 15 -0.70 18
Shortest Cycles 0.03 ) 0.01 8 -0.06 10 -0.05 9 -0.05 8
Betweenness 0.45 6 0.50 12 0.55 17 0.58 18 0.62 14
Z-score 0.45 6 0.49 13 0.61 18 0.65 18 0.70 18

indicates the number (out of 20) of correlation coefficient that are significant.

Table 2.3: < p > is the mean of the Spearman correlation coefficients that have a significant (< 0.05) p-value. #vals
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are much more important than in the case of long PLDs. Indeed, the untold hypothesis
at the base of connectivity estimation by mean of graph theory analysis is often that the
local demographic effect are ignored and that connectivity is maintained by means of the

sole marine currents driving the transport of propagulae between distant sites.

For longer PLDs we observe higher correlations between graph theory and metapop-
ulation model results. This suggests that in the GoL, persistence of species dispersing

passively is likely more due to the transport by current than to local demographic aspects.

Overall, the strength of a site results the most reliable indicator for persistence among
the graph theory measures that we considered. Its correlation can attain high values and
be significant in the vast majority of cases. Therefore, strength can be reliably used to
evaluate the relative importance for persistence of different sites. However, the graph the-
ory measure that more reliably identifies the single most important site for persistence
is betweenness. This peculiarity of betweenness could likely be important in the frame of
conservation policies that —due to obvious limitations— cannot preserve all the reproduc-

tive habitats but rather focus their efforts on the most important sites.
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1 week

2 weeks

3 weeks

4 weeks

5 weeks

SC mGT mMM

SC mGT mMM

SC mGT mMM

SC mGT mMM

SC mGT mMM

Strenght 2.80 20 21 2.60 20 21 255 20 21 2.60 20 21 250 20 21
Eigenvector Centr. 2.75 20 21 290 17 21 295 15 21 2.85 15 21 2.8 15 21
Core Number 295 27 21 230 25 21 2.75 25 21 245 20 21 250 20 21
Clustering Coeff.  2.75 20 21 2.60 13 21 255 14 21 2.65 20 21 2.70 20 21
Local Efficiency  2.80 32 21 295 32 21 3.00 32 21 3.00 32 21 290 32 21
Shortest Cycles ~ 3.00 5 32 290 30 32 2.90 3 29 2.85 1 31 2.95 3.00 18
Betweenness 2.60 21 21 250 21 21 265 21 21 245 21 21 240 21 21
Z-score 295 20 21 2.80 20 21 2.70 20 21 250 20 21 255 20 21

Table 2.4: Swapping coefficients SC' relative to graph theory-based site hierarchy and metapopulation-based one. The

mode of the most important site according to graph theory (mGT) and metapopulation model (mMM) are also reported.
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2.3 Extra Material

2.3.1 Bridging centrality

When exploring the graph theory literature looking for measures that could potentially
be applied to the connectivity study, I encountered the bridging centrality (Hwang et al.,
2008). The available studies in some undirected cases seemed promising. Thus I general-
ized to the directed case and applied to our study case. The results were reported in a first
version of our study that was rejected due to the the fact that the metapopulation model
study with which I compared our results did not rank all the 32 reproductive sites in the
GoL. In the new version, we did not report the results relative to the bridging centrality
because we significantly augmented the number of graph theory measures employed and
because bridging centrality was never used before in connectivity studies. Moreover, some

other measures resulted to be better correlated with persistence than bridging centrality.

Bridging centrality (BR) was first proposed by Hwang et al. (2008) for undirected
unweighted graphs (see Figure 2.4 for an example). For our analysis we reformulated it
in order to extend its use to directed weighted graphs.

Bridging centrality highlights those sites that connect different clusters of a network (see
Huwang et al., 2008). It is derived both from the betweenness value of a site and from the
bridging coefficient that accounts for the probability of leaving the direct neighborhood
of the site by starting from one of the sites composing it. Intuitively, sites with a high
number of such edges fall on the boundary of clusters. In Hwang et al. (2008), for a site

1 € V, the bridging coefficient is defined as:

Y (f) = kl > ]5_”)1 (2.11)

<

k3

where V; is the direct neighborhood of i: the set of sites reachable from ¢ in one step.
A(v) is the out-strength of sites v € V; once deleted the edges going from v to other sites
in V.
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I classical graph theory studies, it has been used identify critical nodes that are important
for the robustness of the network (Nanda et Kotz 2008; Zhang et al. 2010).

We propose the way to generalize the bridging coefficient to directed weighted graphs by
accounting for the weight of the edges and by checking which edges are effectively leaving
the neighborhood of the site. Then, we correct the out-strength of i via the term —a,;
and the strength of v via the term —(a;, + a,;). Note that, for this calculation, all the
terms a,, on the diagonal of the connectivity matrix are irrelevant. Hence, in the directed

weighted case, we redefine the bridging coefficient as:

1 A(v) — ay;

\I/dw N —
Q k; ky — (@i + Q)

(2.12)

veV;

In this way, we retain both the information on the flux of information through a
site (given by the betweenness) and the topological information on the position of this
site relative to clusters (given by the bridging coefficient). In fact, a site falling on the
border of a cluster and channeling a high flux of information will have both high bridging
coefficient and high betweenness values. As a result, the removal of such a high bridging
centrality site would have a much more disruptive effect than the removal of a site having
only either a high betweenness value or a high bridging coefficient (see Hwang et al., 2008,
for an analysis and discussion of this phenomenon in the undirected case). An important
aspect to pay attention to, when calculating the betweenness centrality and the bridging
coefficient of a site, is the different orders of magnitude in play. While the betweenness’
one is normalized to one, the bridging coefficient’s one is not: its value depends upon the
particular metric used to define the distance between the sites. In order to give to the
two parameters equal importance in characterizing the centrality of a site, we follow the
suggestions of Hwang et al. (2008), and (i) calculate the betweenness centrality and the
bridging coefficient for each site, (ii) calculate the rank vector of the sites on the base of
their value of betweenness and bridging values, and (iii) calculate the normalized bridging

centrality as:
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where I'gr(;) is the rank of a site 4 in the betweenness vector and I'y;) is the rank of a
site ¢ in the bridging coefficient vector. We then normalize bridging centrality by dividing

it by the product of the maximum possible ranks N?2.
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2.3.2 Visual explanation of graph theory measures

Hereafter, some graph theory measure are clarified in a visual way. For simplicity, we will
restrict the representation mostly to undirected unweighted networks. The captions give
a short definition of each measure, refer to Section 2.2.2.2 for the mathematical details.
Moreover, the sub-captions, the considerations about the value of the different measures

is always relative to the red dot.
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Unweigted undirected graph. Weigted undirected graph.

N N\

Unweigted directed graph. Weigted directed graph.

Figure 2.5: Types of graph.

High. Low.

Figure 2.6: Degree: number of edges emanating from a single node.
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High. Low.

Figure 2.7: Clustering coefficient: how many of your nearest neighbors are connected to one

another.

High. Low.

Figure 2.8: Local efficiency: average shortest path connecting all neighbors of a given

node.
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High. Low.

Figure 2.9: Betweenness: number of shortest paths that pass through a given node.
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Numerical Models and Turbulence
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In this chapter I present a study I conducted in order to establish if the Reynold
Averaged Navier-Stokes numerical model Symphonie (Marsaleix et al., 2008) performs
better with certain turbulence closure schemes rather than other ones. This work has
been submitted to Ocean Modelling. Symphonie is a widely used model for both phys-
ical and biochemical studies and it has been extensively validated (see Section 3.1.3.1
for references). However, here the focus is on the modelling of turbulent quantities like
the kinetic energy dissipation rate and the turbulent diffusivity. A validation of this kind
has never been conducted for Symphonie and it is also one of the few examples in the
literature (e.g., Burchard et Bolding 2001; Ilicak et al. 2008; Reffray et al. 2015). The
importance of reliably modelling the turbulence is due to the sensitivity of the large scale
dynamics to the small scale energy dissipation and transfer. In particular, a modified
large scale circulation could have non negligible effects on the dispersion of propagulae

between distant reproductive sites.

The first aspect that could make a difference in implementing an ocean circulation
numerical model is the turbulence closure scheme (TCS). Let’s take a step back in order
to understand what it is.

Given the nonlinearity and consequent high sensitivity of the Navier-Stokes equations on
the initial conditions, a statistical approach to turbulent flows is often exploited. Within
this framework the Reynolds decomposition (u = %+ u’) permits to obtain the equations

for steady shear flows. By shear flow, we mean flows in which velocity is predominantly
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one dimensional in nature like in large scale geophysical flows. However, the quadratic
nonlinear advective term in the Navier-Stokes equations gives rise to new terms involv-
ing the correlation of turbulent velocity fluctuations that couples the mean flow to the
turbulence. These terms are called Reynolds stresses (7;; = —pm) and represent the
mean momentum fluxes induced by the turbulence. So that, in order to describe the
evolution of the mean flow, we need to describe these stresses. Unfortunately writing
a dynamical equation for the turbulent components u’ does not help because it would
involve higher-order correlations like W We thus understand that in order to take a
statistical approach we paid a price. Before we had a deterministic —yet chaotic— set of
equations. Now, with a statistical approach, the quantities we are interested in, W are
perfectly reproducible but unknown: we do not have a closed set of equations to describe
them. It is at this point that different approximations enter into play to add ad hoc extra
information and close the equations. The different "tactics" to parameterize the velocity
fluctuations’ correlations as a function of some other property of the flow are called tur-
bulence closure schemes.

The first proposed TCS dates back to Boussinesq (1872) who proposed a shear-stress

Oug

R where v

strain-rate formulation for the Reynolds stresses in mean flows: 7, = prr
is the eddy viscosity. The general idea behind this formulation is that the turbulent mix-
ing for momentum is analogous to the molecular transport of momentum, which leads
to the laminar stress 7,, (see Tennekens et Lumley, 1972, for a derivation). Note that
this formulation states that the mean current is the energetic source for the turbulent
fluctuations. We now have a situation in which there is a continual two-way interaction
between the mean flow that generates and maintain the turbulence and the turbulence
itself that shapes the mean velocity distribution. It is precisely this last interaction that
we need to parameterize but this cannot be done without having some information about
the intensity of turbulence.

One family of TCSs, the so called k — ¢, basically proceeds in complete analogy to the
kinetic theory of gases and assumes that the eddy viscosity is proportional to the eddy

mean free path (or length scale) ¢ and to their characteristic velocity scale V: vp = (V|



58 Chapter 3. Numerical Models and Turbulence

where V = k'/2 = %W This leads to a form for the eddy viscosity along the lines of

v = (? aaug (see Davidson, 2004, for a derivation). So that now the problem is shifted

again and we need to estimate ¢ on the base of some property of the flow. In the present
work we considered a formulation proposed by Gaspar et al. (1990) that links the mixing
length to the stratification of the flow (see Appendix 3.2.3 for more details).

Another family of TCSs, the k — ¢, models the mixing length as function of u ~ /el
exploiting the results of Kolmogorov (1942). We thus have a description of the turbulent
flow through an exact dynamical equations for k and an empirical dynamical equation
for e.

More details about the particular k — ¢ and [ = ¢ models that we exploited in the study
presented in this chapter can be found in Appendix 3.2.3.

We note at this point that the analogy between diffusion of momentum through turbu-
lence and the diffusion through molecular motion has some severe theoretical limitations.
For instance, turbulent eddies are distributed entities which continually interact, whereas
molecules are discrete and collide intermittently. Moreover, the mean-free path of molecu-
lar motion is small compared to the macroscopic dimensions of the flow. The same cannot
be said of the meanderings of turbulent eddies. Indeed, the large scale, energy containing
eddies frequently have a size comparable to the characteristic scale of the mean flow (see
Davidson 2004 for a more in depth-discussion). Nevertheless, this formulation of turbulent
motion classically performs well in the context of geophysical flows and provides realistic

results.

Among many other aspects that can affect the implementation of ocean circulation nu-
merical models, we study the influence of the choice of the surface and bottom boundary
conditions and of the stability functions parameterizing the unresolved higher moments

in the dynamical equations. Specific details are given in the rest of this chapter.
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The first part of this chapter coincides with the manuscript I submitted to Ocean
Modelling. I am currently revising the manuscript in order to address some comments of
the reviewers. Overall, the revision consist in adding some more numerical experiments

to the analysis. The new numerical experiments are already listed in Section 3.5.1.

In addition to the paper I submitted to Ocean Modelling, at the end of the chapter,
I also resume the preparatory work for this study. In particular, I will discuss some more
details of the physical theory at the base of the SCAMP measurements; the analysis of
the error on these measurements; the modification I made to the data analysis code; the
tests of the data analysis code that I conducted on numerically generated data.
Furthermore, in the extra materials I show some results that expands the results of the
submitted paper: four extra simulations that try to investigate the sensibility of the clo-

sure schemes to additional factors respect to the ones reported in the manuscript.

3.1 Comparison of in situ microstructure measurements
to different turbulence closure schemes in a 3-D nu-

merical ocean circulation model

3.1.1 Abstract

In situ measurements of kinetic energy dissipation rate ¢ and estimations of eddy viscos-
ity Kz from the Gulf of Lion (NW Mediterranean Sea) are used to assess the ability of
k —¢e and k — ¢ closure schemes to predict microscale turbulence in a 3-D numerical ocean
circulation model. Two different surface boundary conditions are considered in order to
investigate their influence on each closure schemes’ performance. The effects of two types
of stability functions and optical schemes on the k — ¢ scheme is also explored. Overall,

the 3-D model predictions are much closer to the in situ data in the surface mixed layer
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as opposed to below it. Above the mixed layer depth, we identify a model’s configuration
that outperforms all the other ones. Such a configuration employs a k — ¢ scheme with
Canuto A stability functions, surface boundary conditions parameterizing wave breaking
and an appropriate photosynthetically available radiation attenuation length. Below the
mixed layer depth, reliability is limited by the model’s resolution and the specification of

a hard threshold on the minimum turbulent kinetic energy.

3.1.2 Introduction

Turbulence is an essential mechanism for the transport of energy, salinity, suspended
and dissolved matter. Turbulent fluxes of such quantities are the result of correlated,
small-scale fluctuations of the velocity field and of the transported quantity itself. The
prevalent turbulence production mechanisms in coastal ocean are: mean shear, unsta-
ble stratification, Langmuir circulation (Farmer et Li, 1995) and breaking surface waves
(Agrawal et al., 1992). For coastal ocean, mean shear is mainly generated by the action of
winds and tides, but also by surface waves and baroclinic flows (e.g., Thorpe, 2005), in-
cluding nonlinear internal waves (Toole et Schmitt, 1987). Unstable stratification results
from surface processes such as surface cooling, evaporation or differential advection (e.g.,
Kantha et Clayson, 2000). Destruction of turbulence occurs by transformation into po-
tential energy during stable stratification or viscous dissipation into heat (e.g., Kantha et
Clayson, 2000). The complexity of these processes by themselves and of their interactions
requires numerical models to cover a wide range of spatio-temporal scales and Reynolds
number (e.g, Burchard et al., 2008). This is especially true in the upper ocean where all
the above phenomena concur together to generate turbulence.

Upper ocean connects —through various turbulent mechanisms— the surface forcing from
the atmosphere with the quiescent deeper ocean where heat and fresh water are seques-
trated and released on longer time and global scales (Ferrari et Wunsh, 2009). Also,

upper ocean turbulence plays an important role in biological phenomena by, for example,
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determining phytoplankton growth rate (Thomas et Gibson, 1990), influencing primary
production (Flierl et Davis, 1993) and the onset of blooms (Taylor et Ferrari, 2011).
The complexity of modelling such mechanism within ocean circulation numerical models
gave rise to several approaches. In particular, many turbulence closure schemes have been
proposed. The ones most frequently found in the ocean modelling community’s literature
are the k — k{ by Mellor et Yamada, 1982; the k —e by Rodi, 1987; the k — kw by Wilcoz,
1988; the k— ¢ by Gaspar et al., 1990 and the KPP by Large et al., 1994. Following recent
numerical modelling literature (Ilicak et al., 2008; Reffray et al., 2015), in the present
study, we consider the k —e and k — ¢ second moments closure (SMC) schemes. Note that
other kinds of closure schemes such as the KPP Large et al., 1994) are not considered
here being not as well suited as the other two schemes for a comparison with in situ data
of kinetic energy dissipation rate ¢.

Additional complexity is added to the modelling by the interplay of the SMC and the
choice of boundary conditions (b.c.). Also the choice of surface and bottom boundary
conditions can profit of a vast literature (e.g., Craig et Banner, 1994; Stacey et Pond,
1997; Estournel et al., 2001; Warner et al., 2005), aiming at modelling different forcing
mechanisms. Furthermore, different stability functions can be chosen in order to include
the effect of the parametrized non-local moments and pressure strain correlations in the
dynamical equations (e.g., Galperin et al., 1988; Kantha et Clayson, 1994; Canuto et al.,
2001). The choice of the optical scheme is particularly important considering the high
number of studies coupling Symphonie to biochemical models as it can influences turbu-
lent fluxes and nutrient availability.

Thus, the in situ validation of the closure schemes, boundary conditions, stability func-
tions, optical scheme and their interplay is fundamental for assessing the reliability of
numerical models (Warner et al., 2005; Peters et Baumert, 2007; Arneborg et al., 2007,
Ilicak et al., 2008).

The current study presents the comparison of kinetic energy dissipation rates £ mea-

surements and vertical eddy viscosity K7 estimations issued from a Self Contained Mi-
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crostructure Profiler (SCAMP) with the predictions of a 3-D numerical ocean circulation
model (Symphonie; Marsaleiz et al., 2008) obtained with different model’s setup. The
aim is to gain some insights on which scheme and/or boundary conditions permit to have
the representation of turbulence activity closer to the observations.

Microstructure measurements with the SCAMP profiler have already been used for tur-
bulence estimations in lakes and ocean (e.g., Ruddick et al., 2000; Sharples et Moore,
2001; Burchard et al., 2002; Anis et Singhal, 2002; Sharples et al., 2003; Peters et al.,
2009; Steinbuck et al., 2010; Steinbuck et al., 2011; Cuypers et al., 2012; Jurado et al.,
2012; Bouffard et Boegman, 2013). The dataset we exploit is described in Section 3.1.3.

It consists in measurements taken in a coastal environment in the Gulf of Lion (GoL).

The GolL is located in the northwestern Mediterranean Sea and is characterized by a
large continental margin (Figure 3.1) and a complex hydrodynamics (Millot, 1990). Its
circulation is strongly influenced by the southwestward along-slope Northern Current.
This density current flows in a cyclonic way and constitutes a barrier between the coastal
waters of the continental shelf from the open northwestern Mediterranean Sea (Alberola et
Millot, 1995; Sammari et al., 1995; Petrenko, 2003). Cross-shore exchanges between the
GoL and offshore waters are regulated by wind induced dynamics (Estournel et al., 2003;
Hauser et al., 2003; Petrenko et al., 2017) and by processes associated with the North-
ern Current, such as intrusions into the continental shelf and barotropic and baroclinic
instabilities (Conan et Millot, 1992; Flexas et al., 1997; Petrenko et al., 2005; Barrier
et al., 2016). The Gulf of Lion is a suitable case study because of the high number of
physical (Qiu et al., 2010; Hu et al., 2011), sediment dispersion (Bourrin et al., 2011)
and biochemical (Pinazo et al., 2001; Herrmann et al., 2014) numerical studies carried

out there.

Symphonie has already been validated on a variety of different aspects like current
modelling and eddy generation (Rubio et al., 2009; Hu et al., 2011; Kersalé et al., 2013),

river plume dynamics (Reffray et al., 2004; Gatti et al., 2006) and dense water formation
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(Dufau-Julliand et al., 2004; Estournel et al., 2016). But a study of the different SMC
that the user can implement in the Symphonie code has not yet been done. In particular,
the modelling of the near-surface physical processes has been proved to be sensible to the
choice of SMC as well as the physical-biogeochemical models to the K, values (Fraysse
et al., 2014).

In general, we can regard all modeled large-scale circulation features in an integrated
fashion as they result from successive calculation steps and approximations. Hence, a
major difficulty in validating numerical models —beside the high number of variables at
play— is the possible compensation of different errors between each other. This fact makes
difficult to attribute a specific amount of the total error on a certain quantity to a spe-
cific step in its calculation, in the present case the turbulence scheme. Here, our goal is
to assess the model predictions focusing on turbulence modelling in the most realistic
configuration we can achieve: 3-D dynamics with realistic forcing. Indeed, mixing has
a primary role in influencing the large-scale circulation motion (Rhines, 1988; Ferrari,
2014). Nevertheless, the 3-D nature of the model brings in play an augmented number
of numerical issues, among which spurious numerical diffusion (Marsaleiz et al., 2008;
Marchesiello et al., 2009; Hu et al., 2009) that are usually neglected in similar, but 1-D,
studies (Gaspar et al., 1990; Burchard et al., 2002; Reffray et al., 2015).

The manuscript is organized as follows. In Section 3.1.3 we describe the properties
of the numerical model, the microstructure in situ data and how we carry out the com-
parison between them and the numerical data. In Section 3.1.4 we report the results of
our analysis and we discuss them in Section 3.1.5. In Section 3.1.6 we summarize the

conclusions of our study.
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3.1.3 Materials and Methods
3.1.3.1 Numerical modelling

The numerical model Symphonie is a 3-D primitive equations, free surface, sigma coordi-
nate ocean model, based on Boussinesq and hydrostatic approximations (Marsaleix et al.,
2008; Marsaleix et al., 2009; Marsaleix et al., 2012). Components of current, temperature
and salinity are computed on a C-grid (Arakawa et Lamb, 1977) using a classic finite
difference method detailed in Marsaleix et al. (2006) and Marsaleiz et al. (2008). This
model has been extensively used in studies of the Mediterranean Sea, mostly at the scale
of the continental shelves (Ulses, 2005; Estournel et al., 2003; Estournel et al., 2005),
generally comparing satisfactorily with available in-situ observations of classical hydro-
logical quantities. Symphonie has also been coupled to biochemical models for studies
that demonstrated the impact of the turbulence level on determining the vertical flux
of nutritive salts, the nutricline depth and —as a consequence— the results given by the
biochemical models (Ulses et al., 2016; Herrmann et al., 2013). However, a study of the
consequences of choosing a certain model’s implementation of the Symphonie code has
not yet been done. To fill this gap, we compare the model predictions of £ and K, with
the values measured with the SCAMP profiler.

The model domain we use, shown in Figure 3.1, is that of Estournel et al. (2016). Note
that all the measurements sites are far from the open boundaries. The horizontal resolu-
tion of the model grid is 1/110 degree (about 1 km). All the numerical experiments we
perform cover the whole period in which in situ data are available: from 1 July 2010 to
13 March 2014, plus ten weeks of spin up.

In the vertical the model exploits a generalized sigma coordinate with 50 levels. Surface
fluxes are computed using the bulk formulae by (Large et Yaeger, 2004) and the 3-hours
ECMWF by FEstournel et al. (2016). The boundary condition for ¢ is deduced with a
length scale reasoning from the value of the Richardson number (Estournel et Guedalia,
1987; Michaud et al., 2012), see Appendix 3.2.1 for more details. In order to simulate the

limiting effect of stable stratification, following Galperin et al. (1988), the minimum of ¢
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is linked to the minimum turbulent kinetic energy value k,,;, through:

0.55°N
"0.53v/2

As a default in Symphonie, k,;, = 1078 kg m?/s?; this implies €,,;, = 10712 m?/s3.

Emin = k (31)

The choice of this threshold follows from underestimating the more standard value of
Emin = 1078 kg m?/s*> (Gaspar et al. 1990; Burchard et al. 2002), that is based on the
estimation of the internal wave activity.

Similar low-frequency buoyancy conditions are maintained for all numerical experiments
using a nudging procedure on temperature and salinity toward the corresponding MER-
CATOR fields (product PSY2V4R4). The nudging time scale is 30 days, enabling the free
development of higher frequencies (including those of the turbulence closure scheme), and,
at the same time, ensuring that the different turbulence schemes are tested in similar gen-

eral conditions of stratification.

We choose the a k — ¢ (Burchard et Bolding, 2001) and a k — ¢ (Gaspar et al., 1990)
closure schemes because, other than being the more exploited by Symphonie’s users, they
are also widely used in the wider scientific community. Reffray et al. (2015) —in a 1-D case—
showed that k — ¢ gives more reliable mixing estimation with respect to other schemes
widely used in the literature: k£ — kl, k —w and k — . The k — ¢ scheme in Reffray et al.
(2015) is based on Gaspar et al. (1990) but simplified for 1-D applications. We want to
test if the original scheme by Gaspar et al. (1990) performs better than k — € in a 3-D
case.

Moreover, our questioning the numerical results’ sensitivity on the value of k,,;, follows
from the study by Gaspar et al. (1990). Therein the authors encouraged (but not imple-
mented) the use of a parametrization k,,;, rather than fixing a hard value. Herein we test
if a good result can be achieved in a simpler way by specifying a different value of £,,;,.
A study by Burchard et Bolding (2001) showed that, in a 1-D study of temperature and
mixed layer depth data of the well-known dataset OWS Papa (northern Pacific), the

k — e closure scheme performs better when employing the stability functions proposed
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by Canuto et al. (2001) (commonly called Canuto A), rather than the ones by Kantha et
Clayson (1994), Rodi (1980) and Hossain (1980). On the other hand, llicak et al. (2008)
showed that —in a 3-D study of the Red Sea outflow— the stability functions of both
Canuto et al. (2001) and Kantha et Clayson (1994) perform similarly. We want to further
investigate the different performance of these two stability functions in a 3-D case. Note
also that this study —as opposed to Burchard et Bolding (2001) and [licak et al. (2008)—
has a strong focus on microstructure measurements and not only on more standard quan-
tities like mixed layer depth, temperature and salinity.

In the literature there are different formulations for Kz. In particular, it can include the
molecular diffusivity Dy (so that we always have Ky > Dr; e.g., Burchard et Bolding
2001) or not (e.g., Han, 2014). Here we want to clarify the differences (if any) between
the two approaches.

Not having the necessary computational power to explore all the possible combinations
of these factors in a 3-D model (as done for example in a similar study in the 1-D case
by Reffray et al. (2015), and in a 3-D case by Ilicak et al. (2008) but on a shorter time

span), we restrict the study to a subset of combinations.

In particular, nine different numerical experiments employing different combinations
of turbulent closure schemes, boundary conditions, stability functions, values of the min-
imum of turbulent kinetic energy and optical schemes are analyzed here (see Table 3.1
for a concise summary).

Five of these numerical experiments employ a closure scheme based on a k — ¢ approach
(Burchard et Bolding, 2001) —hereafter marked by the prefix KE. The other four nu-
merical experiments employ a k — ¢ scheme based on Gaspar et al. (1990) (hereafter
marked by the prefix KL). Details of these nine numerical experiments can be found in
Appendix 3.2.3. We test the effect of two possible surface boundary conditions. The first
one (marked by a suffix set) supposes equilibrium between the production and dissipation
terms in the dynamic equation for k£ (see Equation 3.2.2). The second one (marked by a

suffix flu), takes into account the effect of breaking waves of all scales, as suggested by
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Craig et Banner (1994); see Equation A.1 and Appendix 3.2.1 for details. The numerical
experiments exploiting the KE scheme and using the stability by Canuto et al. (2001)
—instead of the ones by Kantha et Clayson (1994)— are marked by the suffix CAN. Simu-
lations with a higher minimum TKE —10~7 kg m/s? instead of 1078 kgm/s?>~ are marked
with a suffix MINk.

All the numerical experiments with a higher threshold on k are such that Kz > Dy.
Therefore, in the other numerical experiments the total diffusivity could be smaller than
the molecular one.

One numerical experiment (marked by the suffix Opt) investigates the effect of the at-
tenuation length of the penetrative solar radiation Q). (4, is parametrized as a two-band

exponential scheme (Maraldi et al., 2013):
Qs (2) = Qs-(0) [Re_z/l +(1- R)e_z/lPAR} (3.2)

where the first right-hand term parameterizes the attenuation of red and near-infrared
radiation (whose attenuation length is [ = 0.35 cm); and the second right-hand term is
the one of the visible and ultra-violet radiation; [p g is the photosynthetic available radi-
ation (PAR) diffuse attenuation length. Q,.(0) is the fraction of the available penetrative
solar radiation assuming a constant albedo of 6.6%. Following Maraldi et al. (2013), the
lpar default in Symphonie is set to 11 m. However, this value has to be considered as
an annual climatological estimation of the PAR. With this numerical experiment we test
the effect of the seasonality of [p4g by setting its value to 23 m coherently with the fact
that most of the in situ measurements were acquired in September when we expect a low

biological activity in the surface boundary layer of the GoL.

With this set of numerical experiments we can answer three principal questions: 1)
which SMC between k — e and k — ¢ performs better with respect to our dataset? 2) what
is the effect of the b.c. on the results of the numerical numerical experiments? and 3)

what is the effect of the two stability functions?
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3.1.3.2 SCAMP measurements

An in situ estimate of € can be derived from high-resolution vertical profiles of temperature
T. Batchelor (1959) derived the spectral shape of a conserved scalar field that is passively
advected by an incompressible turbulent fluid with a molecular Prandtl number Pr =
v/D greater than 1 (seawater has Pr = 7 at 20°C), where v and D are respectively
the molecular viscosity and the molecular diffusivity of the scalar. In the present case
the scalar is the temperature. Gibson et Schwarz (1963) derived the one-dimensional
Batchelor spectrum F(K) of temperature gradient as a function of the rate of dissipation
of temperature variance xr, the kinetic energy dissipation rate ¢, the molecular diffusivity

of temperature Dy and the circular wavenumber K:

E(K) = f(xr, Dr, Kp) (3.3)

where Kp is the inverse of the Batchelor length scale describing the length scales at
which fluctuations in scalar concentration (temperature in this case) can still exist before
being evened out by molecular diffusion. Therefore, (see Ruddick et al., 2000; Luketina
et Imberger, 2000 and Steinbuck et al., 2009 for details) once measured the temperature
vertical gradient at the millimeter scale and derived yr and Kpg by fitting the Batchelor
spectrum, a measure of ¢ follows from (Batchelor, 1959):
2
- (3.4
The temperature gradient profiles were measured with a SCAMP profiler. This instru-
ment is equipped with a 100 Hz FP07 glass rod microthermistors (sensitivity of 0.001°C').
Our SCAMP was deployed in an upward configuration. After deployment, it sinks to a
predetermined depth following an oblique trajectory and then rises up vertically at an ap-
proximately constant velocity U = 10~ m/s. This type of trajectory permits the SCAMP
to get away from the ship and be free from the influence of the ship’s wake when rising
up in an undisturbed water column. This allows to have reliable measurements of ¢ and

Kz near the sea surface (Anis, 20006).
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The dataset (spanning the period 2010-2014) for this analysis consisted in 126 pro-
files of variable vertical extent —between 1 m below the surface and 100 m depth—
collected in different sites in the Gulf of Lion (Figure 3.1). The profiles were collected
during various oceanographic campaigns in the GoL conducted by the Mediterranean In-
stitute of Oceanography (MIO - Marseille, France). Because the SCAMP measurements
were opportunistically taken in cruises mainly not dedicated to turbulence measurements,
repeated casts were often not possible. Data were collected mostly during summer and
with meteorological conditions favorable to operations with a small boat, generally with
wave heights less than half meter. Precipitation was always absent or negligible. Surface
buoyancy flux was positive for 115 profiles indicating a gain of buoyancy by the ocean

surface.

Temperature gradient spectra were computed from 128 points (=~ 13 c¢m) windows
without overlap. The choice of this segmentation resulted from a sensitivity analysis us-

ing different segmentation methods proposed in the literature (see Appendix 3.3).

The vertical eddy viscosity coefficient Kz can be derived on the basis of the turbulence
intensity parameter Re, = ¢/vN. Rey, expresses the ratio of the destabilizing effect of tur-
bulence to the stabilizing effect of stratification and viscosity. In different Re;, regimes,
the mixing efficiency, expressing the portion of the energy produced by shear which is dis-
sipated by viscosity, assumes different values and determines different vertical turbulent
diffusivity of density K,. Here we use a recent field-validated parametrization of K, as
function of Rey, proposed by Bouffard et Boegman (2013) based on a previous parametriza-
tion derived by Shih et al. (2005). At very low Re, (Rey < 10%/3/+/Pr ~ 1.7), the tur-
bulent regime is regarded as diffusive and K, is set equal to the temperature molecular
diffusivity Dy = 1.4 x 10~"m?s~!. At low Re;, (10%3/v/Pr < Re, < (3Inv/Pr)? ~ 8.5)
turbulent mixing tends to be controlled by buoyancy effects with incomplete mixing

favoring up-gradient fluxes reducing the mixing efficiency. Here K, can be expressed as
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Figure 3.1: Numerical model domain. The color code represents the water depth. The Gulf
of Lion is magnified in the smaller box where the measurements sites are represented by
red dots. Note that many profiles were taken at the same location over time. The black

lines in the smaller box represent the 0, 50, 100, 500, 1000 and 1500 m isobaths.
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K, = 0.1Pr~Y*yRe}’*. For moderate Re, (3Inv/Pr)? < Re, < 400) the mixing efficiency
has the classical form derived by Osborn (1980): K, = 0.2vRey,. For high Re;, (Re, > 400),
turbulence is in an energetic regime, where K, = 4vv/Re,. Therefore, for high Re, the
buoyancy flux K,N tends to vanish together with stratification: K,N = /veN £=% 0,

as we expect in weakly stratified fluids (Osborn, 1980).

As in the case of the Mediterranean Sea (e.g., Cuypers et al., 2012), when the density
variations are dominated by those of temperature, the density vertical eddy diffusivity
coefficient is assumed to be equal to the temperature vertical eddy diffusivity coefficient
(Peters et al., 1988). Assuming then a turbulent Prandtl number Pr, = K;/K, = 1
(Hogg et al., 2001), it is possible to estimate the momentum eddy viscosity (or eddy vis-
cosity) K to be equal to K.

3.1.3.3 Comparison of numerical and in situ data

While the vertical resolution of the in situ profile of € and K is constant (13 cm), the
vertical resolution of the model is variable and generally coarser (= 1 —2 m) than the in
situ one. In order to compare the numerical data to the measurements, the SCAMP data
are grouped in windows centered on each sigma level. Then, the median of each window
is calculated and compared to the numerical data at that sigma level. The choice of the
median permits to give less importance to outliers and reduce the error due to the fact

that the profiles were mainly single casts (Lozovatsky et al., 2005).

For both the in situ and numerical data, we define the surface mixed layer (MLD)
as the depth at which the temperature is smaller than the surface value by 0.5°C (Anis,
2006; Jurado et al., 2012). Then we separate the data in the MLD from the ones below
it. The data in the bottom layer are not considered for this analysis because of the low

number of in situ profiles near the sea bottom.
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Following Burchard et al. (2002), we define the decadal standard deviation of the

numerical values of € as:

1 M gmod 8Qbs 2
e =\ 77 Z {log <m253> —log <m2s3>] (3.5)

=1

where M is the number of points in a given profile. Similar definitions hold for the
decadal standard deviation of N (oy) and Kz (0k,). To calculate these quantities, no
division between data above and below the MLD is made because the number of in situ
and numerical values in the MLD can differ for a given profile. Hereinafter, the mean val-
ues of 0., o and ok, on all the profiles are denoted o., o and ok, for ease of reading,

instead of < 0. >, < ony > and < ok, >.

We also compare the probability density functions (PDFs) of the in situ and numerical
values of kinetic energy dissipation rate €, Brunt-Vaisila frequency N and eddy viscosity
K. In particular, the PDFs are calculated with a kernel density estimation (Bowman et
Azzalini, 1997) on the base of the frequency distributions of values from all the in situ
and numerical profiles.

In order to compare a distribution of numerical data g(x) with the distribution of the
in situ data f(z), we compute the squared difference between the empirical cumulative

distribution functions (£}, and G,,) of the two distributions:

A2(S) = /O " (Fule) = Gole + 5)) e (3.6)

We define the shift S between two distributions as the shift of G,,(z) that permits to
minimize A2, A subscript will tell to which distribution the values of A% and S refer to:
AZ and S for the e’s PDF; A% and Sy for the N's PDF; A% and Sk, for the K's

PDF.An estimation of the error on A? values is estimated by re-sampling the in situ

empirical distribution function (Nerini et Ghattas, 2007) in order to further account for
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in situ measuring incertitude.

3.1.4 Results

To quantify the agreement between the numerical and the in situ data we use two meth-
ods. One takes into account the deviation of the numerical data from the in situ profiles
over the whole column and expresses it by the decadal standard deviations (Table 3.2).
The other approach looks at the shape of the probability density functions of the numer-
ical values of ¢ and Kz and expresses it by the squared differences and shift values above

and below the MLD (Tables 3.3 and 3.4).

Median in situ and numerical profiles of € are shown in Figure 3.2 vs. nondimensional
depth z/MLD. Note that, the average value of the in situ MLD value is 27.3 m. As
reported in Table 3.2, all the numerical MLDs are systematically lower by ~ 10 — 15%
compared to in situ MLDs. Overall, the KE numerical experiments predict a slightly

deeper MLD closer to the observations.

The thick lines in Figure 3.2 represent the median dissipation profiles calculated with
all the profiles we analyzed and the shades represent the 95% bootstrap confidence inter-
val. At the surface, all the numerical experiments agree within one order of magnitude
with the in situ data. However, KEflu is the numerical experiment with values the closest
to the observations. We also observe a difference between the effects of the equilibrium
b.c. and the flux b.c. on the KE and KL closure schemes. While near the surface the
numerical experiment KEset has a value of € lower than KEflu, the numerical experiment
KLset has a greater value than KLflu.

As we descend the water column, beyond z/M LD = 1, the in situ data tend to become
more variable due to the lower number of profiles reaching depths greater than the MLD.

On the contrary, the numerical data tend to become much less variable. Moreover, there
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is an evident difference between the SMCs: when the lower threshold on k£ is applied, the
KE numerical experiments always have lower levels of turbulence with respect to the KL
numerical experiments with KEs” median values of € one order of magnitude lower than
the KLs’ ones. When a higher threshold on the kinetic energy k is applied, the difference
is slightly reduced.

At z/MLD = 0.5 the in situ data exhibit a kink that separates higher mixing at the
surface from lower mixing in the rest of the MLD. KEflu, KLflu, KLsetMINk and KLflu-
MINk are the numerical experiments that better reflect this behavior. Note also that the
in situ data show a clear increment of € at z/M LD = 1.1 that is only slightly reflected
in some numerical data.

We do not show values for z/M LD > 2 because of the large bootstrap error bars due to
the lower number of profiles in that depth range.

Overall, looking at the column as a whole, the numerical experiments with a higher min-
imum value of kinetic energy (KEfluCANMINk, KEAuCANMINkOpt KLsetMINk and
KLAuMINk) have the lower average error with respect to the measurements (see values

of o. in Table 3.2) because of the better agreement with in situ data below the MLD.

Median in situ and numerical profiles of NV and their error are shown in Figure 3.3 vs.
nondimensional depth z/M LD. Near the surface, the in situ data are considerably more
variable than the numerical data. However, the numerical data are of the same order
of magnitude as the measurements. As we go below the M LD, the median value of the
in situ data increases in the depth range 1 < z/M LD < 1.6. Overall, all the numerical
experiments do not show such a marked increase and are rather similar one to another (as
we expect because all of them are nudged to the MERCATOR fields). However, KEflu-
MINkOpt seems to be the numerical experiment that better reproduce the in situ data’s
trend right below the MLD.

Looking at the column as a whole, KEsetMINk has the lower average error with respect

to the measurements (see values of oy in Table 3.2).
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Figure 3.2: The thick lines represent median values of ¢ estimated from in situ data
(in black) and numerical experiments. The shades indicate 95% bootstrap confidence
intervals. Water depth z is adimensionalised with respect to the mixed layer depth M LD

for each profile.
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Figure 3.3: The thick lines represent median values of N estimated from in situ data
(in black) and numerical experiments. The shades indicate 95% bootstrap confidence
intervals. Water depth 2z is adimensionalised with respect to the mixed layer depth M LD

for each profile.
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The measurements of ¢ and N permitted to calculate the turbulence intensity pa-
rameter Rey,. The in situ probability density functions of the in situ Re, are reported in
Figure 4.11 in the Extra Materials. In particular, in our dataset, 30% of the in situ Re,
values fell in the diffusive regime, 15% in the buoyancy-controlled regime, 29% in the
transitional regime and 26% in the energetic regime. If only the data above the MLD are
considered these numbers respectively become 17%, 10%, 31% and 42%; or 36%, 16%,
28% and 20%, if only the data below the MLD are considered.

Median in situ and numerical profiles of K, and their error are shown in Figure 3.4
vs. nondimensional depth z/MLD. In the surface layer the numerical values are much
more variable than the in situ ones. The opposite is observed below the MLD.

Near the surface, KEflu shows the best agreement with the observations among the sim-
ulations with the lower threshold on k. KEset is not as good as KEflu, but it significantly
improves when the Canuto A stability functions. KLset and KLflu perform similarly but
have an error in opposite directions. Near the surface, KLset is higher than KLflu. The
same holds for KLsetMINk and KLAuMINk.

Below the MLD, the numerical experiments appear to be grouped on the base of the
threshold on k: no differences between different SMC and b.c. appear obvious. Notice-
ably, below the MLD, the numerical experiments with a higher threshold on the kinetic
energy k are more compatible with the in situ data than the other numerical experiments.
The median value of Kz below the MLD appears to have a seasonal behavior. In par-
ticular, it is equal to 5.90 x 107°m?/s? in spring, 3.02 x 107% in summer, 3.27 x 107 in
autumn and 5.57 x 10”7 in winter.

Overall, looking at the whole column, the numerical experiments that have the lower
average error with respect to the measurements are the four numerical experiments with

a high threshold on £, as the values of o, in Table 3.2 indicate.

The probability density functions of the in situ dissipation rate ¢ data (in black) and
of the numerical data are shown in Figure 3.5. Above the MLD (Figures 3.5a-b), the in
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Figure 3.4: The thick lines represent median values of K, estimated from in situ data
(in black) and numerical experiments. The shades indicate 95% bootstrap confidence
intervals. Water depth 2z is adimensionalised with respect to the mixed layer depth M LD

for each profile.
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situ values show a clear bimodal behavior with one peak at ex5 x 1071m?/s* and one at
e~ x 107"m?/s%. The numerical distributions show this feature in a less marked way and
are generally low-biased with respect to the in situ data’s PDF. As values of S. and A? in
Table 3.3 show, above the MLD, the distribution more aligned to the in situ data one are
KEAuMINk and KEAuMINkOpt, while the distribution with the shape more resembling
the in situ data one is KEAuMINkOpt.

Below the MLD (Figures 3.5¢-d), all the numerical PDFs have mean values similar to the
ones of the corresponding PDF in the surface layer, but are much more narrow than the
in situ data. KL numerical experiments have higher mean values than KE ones and the
numerical experiments with a threshold on k£ have higher mean values than the corre-
sponding numerical experiments without threshold. Below the MLD, none of the model
PDFs has a behavior resembling the in situ one: they are all peaked and not spread out
like the in situ distribution. As we see in Table 3.4, below the MLD, KLsetMINk and
KLAuMINKk have the same shift with respect to the in situ distribution, while KEflu-
CANMINKkOpt and KLAuCANMINkOpt have the lower value of A2. But we note that
the differences between the values of A% below the MLD are due to small differences in

the low right-end tails that are unlikely to be significative.

The probability density functions of the in situ stratification N data (in black) and
of the numerical data are shown in Figure 3.6. Both above and below the MLD, there is
no drastic difference between the numerical distributions in both shape and peak. The
similar behavior of all the numerical experiments can be due to the low frequency nudging
to the MERCATOR fields. Overall, above the MLD (Figures 3.6a-b), the numerical ex-
periments overestimate the stratification. Note that this is not evident by just looking at
the median profiles in Figure 3.3. As values of A% in Table 3.3 indicate, the distribution
more resembling the in situ one is KEAuCANMINkOpt.

Below the MLD (Figures 3.6¢-d) the peaks of the numerical PDFs are less aligned than
above the MLD. In this layer, the numerical distributions show a peak at Na5 x 10733572

that is not present in the measurements. As values of A% in Table 3.4 show, KEluCAN-
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Figure 3.5: a) and b): € probability density functions issued from all the in situ (black
shade) and numerical data (thick lines) in the surface mixed layer for the KE closure
scheme and the KL closure scheme respectively. ¢) and d): the same but below the surface

mixed layer.
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MINk is the distribution with the shape more resembling the in situ one above the
MLD, while KEluCAN is the more resembling below the MLD. We note that when the
secondary peak is removed the numerical experiment with the better N’s PDF are KE-

fluCANMINk and KEAuCANMINkOpt.

The probability density functions of the in eddy viscosity Kz in situ data (in black)
and of the numerical data are shown in Figure 3.7. Above the MLD (Figure 3.7a-b), the
in situ values have three peaks with a higher peak at Kza5 x 107*m?/s?. None of the nu-
merical experiment well reproduces this behavior. As values of ok, in Table 3.2 suggest,
above the MLD the distribution more aligned to the in situ one is KLsetMINk. Besides,
A%, values in Table 3.3 indicate that KEAfuCANMINKODt is the distribution with the
shape more resembling the in situ one. The effect of raising k,,;, is similar on the two
SMC families: it shifts the distribution towards higher values. However, KLsetMINk and
KLAuMINk show a prominent first peak and thus perform less well than KEAuCANMINk
and KEAuCANMINKkOpt.

Below the MLD (Figures 3.7c-d) —similarly to what seen for e~ the numerical distribu-
tions are clearly different from the in situ one. A% values in Table 3.4 indicate that
KEfAuCAN is the distribution with the shape more resembling the in situ one. But, as we
already noted for the distributions of ¢ below the MLD (Figure 3.5), in this layer there

is not a real difference between the numerical experiments.

All the measurements of ¢, N and Kz and the corresponding numerical data are
shown in Figure 3.8. It turns out that the point clouds reveal that the in situ values
are much less disperse than the model ones (not evident from the picture; see Supple-
mentary Data in the on-line version of this paper). In Figure 3.8a-b we can see six main
planes corresponding to: KEAuCAN, KEset and KEflu, KLset, KLflu and some in situ
data at low K. Indeed, these last points lie on a plane with constant K, as prescribed

by the parametrization we used (see Methods and Discussion). Data belonging to the

numerical experiments with a higher threshold on k& (KEAuCANMINk, KEAuCANMINK,
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Figure 3.6: a) and b): N probability density functions issued from all the in situ (black

shade) and numerical data (thick lines) in the surface mixed layer for the KE closure

scheme and the KL closure scheme respectively. ¢) and d): the same but below the surface

mixed layer.
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KLsetMINk and KLAuMINk) are first found at K7 ~ 2 x 107® (Figure 3.8b). The KE nu-
merical experiments have planes with an average value of € that is lower than the average
value of ¢ of the KLL numerical experiments. These last ones have lower average values of
¢ than the numerical experiments with higher threshold on k. This closely mirrors what
we already noted in Figure 3.5¢-d. But it turns out that the points lying on the planes in
Figure 3.8 do not belong exclusively to depths greater than the MLD (the differentiation
between above and below the MLD is not shown in Figure 3.8).

SMC b.c. Kmin [m?/s?] Stability Functions lpar
KEset k —e Equilibrium 108 Kantha et Clayson (1994) 11m
KEflu k—e¢ Flux 1078 Kantha et Clayson (1994) 11m
KEfluCAN k—e¢ Flux 1078 Canuto et al. (2001) 11m
KEfluCANMINk k—e Flux 1077 Canuto et al. (2001) 11lm
KEfluCANMINkOpt | £ —e Equilibrium 1077 Canuto et al. (2001) 23m
KLset k — ¢ Equilibrium 108 none 11m
KLflu k—1¢ Flux 1078 none 11m
KLsetMINk k — ¢ Equilibrium 1077 none 11m
KLAuMINk k—1¢ Flux 1077 none 11m

Table 3.1: Set of numerical experiments performed for this study.

3.1.5 Discussion

By considering the values of decadal standard deviation, the shape of the probability

density functions and the median profiles, we can progress towards the identification of
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a)

Figure 3.8: a) All in situ (in black) and numerical data of Kz, N and . b) All in situ
(in black) and numerical data of Kz and €. The color code is the same as in the other

figures.
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MLD ratio o, ON Ok,

KEset 0.91 248 1.16 2.19
KEflu 0.91 243 1.15 2.16
KEfluCAN 0.85 242 114 211
KEAuCANMINk 0.94 1.88 1.16 1.63

KEAAuCANMINKkODpt 0.89 1.82 1.16 1.56

KLset 0.88 207 1.14 2.20
KLflu 0.87 2.10 1.14 221
KLsetMINk 0.85 1.59 1.12 1.46
KLAuMINk 0.86 1.67 1.14 1.54

Table 3.2: MLD ratio indicates the ratio of the numerical prediction of the M LD to the
in situ value < MLD >gcamp = 27.3 m. o. indicates the mean value of the decadal
standard deviation of the € profiles. oy indicates the mean value of the decadal standard

deviation of the NV profiles. ok, indicates the mean value of the decadal standard deviation

of the K profiles.
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Above MLD S. A? Sn A% Sk, A%,

KEset 1.31  0.010£0.002 -0.47 0.018+0.001 0.96 0.032+0.003
KEflu 1.21  0.008+0.001 -0.47 0.015+0.001 0.83 0.039+0.004
KEfluCAN 0.87  0.006+0.001 -0.50 0.016+0.001 0.46 0.021+0.003
KEAuCANMINk 0.62 0.0031+0.0009 -0.45 0.013+0.001 0.49 0.023+0.002
KEAuCANMINKOpt | 1.07 0.0008+0.0003 -0.47 0.011+0.001  1.19 0.022+0.003
KLset 0.03  0.012+£0.002 -0.41 0.014+0.001 -0.66 0.053+0.005
KLflu 0.34 0.041+0.005 -0.52 0.017+0.001 0.31 0.060+0.005
KLsetMINk 0.07  0.082+0.006 -0.43 0.017+0.001 -0.15 0.139+0.009
KLAuMINk 0.03  0.014+0.003 -0.41 0.014+0.001 -0.68 0.022+0.003

Table 3.3: S. indicates the shift of the numerical distribution of € in the surface layer

respect to the in situ one. A? is the squared difference between the numerical and in

situ distribution of ¢ values in the surface layer. Similar definitions apply for different

subscript variables. Errors are calculated with a re-sampling procedure.
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Above MLD S. A? Sn A% Sk, A%,

KEset 1.97 0.180+0.006 0.22 0.004+0.0005 0.96 0.032+0.004
KEflu 1.93 0.163+0.008 0.19 0.005+0.0006 0.83 0.039+0.004
KEAuCAN 1.98 0.143+0.008 0.22 0.002+0.0003 0.46 0.021+0.004
KEAuCANMINk 0.91 0.136+0.007 0.22 0.006+0.0006 -0.66 0.023+0.003

KEAuCANMINKOpt | 0.88  0.11+0.006 0.22 0.008+0.0009 -0.68 0.022+0.002

KLset 1.21  0.186+0.008 0.22 0.003+0.0005 0.50 0.053+0.004
KLflu 1.2 0.168+0.007 0.23 0.004+0.0005 1.19 0.060+0.005
KLsetMINk 0.26 0.203+0.006 0.22 0.004+0.0006 0.31 0.080+0.007
KLAuMINk 0.29  0.22+0.004 0.24 0.008+0.0009 -0.15 0.022+0.002

Table 3.4: S, indicates the shift of the numerical distribution of € below the surface layer
respect to the in situ one. A? is the squared difference between the numerical and in
situ distribution of ¢ values below the surface layer. Similar definitions apply for different

subscript variables. Errors are calculated with a re-sampling procedure.
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an optimal Symphonie’s configuration with respect to our dataset.

The decadal standard deviation values are suited for whole-column comparisons be-
tween numerical experiments and in situ data, when an idea on the general behavior of
the numerical experiment is of interest (e.g., Burchard et al., 2002). However, we are also
interested to details of the model’s configuration that likely have a major effect only in
the MLD and cannot be appreciated by this metric.

The comparison of the shape of the numerical and in situ probability density functions
permits to better investigate the numerical experiments’ behavior above the MLD. In
particular, it permits to appreciate the model’s response to the different configuration
choices on the full range of values of ¢, N and K. For example, Figure 3.5a-b shows that
the effect of raising the threshold value of k is not just a mere shift as it is suggested by the
o. values and the median profiles (Figure 3.2). In fact, the numerical experiments with a
higher threshold (KEluCANMINk, KEAuCANMINkOpt, KLsetMINk, KLAuMINk) are
not merely shifted towards higher values but also show significant differences in the peaks’
heights.

The visual inspection of the median profiles permits to appreciate details that are not
immediately captured by the decadal standard deviation and the spectral shape. For
instance, the € median profiles of the numerical experiments with the default threshold
on k (KEset, KEflu, KLset, KLflu) suggests that we are underestimating the turbulent
activity (3.5a-b). By using Equation 3.1 and a value of ¢ ~ 107*m?/s® that we can
infer from the in situ data below the MLD (Figure 3.2), we estimated the value of a
more appropriate threshold (k ~ 107"m?/s?) that was used for the numerical experi-
ments with the higher threshold. As Figures 3.2 and 3.6 and the values of 0. and ok, in
Table 3.2 indicate, this new threshold permitted to get better estimates of both € and K.

The analysis of € data above the MLD permits to get an idea of the effect of b.c.,
stability functions and optical scheme. The effect of the surface boundary conditions is

readily seen by visually inspecting the € median profiles (Figure 3.2). The KEset, KE-
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flu, KLset and KLflu profiles highlight that, at the surface, the equilibrium boundary
condition determines € values lower than both the observations and the values of the cor-
responding numerical experiments employing a flux b.c. Note that the values of ¢ close
to the surface that one obtains using a certain b.c. also depend on the employed SMC.
In fact, the £ — ¢ and the k — ¢ schemes have different values of wind drag coefficients.
As a consequence, an influence of the boundary conditions is also found in the €’s PDFs
(Figure 3.5). In fact, the value of € at which the PDFs die out is different for the schemes
employing the equilibrium b.c. and the ones employing the flux b.c. and does not depend
on the threshold on k. Indeed, the right peak at higher £ values is mainly due to values
from the depth range 0 < z/M LD < 0.5 (data not shown).

Moreover, the k — e numerical experiments with a flux boundary condition seem to better
follow the in situ € median profile at z/M LD =~ 0.5. At this depth, the in situ data show
an inflection that we interpret as an average mixing layer depth. This can be justified by
inspecting the median profiles of turbulent kinetic energy (see Figure 4.12 in the Extra
Materials). In fact, these lasts show that the depth of the inflection in the numerical
profiles coincides with the depth at which the kinetic energy has a similar inflection or
reaches its minimum value. This depth, thus, identifies a layer in which turbulence is ac-
tive. Likely, the better performance of the flux b.c. in estimating the mixing layer depth
indicates that wave breaking plays an important role in determining the mixing layer

depth.

Secondly, the effect of the stability functions is made clear by both the median pro-
files and the PDFs of €. In Figure 3.2 it appears that the Canuto A stability functions
augment the agreement with respect to the observations (cf. KEflu vs. KEluCAN), es-
pecially near the surface. The same information is given by the PDFs (Figure 3.5; Table
3.3): KEfluCAN’s PDF has just two peaks as the in situ PDF and, thus, it is in better
agreement with the observations.

While KEAuCAN and KEAuCANMINk show better PDFs, the inflection at the mixing
layer depth (that was reproduced by KEflu) is lost. This is likely due to the predominance
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of the the effect of the Canuto A stability functions over the effect of the flux b.c. rather
than to the threshold on k. In fact, the profile KLAuMINk reproduces well the mixing

layer depth.

Thirdly, the effect of the optical scheme is best seen by looking at the ¢ PDF (Figure
3.5). Indeed, we see that the modified optical scheme enables KEAuCANMINkOpt to
reproduce remarkably well the in situ distribution. We attribute this significant improve-
ment to the better estimation of the temperature and salinity profiles (see Figures 4.13
and 4.14 in the Extra Materials) that, in turn, permits to have a better stratification.
Indeed, the profile of N (Figure 3.6) of KEAuCANMINKOpt is slightly better than the
one of KEfluCANMINKk. Even if this is not captured by the values of Sy (Table 3.3), we
note that —right below the MLD— KEAuCANMINkOpt better reproduces the bump that
we observe in the in situ stratification. However, it is not straightforward to say how this
can influence the dynamics above the MLD (indeed the KEAuCANMINkOpt’s N PDFs
are totally comparable with the ones of KEAuCANMINKk).

The analysis of the N data indicate that all the numerical experiments overestimate
the stratification above in the surface layer (Figures 3.6a-b). On the other hand the strat-
ification is well reproduced by all the numerical experiments below the MLD. The only
absent feature in the numerical data of N is a bump of high values right below the MLD
where the entrainment takes place and where we also observe higher levels of turbulence
(see Figure 3.2). Overall, below the MLD the numerical PDFs of ¢ and K, markedly
differ from the in situ ones: they are more peaked than the in situ PDFs. A possible cause
for this behavior could be the too coarse resolution of the model that does not permit
to adequately resolve turbulent processes below the MLD or to the different natures of

mixing mechanisms.

Also the analysis of the K5 probability density functions leads to the conclusion that
KEAuCANMINkODpt is the better configuration. Even though the values of Aﬁ{z in Table
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3.3 indicate that there is not a clear difference between KEAuCANMINk and KEAuCAN-
MINkOpt, we note that KEAuCANMINkOpt Kz PDF has three peaks as the in situ
PDF whereas KEAuCANMINk’s PDF has only two. In general, the k — ¢ scheme per-
forms significantly better in reproducing the K;’s in situ PDF. This is likely due to the

advantage of k — ¢ in estimating € with respect to k — /.

Overall, the effect of the formulation of K including the molecular diffusivity Dy did
not cause significative differences, probably because the turbulence level is too high to
allow to appreciate the difference. Here we do not show a numerical experiment in which
we change only this aspect of the model’s implementation. However, one example is given

in the Extra Materials (Figure S5).

The analysis of the data below the MLD shows a sharp disagreement between the nu-
merical and the in situ values of € and K. However, we can observe three main features:
i) the typical value of numerical ¢ depends on the SMC that one employs; ii) the model
values of ¢ and Kz are much less variable than the measurements; iii) setting an hard
threshold on the kinetic energy limits the reliability of the modeling this layer.

The first point is made clear by Figure 3.2. In fact, we can see that when the same
threshold on k is applied, the £ values obtained with the & — ¢ scheme are one order of
magnitude smaller than the ones obtained with the k — ¢ scheme.

The second point is illustrated by Figures 3.5¢-d and 3.6¢-d. Therein, the numerical PDFs
in the lower layer are much less spread out than the in situ ones. A possible cause for
this could be the resolution of the model that does not permit to adequately resolve the
turbulent processes in this layer.

Also, a possible cause for the sharp discrepancy between numerical and in situ PDFs
below the MLD could be the use of a hard threshold for k. In fact, Figure 3.8 suggests
that this choice leads to a non-physical result, with many low-energy points on a sin-
gle plane in the space (Kz, N,¢). This behavior descends directly from Equations B.6
and B.7 implying ¢ = crc.k?/ K, for the KL scheme and from Equations B.3 and B.4
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implying ¢ = /2ck®%/K, for the KE scheme (where cx, c. and ¢ are constants). This
is exactly the behavior we observe in Figure 3.8b, with the planes following the line
loge = —log Kz + const. Thus, the points on the planes in Figure 3.8 are values with a
minimal kinetic energy. In situ data do not show this behavior, suggesting that specify-
ing a hard value for k,,;, is likely not the best choice. A more suitable approach would
probably be a parametrization of k,,;, on the base of the different turbulent processes
at play. For example, Gaspar et al. (1990) hypothesized the use of a parametrization on
the internal wave field activity when dealing with data in a depth range similar to the
one in our analysis. Note here that such a solution is likely to depend on the amount of

numerical mixing and to the processes that are resolved by each model.

3.1.6 Conclusions

Vertical mixing in the surface layer of the ocean plays an essential role in both physical
and biochemical phenomena. Therefore, it must be correctly estimated. Different turbu-
lence closure schemes have different performances in predicting mixing. Moreover, the
problem is made more complicated by the interplay of the SMC with other aspects of
ocean dynamics numerical modelling like boundary conditions, stability functions and
optical scheme. The influence of the minimum value of kinetic energy that is allowed in

has also been investigated.

We performed nine numerical experiments and compared their estimates of the turbu-
lent quantities € and K to in situ microstructure measurements in the Gulf of Lion. In
particular, two SMCs were considered: a k — ¢ scheme proposed by Burchard et Bolding
(2001) (herein KE); and a k — ¢ based on Gaspar et al. (1990) (herein KL). We consid-
ered two surface b.c.: one supposing equilibrium between the production and dissipation
terms in the dynamic equation for £ (herein set); and one taking into account the effect of

breaking waves of all scales based on Craig et Banner (1994) (herein flu). We considered
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the stability functions proposed by Kantha et Clayson (1994) and Canuto et al. (2001). In
addition, we also considered two different attenuation lengths for the photosynthetically
available radiation in the model’s optical scheme. The combinations of these factors that

we explored are resumed in Table 3.1.

A recent study by Reffray et al. (2015) showed that, in a 1-D situation, the KE closure
scheme gives better mixing estimates than other widely used SMCs . However, that study
did not compare KE to a mixing length scheme based on Gaspar et al. (1990). Our study
fills this gap. Moreover, our study exploits a 3-D model that, by definition, considers more
terms in the dynamical equations than what 1-D models do. Also, our study compares the
modeled turbulence activity directly to microstructure turbulence measurements rather
than with derived quantities like the mixed layer depth.

The two SMCs do not show relevant differences when estimating K, both above and
below the MLD. The fact that the two SMC perform similarly in estimating Kz when
KL has an advantage in estimating ¢, is not explained by differences in estimating /N and
need further investigation in the future.

Previous studies, in 1-D and 3-D numerical simulations, gave conflicting indications on
the effect of the stability functions proposed by Kantha et Clayson (1994) and Canuto
et al. (2001) on the KE scheme. In our study, the effect of the Canuto A stability functions
on the KE is to improve the performance of the closure scheme when the ¢’s and K;'s

PDFs are considered.

Our study shows that choosing the value of the kinetic energy threshold plays a
pivotal role in approaching the observations below the MLD (see Figures 3.2 and 3.4).
Nonetheless, we found a non physical behavior of the numerical experiments for low ki-
netic energy levels. This supports the idea that the minimum of kinetic energy should
rather be parametrized as function of different turbulent mechanisms rather than being a
hard threshold (as already hypothesized by Gaspar et al., 1990). Our study also suggests
that such a parameterization should also depend on the SMC that is employed. Indeed,
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we found that the two SMC predict different turbulence levels below the MLD even when

they employ the same threshold on the turbulent kinetic energy.

We found that the attenuation length of the photosynthetically available radiation
plays an important role in determining the stratification and, as a consequence, the per-
formance of the model in predicting € and K. This result highlights the importance of

biological activity in influencing physical processes.

Our study shows that the comparison with in situ microstructure data can effectively
help in setting up the implementation of a SMC for an ocean numerical model. In the
future, we should expect more studies of this kind as new automated instrumentation
becomes available. In particular, microstructure and wave height probes mounted on au-
tonomous platforms, such as drifting profilers or gliders, will permit to have new and
bigger datasets, especially during adverse meteorological situations. Moreover, this kind
of data will provide essential data to developers of future ocean-wave coupled models,
as these are expected to significantly advance the ocean modelling state of the art by

reducing the need of general surface boundary conditions.
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3.2 Appendices

3.2.1 Boundary conditions

3.2.2 Surface boundary conditions for k
Equilibrium

The k surface boundary conditions can be obtained hypothesizing equilibrium between
production and dissipation. Using the surface momentum boundary conditions:

Ju Ov (Ty Ty)
Ky (220 2 Ty
Z(@x’@y) 0o

' - /212 -
and the wind stress 7 = /77 + 7;, we obtain:

7'/ Po

k= ———
V22350
Flux

Alternatively, the boundary conditions can be specified as surface flux conditions, namely:

Ok
Kpg =F (3.2.1)

where the surface flux can be computed as F' = 100(7/po)*/? (Craig et Banner, 1994) or

directly prescribed from the ‘wave to ocean’ turbulence flux computed by a wave model

when available.

3.2.2.1 Bottom and surface boundary conditions for ¢

The ¢ surface and bottom conditions are computed on the first level under the surface
and above. Let z; denotes the distance between this level and the considered boundary.
Boundary conditions for € are obtained from £ and Equation 3.2.3.2, using the latter with
some appropriate hypothesis for /g a boundary length scale value. A simple formulation

(Warner et al., 2005) is eventually given by (g = 0.4(21 + 2¢) , where zj is a length scale
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representing the roughness of the bottom boundaries. Unfortunately, this formulation
potentially leads to unrealistic high values when the underlying hypothesis of neutral
stratification is no longer valid (a situation that is more likely to occur in deep zone where
the vertical grid resolution near the bottom is generally coarse). One way to solve this
problem is to introduce a dependency on the Richardson number (Estournel et Guedalia,

1987; Michaud et al., 2012):
(
O.4<Zl + Zo> if Ri<O

lp=40.4(z + 2)(1 — 5Ri) if 0<Ri<0.16

0.4(z1 + 20)(1 + 41Ri) ™% if Ri > 0.16

\

3.2.3 Closure schemes
3.2.3.1 k — ¢ scheme

Following Burchard et Bolding (2001), the equations describing the dynamics for k& and

g are:
dk 0 ok
it~ o: (Ka_> Thrboe (322)
de 0 (K 0k\ ¢
9.~ 0: (73—) el tal-ad) (323)

where P = K {(3—2)2 + (%)2} and B = piOKTg—‘z’ are the production terms due to shear
and buoyancy respectively. Parameters values issued from Warner et al. (2005) are given
in Table 3.5.

The eddy viscosity Kz and the temperature eddy diffusivity K7 used in Equations 3.2.2

and 3.2.3 are given by:

Ky =V2klSy, Kr=V2klSy (3.2.4)
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Table 3.5: Free-parameters of the SYMPHONIE k — ¢ closure scheme (Warner et al.,
2005).

Free parameters values

sigm | 0 = 1.3

sigm | cg = 0.5544

sigm | ¢c; = 1.44

sigm | co = 1.92

sigm | cs=1 B >0
c3 = —0.52 B <0

The turbulent length [ is related to k&, TKE and ¢ according to
1= c3kP%e! (3.2.5)

Sy and Sy , the quasi-equilibrium stability functions defined by Kantha et Clayson
(1994), depend on the Richardson flux number.

3.2.3.2 k — /¢ scheme

We used the k& — ¢ closure scheme proposed by Gaspar et al. (1990). Therein the authors

assume ¢ to be (following Kolmogorov, 1942):

e = k3?1, (3.2.6)

where k is the TKE, k = vu2 + w2 + w2 and ¢. = 0.7 (following Bougeault et Lacarrere,
1989).
The eddy momentum diffusivity is related to TKE according to:

KZ = Cklk\/E
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where ¢;, has to be determined.

The dissipation and mixing length scales [, and [, are the ones proposed by Bougeault

et Lacarrere (1989):
- = (Lula)"?

lk = min(lu, lk>

that are determined through

fﬂ ) — P = k()
g [
ol BRCORVCOTERD

where p is the water density.
As highlighted by Gaspar et al. (1990), these length scales have a straightforward physical
interpretation: they are the distances traveled upward/downward by a fluid particle by

converting all of its kinetic energy into potential energy.

Hypothesizing the turbulence to be stationary and homogeneous Gaspar et al. (1990)

show that, in stably stratified regions, the model parameterizations yields:

Ky =V2Pr kNt (3.2.7)

1
e=—c.kN 3.2.8
7 (3.2.8)

from which it follows that ¢, = 0.1.
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3.3 Segmentation and quality fit

In order to apply the Batchelor’s theory to the temperature gradient one has to divide the
data into segments in which turbulence can be considered homogeneous, viz. the turbulent
motion can be regarded as a random motion which average properties are independent
of position in the fluid. Given the fact that the first aim is to fit the data to a theoretical
Batchelor’s spectrum, arguably the best segmentation method is the one giving the fits

with the best quality.

To determine the fit quality we use a Maximum Likelihood Estimation technique. Fol-
lowing Ruddick et al. (2000), we calculated the goodness of a fit by maximizing the joint
probability of the measured spectrum with respect to the theoretical Batchelor spectrum.
Hence, the higher the joint probability, the higher the fit goodness. In the following we
call this joint probability JP (corresponding to C'11 in Ruddick et al., 2000).

To make the fit goodness criteria more rigorous, following Sanchez et al. (2011) we also
require that: i) the mean absolute deviation (MAD) of the ratio between the in situ and
theoretical spectra within the fitting domain be lower than 1.1; ii) the signal to noise
ratio (SNR) be lower than 1.3; iii) the likelihood ratio (LHR) —which quantifies if the
measured spectrum fits the Batchelor’s spectra or a power-law spectrum better— be lower

than 2.

We tested which of the following segmentation methods permitted to have the bet-
ter fits in our dataset: a segmentation based on an eight order AR model by Imberger
et Tvey (1991) (II191); a constant segmentation of 1024 data points in which the values
of temperature gradient variance in 7 sub-segments are in the same order of magnitude
proposed by Sanchez et al. (2011) (S11), a constant segmentation of 1024 data points
with no overlap suggested by Cuypers et al. (2012) (C12); a constant segmentation of 128
data points with 50% overlap suggested by Moniz et al. (2012) (M12); a constant 512

data points segmentation with no overlap; and a constant 1024 data points segmentation
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with 30% overlap. In practice, we fitted the segmented data to the Batchelor’s spectrum
following the fitting procedure of Steinbuck et al. (2009) and we compared the results
searching for the distribution of JP values with the greater proportion of high values.

The results are depicted in Figure 3.9.

(b) (c)
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(e) (f)
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Figure 3.9: a) JP values distribution obtained with the II191 segmentation method, b)

(a)

same as a) for S11, c¢) same as a) for C12, d) same as a) for M12. e) same as a) for
a constant 512 points segmentation. f) same as a) for a 1024 points segmentation with
30% overlap. The red curve is the cumulative distribution of JP values for each case
and the vertical line marks the point where the cumulative distribution equals 0.6. The
database for this analysis comprehended 126 profiles with an average depth of 50m in

various meteorological conditions in the Gulf of Lion.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>