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Résumé : La connectivité marine traite du transfert de larves et/ou d’individus entre

des habitats marins éloignés. Grâce à la connectivité, les populations marines éloignées

peuvent faire face à la pression de l’habitat en s’appuyant sur le transfert qui vient des

populations éloignées de la même espèce.

Le transfert entre des populations éloignées de l’océan est possible par le transport dû

aux courants. Cependant, il n’est pas encore clair si le champ des courants détermine

totalement la persistance des espèces marines ou si la démographie locale joue un rôle.

Les mesures in situ de la connectivité sont extrêmement difficiles. Par conséquence, notre

connaissance de la connectivité est déduite des simulations numériques de dispersion.

Mais on sait bien que les modèles numériques font plusieurs approximations dans la sim-

ulation du champ des courants. Le but de cette thèse est de préciser si nous pouvons

déduire la persistance de la connaissance du champ des courants et étudier l’effet des

paramétrisations numériques de turbulence dans l’estimation de la connectivité.

Premièrement, l’analyse en théorie des graphes et en modèle de métapopulation a per-

mis de déterminer que les courants ont un rôle prédominant dans la determination de la

connectivité. Dans notre cas d’étude d’une espece benthique, la quantité des connections

d’un site de reproduction avec d’autres sites peut contenir jusqu’au 77% de l’information

sur la persistence.

Deuxièmement, le comparaison avec des mesures de microstructure des simulations numé-

riques a permis d’identifier la configuration de modèle numérique Symphonie qui repro-

duit le mieux l’activité turbulente observée in situ. Ce résultat a été obtenu avec une

procédure de comparaison que j’ai developée et qui peut etre appliquée à tout modèle

numérique. Un résultat novateur de cette analyse est la mise en évidence de l’importance

de l’effet de la composante biologique, via la pénétration de la lumière, sur l’intensité de

la turbulence.

Troisièmement, l’implémentation d’un modèle 2-D et sa comparaison avec les donnés in

situ de dispersion d’un traceur passif a permis d’identifier un nouveau mécanisme de

génération de turbulence au fond qui explique le mélange vertical observé dans l’océan
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profond. Cela a permis de déterminer le coefficient de frottement de l’ écoulement au-

dessus d’une topographie rugueuse. Plus important, je montre que, dans certaines condi-

tions, les modèles numériques actuels sous-estiment le coefficient de frottement au fond

par trois ordres de grandeur.

Mots clés : Connectivité, Persistence, Théorie des Graphes, Modèle de Métapopulation,

Turbulence, Schémas de Fermeture de Turbulence, Mélange au Fond.



Abstract:Marine connectivity is the transfer of larvae and/or individuals between dis-

tant marine habitats. Thanks to connectivity, distant marine population can face habitat

pressure by relying on the transfer from distant populations of the same species.

The transfer between distant populations in the ocean is made possible by the transport

due to the currents. However, it is still not clear if the current field totally determines

the persistence of the marine species or if the local demography plays a role.

In situ measurements of connectivity are extremely difficult. Therefore, our knowledge

about connectivity is generally inferred from numerical dispersal simulations. However,

numerical models make several approximations in simulating the current field. The aim of

this thesis is to clarify if we can deduce the persistence from the knowledge of the current

field and study the numerical modelling of surface and bottom turbulence mechanisms

that can influence connectivity.

Firstly, the use of graph theory and metapopulation model permits to determine that

currents have a predominant role in determining connectivity. In our case of the study of

a benthic species, the amount of connections of a reproductive site with other reproduc-

tive sites could contain, with specific larval durations, up to 77% of the information about

persistence. Furthermore, a specific graph theory tool identifying clusters in networks is

able to identify sub-populations.

Secondly, the comparison of microstructure data with numerical simulations permits to

identify the configuration of the numerical model Symphonie that best reproduces the

observed turbulent activity. This result is achieved through a comparison procedure that

I developed and that can be applied to all numerical models. A novel finding is the im-

portance of the effect of the biological component, here via the light penetration, on the

turbulence intensity.

Thirdly, the implementation of a 2-D numerical model and its comparison with in situ

tracer dispersal data permits to identify a new generating mechanism of bottom bound-

ary turbulence that accounts for the vertical mixing observed in the deep ocean. This
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allows to determine an effective drag coefficient due to flow over rough topography. More

importantly, I show that -in some conditions- present numerical models underestimate

by three orders of magnitude the bottom drag coefficient.

Keywords: Connectivity, Persistence, Graph Theory, Metapopulation Model, Tur-

bulence, Turbulence Closure Schemes, Boundary Mixing.
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1.1 Defining connectivity

1.1.1 Connectivity and marine populations persistence

Marine life is increasingly threatened by anthropogenic stressors. A broad range of ocean-

based activities, anthropic pressure and climate change are rapidly modifying and/or de-

grading the ocean biodiversity (Lubchenco et al. 1999; Duraiappah et Shahid 2005).

A key weakness of marine populations is the habitat discontinuity due to both natural rea-

sons (e.g. marine ridges, geographical distance) or either direct and indirect anthropogenic

disturbances (e.g. coastal development, climate change). As a consequence, marine pop-

ulations rely on the long-range exchange of larvae and/or individuals (i.e., connectivity)

in order to maintain their spatial distribution (Hanski , 1999).



2 Chapter 1. Introduction

Figure 1.1: Upper panel - Example of Lagrangian

trajectories idealizing larval dispersal (data from

Berline et al. 2014). Middle panel - Example of con-

nectivity matrix storing the transfer probability of

larvae of benthic polychaete between the 32 repro-

ductive sites in the Gulf of Lion (lower panel). Data

from Guizien et al. (2014).

Connectivity permits the dispersion of

larvae and the transfer of individuals

across the network formed by distant

populations of the same species. Pre-

vious studies have demonstrated how

connectivity may enhance the persis-

tence of a metapopulation after dis-

turbances, by enhancing their recov-

ery and/or recolonization (Hastings et

Botsford , 2006; Guizien et al., 2014).

It follows that understanding the de-

gree and patterns of connectivity be-

tween populations plays a central role

in conservation planning, like the de-

sign of marine protected areas (Sale

et al., 2006) and spatial planning poli-

cies (Boersma et Parrish, 1999).

A widely used connectivity estimation

method is the modeling of larvae and

individual dispersal with biophysical

modeling that couple ocean dynamics

with a number of biological features of

the species at study. The approach most

commonly used in literature to study

larval dispersal trajectories computed

with biophysical models is the study

of connectivity matrices (Figure 1.1).

With the origin sites on the columns

and destination sites on the rows, con-
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nectivity matrices stores either the average time that an individual from a given source

site need to arrive to a destination (or sink) site (e.g., Berline et al., 2014) or the prob-

ability that an individual disperses from a given origin site to a destination site (e.g.,

Burgess et al., 2014).

1.1.2 Study of connectivity matrices and graph theory

A variety of techniques has been developed for the study of connectivity matrices: metapop-

ulation models (Caswel , 2001), hierarchical clustering (Jacobi et al., 2012), circuit theory

(McRae et al., 2008) and graph theory (Urban et Keitt , 2001) among others. In par-

ticular, graph theory has received an increasing amount of attention in the last decade

(Moilanen, 2011). More and more classical graph theory concept has found an applica-

tion to the study of marine connectivity: betweenness centrality (Urban et Keitt , 2001),

eigenvalues centrality (Andrello et al., 2014) and modularity (Kininmonth et al., 2010a;

Thomas et al., 2014) among others. The use of such mathematical tools is appealing to

the scientific community because, while other connectivity study methods, like metapop-

ulation models, depend on the estimation of various biological parameters (see Guizien

et al., 2014, for example) and therefore need to be finely tuned in order to be applied to

different species and geographical contexts, graph theory can be directly transposed to

other study cases by just recalculating the connectivity matrices. Moreover, by relying on

numerical simulation, graph theory can effectively be complementary to genetic studies

and supply information on boundaries of genetically based communities when sampling

of genetic diversity is sparse (Kininmonth et al., 2010a).

However, the interpretation of the results obtained with graph theory still relies on the

intuition we build on the study of social networks. In the scientific community, a definitive

consensus on whether such intuition directly applies to the study of marine connectivity is

still not achieved (Moilanen, 2011). I addressed this problem in the first part of my thesis.
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A large part of the literature studying marine connectivity via biophysical model-

ing is focused on species with dispersal abilities directly proportional to their pelagic

larval duration (PLD). Apart from horizontal currents, important physical factors that

can influence the dispersal of the larvae during their PLD are temperature and vertical

movements. While temperature can modify the duration of the PLD itself (Houde 1989;

Cowen et al. 2000; O’Connor et al. 2007), vertical movements can expose the larvae to

different ambient temperature conditions and to a more variable velocity field. Both these

aspects can significantly modify the larvae’s dispersal pattern (sensu Butler et al., 2011;

Qiu et al., 2011).

Due to the sensitivity of the dispersal on such factors, it is important that the numerical

models that we use in the biophysical models used to calculate connectivity matrices

make accurate predictions of such factors.

1.2 Numerical models and turbulence

Many validations of numerical models have been done in the past about the accuracy

of the prediction of temperature and velocity fields (e.g., Peters et al., 2004, chapter 39;

Warner et al., 2005; Peters et Baumert , 2007). Less studies have assessed the effect of

the numerous choices on which depend the correct prediction of vertical overturnings and

turbulence modelling. In particular, their prediction and modelling depend on the reli-

ability of the Turbulence Closure Scheme (TCS) employed to numerically integrate the

Navier-Stokes equations and on its interplay with the type of surface boundary conditions

that is specified. I address this question in the second part of my thesis.

While it is very easy to grasp the idea of the turbulent nature of geophysical flows,

it is very difficult to give a precise definition of turbulence. In general, we can list some

characteristics that are proper to turbulent flows (see for example Tennekens et Lumley ,

1972, for a detailed discussion of them): i) randomness; ii) enhanced diffusivity of physical
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properties; iii) three-dimensional fluctuations of vorticity; iv) decaying; and v) a continu-

ous wide range of spatial scales. All these aspects can be linked to the nonlinearity of the

equations describing fluid motion: the so-called Navier-Stokes Equations (NS Equations).

From case to case, we are forced to make ad hoc assumptions in order to make the study

of turbulence tractable. Two often-made assumptions in oceanographic studies are: i) the

homogeneity of turbulence (Kelvin, 1887); and ii) its steadiness on temporal scales that

permits to divide the fluid motion in an average component and a random one (Figure

1.2a): the so-called Reynold’s decomposition (Reynolds , 1895). From these assumptions

a number of results can be derived (see Davidson, 2004, for a comprehensive discussion).

The first assumption permits to obtain the classical view of turbulence as an eddy cascade

process (the so-called Richardson’s cascade; Figure 1.2b) while the second one permits

to define some length scales characterizing all the turbulent flows at high Reynolds num-

ber (Kolmogorov , 1942; Obukhof 1949; Corrsin 1951; Kolmogorov 1962). Kolmogorov’s

results can be further expanded to obtain an exact equation for the equilibrium scalar

spectrum at very high spatial wave numbers by integrating the linear scalar diffusion

equation for a typical small scalar Fourier element in pure strain (Batchelor , 1959).

The second assumption allows many different strategies in order to approximate the

Navier-Stokes equations and solve them numerically (e.g., Burchard et Bolding , 2001).

This last result is maybe the most important for the modern studies of geophysical turbu-

lence. In fact, a large part of the numerical models of oceanic and atmospheric circulation

are built upon it; it is the so-called Reynolds Averaged Navier-Stokes (RANS) models.

Typically, one model cannot resolve the whole spectrum of the flow dynamics. Thus,

it resolves only one portion of it while modelling the rest (Figure 1.3). Generally, we can

distinguish between i) Direct Numerical Simulations that cover all the spatial scales but

are limited in the range of Reynolds number (e.g., Smyth et al., 2001); ii) Large Eddy

Simulations that solve spatially filtered Navier-Stokes equations and are typically limited

to the investigation of near-surface mixed layers (e.g., Skyllingstad et al., 1998); and iii)

Statistical Turbulence Models that solve Reynolds-Averaged Navier-Stokes equations usu-
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(a) (b)

Figure 1.2: (a)"Observe the motion of the surface of water, which resembles the behavior of

hair, which has two motions, of which one depend on the weight of the strands, the other on

the line of its revolving; thus water makes revolving eddies, one part of which depends upon

the impetus of the principal current, and the other depends on the incident and the reflected

motions." (Leonardo da Vinci 1513) As Davidson (2004) asks himself: "Did Leonardo da Vinci

foresee Reynolds’ idea of dividing a turbulent flow into two components: a mean velocity and

the turbulent fluctuations?". (b) This figure represents a one-dimensional simplification of the

cascade process in which bigger eddies becomes unstable and break up in smaller eddies till

when the scale of the eddies matches the scale at which dissipation dominates the dynamics. ε is

the kinetic energy dissipation rate determining the energy flux from large to small scales. This

figure was modified from Frisch (1995).

ally simplified by local equilibrium assumptions and truncated at a certain order (e.g.,

Simpson et al., 2000).

It is on some aspects of this last class of models that I focused part of my thesis. To

implement this kind of models, the velocity in the NS equations is decomposed in mean

and fluctuating part in order to express the viscous term as a function of the velocity.

Nevertheless, once we time average the resulting equation in order to get rid of the fast

fluctuating part, a nonlinear term containing the correlation of the velocity fluctuation

does not vanish (e.g., Davidson, 2004). Boussinesq (1872) proposed to model this term
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Figure 1.3: DNS: Very small scale flow (ex:turbulent boundary layers) but currently compu-

tationally intractable for most problems. LES: Aims to solve the computational cost that DNS

poses and reveals the eddies hidden behind the mean in RANS. Good for small scale applica-

tions in both coastal and open ocean. RANS: The least computationally expensive method that

is used for turbulent modeling. However, it is really not very good when certain phenomena

cannot be averaged, such as instabilities. This figure is taken from André Bakker’s lectures:

http://www.bakker.org/dartmouth06/engs150/10-rans.pdf

in term of a turbulent viscosity so that the turbulence stresses can be related to the

mean flow. This is still the modern approach to the problem. But we must notice that

in this way we have just shifted the problem from modelling the velocity fluctuations

to modelling the turbulent viscosity. In the literature, many different ways –in jargon

called turbulence closure schemes (TCSs)– of doing this have been proposed. The most

frequently found TCSs in the ocean modelling community’s literature are the k − k` by

Mellor et Yamada, 1982; the k − ε by Rodi , 1987; the k − kω by Wilcox , 1988; the k − `

by Gaspar et al., 1990 and the KPP by Large et al., 1994.

Furthermore, different stability functions can be chosen in order to include the effect of

the parametrized non-local moments and pressure strain correlations in the dynamical

equations when employing certain TCSs (e.g., Galperin et al., 1988; Kantha et Clayson,

http://www.bakker.org/dartmouth06/engs150/10-rans.pdf
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1994; Canuto et al., 2001). Also, additional complexity is added to the modelling by the

interplay of the TCS and the choice of boundary conditions (b.c.). The choice of the

surface and bottom boundary conditions can profit of a vast literature (e.g., Craig et

Banner , 1994; Stacey et Pond , 1997; Estournel et al., 2001; Warner et al., 2005), aiming

at modelling different forcing mechanisms.

The effectiveness of the different possible choices and of the different ways of im-

plementing the RANS models really need to be experimentally verified. Thanks to the

aforementioned theoretical results by Batchelor (1959), this has been made recently pos-

sible by microstructure shear and temperature probes. These lasts have permitted to

develop an ever growing set of turbulence measurements to be compared to the models

(see Burchard et al., 2008, for a review). This is the approach that we used in this thesis

relatively to the validation of the model Symphonie (Marsaleix et al., 2008).

1.3 Bottom boundary turbulence and dispersion

Turbulence could also have an important role in the bottom boundary layer in determin-

ing the settling site of larvae. Moreover, deep ocean marine communities are currently

viewed as a potential –if not the only one– candidate for sustaining the ones living in

a coastal environment endangered by a variety of anthropogenic stressors. In order to

establish the potential of the deep ocean communities to sustain the coastal ones through

marine connectivity, we must improve our understanding of bottom boundary turbulence

and develop new parameterizations of it in the numerical models used for the dispersion

numerical experiments.

In fact, bottom boundary turbulence is an open field of research. Its relevance extends

till to synoptic scales and turbulent mechanisms that were overlooked in the past and are

gaining renewed attention since recent studies have highlighted the important role it can
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Figure 1.4: Diapycnal diffusivity Kρ

estimated by microstructure measure-

ments in the Gulf of Mexico (blue

and black) versus the average Kρ in-

ferred from tracer release data during

the GISR campaign by Ledwell et al.

(2016) (magenta). The red line shows

the depth at which the tracer was ini-

tially released.

play in sustaining the global overturning circulation (Naveira Garabato et al., 2004).

More and more evidence is accumulating that a significant amount of mixing is generated

in the bottom layer above rough topography (e.g., Polzin et al., 1997; Ledwell et al., 2016).

Often, the differences between the amount of mixing that is needed to explain the ocean

circulation and tracer vertical diffusion differs by more than one order of magnitude with

respect to the amount of mixing measured with microstructure probes (Figure 1.4).

However, the understanding of the processes generating near-bottom turbulence remain

incomplete (Polzin et al., Submitted) and the comprehension of how small scale processes

translate into large-scale impacts on the fate and transport of pollutants in the ocean is

still lacking. Moreover, microstructure probes are hardly deployed in the near bottom

layer of the ocean (Waterhouse et al., 2014). A major difficulty in studying these pro-

cesses is their intrinsic patchiness and intermittency.

The principal physical mechanisms candidate to explain the mixing above topography

are essentially all the possible interactions between ocean currents and internal wave field

with the topography; principally lee waves and form drag. These kind of phenomena are

well studied in the atmospheric community (Palmer et al., 1986; Alexander et al., 2010),

but their comprehension is limited to the flow over isolated bumps (Scinocca et McFar-

lane, 2000). This is an idealization that is justified by the typical scales ratio between
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the atmospheric flows and land orography but is not the case of the oceanic flows above

rough topography (Polzin et al., Submitted). In the third part of my thesis I address the

role of form drag as generating mechanism of bottom boundary mixing.

1.4 Aims and strategy

My thesis is divided in three parts. In Chapter 2, I present a new interpretation of graph

theory in the framework of connectivity studies. My applied case study is the connectiv-

ity of a polychaete metapopulation in the Gulf of Lion (GoL). This is a benthic species

that disperses mainly during its pelagic larval stage (that varies from 3 to 5 weeks). This

characteristic of polychaete permits to model its larvae’s dispersion as the dispersion

of passive particles in a Lagrangian simulation. Note that the assumption of a passive

dispersion is not completely realistic because polychaete’s larvae display a diel vertical

migration (e.g., Hensler et Jude, 2007). However, this behavior is not yet well understood

and thus it is not considered by literature studies.

I then analyzed the connectivity matrices obtained with the Lagrangian simulations with

different graph theory measures that in the literature are assumed to highlight reproduc-

tive sites important for persistence. Afterwards, I compared our results with other persis-

tence and ecological studies in the literature. In particular, we exploited a metapopulation

model study (Guizien et al., 2014), a genetic structuring study (Padron et Guizien, 2015)

and a sedimentary study (Labrune et al., 2007) in the GoL. The rationale behind this

comparison is that these studies have a much less debated interpretation than graph the-

ory when studying connectivity. So that, if graph theory measures supposed to indicate

sites important for persistence are in agreement with these precedent studies, I can con-

clude that the the current interpretation of graph theory is actually correct. Otherwise,

I can obtain useful indications to start to re-think the interpretation of graph theory in

the framework of connectivity studies.



1.4. Aims and strategy 11

In Chapter 3, I tried to answer the question about the limitations of current numerical

schemes in modelling turbulence by comparing in situ data with the predictions made by

the numerical model Symphonie when using different combinations of TCSs, boundary

conditions and modeling of the light penetration. In particular, in situ measurements

of kinetic energy dissipation rate ε and eddy viscosity KZ were acquired with a Self-

Contained Autonomous Microstructure Profiler (SCAMP) during various campaigns in

the Gulf of Lion.

In Chapter 4, I focused on the bottom boundary layer mixing, studying a dataset is-

sued from a tracer release experiment in the Gulf of Mexico (Ledwell et al., 2016). These

data highlighted the fact that a relevant portion of the observed diapycnal mixing takes

place in the bottom boundary.

Figure 1.5: 2-D section of the zonal ve-

locity field issued 3-D high resolution

simulation. The black circle highlights a

hydrostatic-like flow taking place in a

100m layer above rough topography. Fig-

ure provided by Max Nikurashin.

Following the indications of some high-

resolution numerical simulations (Max Nikurashin

personal communication, see Figure 1.5), I hy-

pothesized that the mixing was generated by

form drag due to the flow of deep currents

above rough topography. In order to clarify the

functional dependence of this mixing on various

physical parameters, I proposed a functional de-

pendence of the diapycnal diffusivity and imple-

ment a 2-D diffusion model that permits to vary

the parameters until a best-agreement with the

in situ data is achieved.

In particular, this approach demonstrates that

bottom boundary mixing permits to close the mixing budget –the ratio of observed to

required mixing ratio– that otherwise was off by more than an order of magnitude (Figure

1.4).
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marine populations persistence with

graph theory

This work resulted in one publication : On the Calculation of Betweenness Centrality in

Marine Connectivity Studies Using Transfer Probabilities, A. Costa, A.A. Petrenko,

A.M. Doglioli, K. Guizien; PlosONE.

Another manuscript will be submitted to Ecological Modelling soon: Tuning the

interpretation of graph theory measures in analyzing marine larval connectivity, A.

Costa, A.M. Doglioli, K. Guizien, A.A. Petrenko.
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Graph theory is a mathematical theory that idealizes a network of elements linked

by pairwise relations, by representing the elements as nodes and the connections as links

between the nodes. As I will show in more detail later, graph theory offers a variety of

tools in order to identify nodes playing specific roles in the network under study.

A huge advantage of graph theory is that it is extremely flexible and can be adapted to

a plethora of different problems by just redefining in a convenient way the value of the

links (e.g., Barrat et al. 2008; Barbasi 2016). For this reason it is more and more applied

in connectivity studies (Moilanen, 2011). However, its application is not straightforward

and the scientific community still does not agree on how to interpret the results of the

analysis of ecological networks with graph theory.

The first part of this chapter reports a study I conducted on developing a metric to

quantify the distance between nodes when using connectivity matrices containing trans-

fer probabilities. In particular, I point to two previous literature studies that employed

incorrect metrics falsifying the physical interpretation of graph theory’s results. More-

over, I propose a new metric that permits to correctly apply graph theory to connectivity

matrices storing transfer probabilities.

In these two literature papers, the authors quantify the distance between nodes with the

transfer probability between those two nodes. However, such a method does not allow to

correctly calculate the probability of transfer between nodes more than one step apart.

This latter probability is at the base of many graph theory measures (c.f. Section 2.3).

The error cannot be avoided without modifying the way of quantifying the distance

between nodes. In fact, all the algorithms that permit to find the most probable path

between a pair of nodes, calculate the value of the path by summing the values of the

connections between nodes and look for the shortest one. However, when the connections

are defined in term of probabilities, the path with the minimum values results from the

sum of the lower probabilities. As it will be shown in more detail later, this invalidates

the interpretation of different graph theory measures because these measures typically are

interested in highlighting the most probable paths. Moreover, summing probabilities is a
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correct procedure when we consider the total probability of independent events. However,

this is not the case of larval transfers between distant sites. Both the above problems can

be avoided by carefully define a new metric to define the distance between nodes.

The second part of this chapter reports a study I am conducting in order to clarify

the interpretation of graph theory measures in the context of marine connectivity and

marine species persistence studies. The study takes advantage of the comparison of a

metapopulation of benthic polychaete in the Gulf of Lion with graph theory. The data

analysis is still being developed. Therefore, the results presented here are still temporary

as well as the version of the manuscript that I report here. I will incorporate the final

version as soon as it will be completed. We envision to submit the final version of the

manuscript to Ecological Modeling.

2.1 On the Calculation of Betweenness Centrality in

Marine Connectivity Studies Using Transfer Prob-

abilities

2.1.1 Abstract

Herein we highlight a lack of methodological information we encountered in two literature

papers concerning the application of graph theory to marine connectivity studies. We show

the consequences of a possible error in those papers and propose the use of a metric for the

node-to-node distance that solves the inconsistency at the base of it. Our argumentation

is illustrated by the analysis of a literature data set.
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2.1.2 Introduction

In the last decade, graph theory has increasingly been used in ecology and conservation

studies Moilanen (2011) and particularly in marine connectivity studies (e.g., Treml et al.

2008; Kininmonth et al. 2010b; Kininmonth et al. 2010a; Andrello et al. 2013; Rossi et al.

2014). Graphs are a mathematical representation of a network of entities (called nodes)

linked by pairwise relationships (called edges). Graph theory is a set of mathematical

results that permit to calculate different measures to identify nodes, or set of nodes, that

play specific roles in a graph. Graph theory application to the study of marine connec-

tivity typically consists in the representation of portions of sea as nodes. Then, the edges

between these nodes represent transfer probabilities between these different portions of

sea.

Transfer probabilities estimate the physical dispersion of propagulae (Jacobi et al. 2012;

Andrello et al. 2013; Berline et al. 2014; Jonsson et al. 2015), nutrients or pollutants

(Doglioli et al., 2004), particulate matter (Mansui et al., 2015), or other particles either

passive or interacting with the environment (see Ghezzo et al. 2015; Bacher et al. 2016 and

references therein). As a result, graph theory already proved valuable in the identifica-

tion of hydrodynamical provinces (Rossi et al., 2014), genetic stepping stones (Rozenfeld

et al., 2008), genetic communities (Kininmonth et al., 2010a), sub-populations (Jacobi

et al., 2012), and in assessing Marine Protected Areas (MPAs) connectivity (Andrello

et al., 2013).

In many marine connectivity studies, it is of interest to identify specific portions of

the sea where a relevant amount of the transfer across the graph passes through. A well-

known graph theory measure is frequently used for this purpose: betweenness centrality.

In the literature, high values of this measure are commonly assumed to identify nodes

sustaining the connectivity of the whole network. For this reason betweenness has been

used in the framework of marine connectivity in order to identify migration stepping

stones (Treml et al., 2008), genetic gateways (Rozenfeld et al., 2008), and MPAs ensuring
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a good MPAs connectivity (Andrello et al., 2013).

Our scope in the present letter is to highlight some errors that can occur in imple-

menting graph theory analysis. Especially we focus on the definition of edges when one is

interested in calculating the betweenness centrality and other related measures. We also

point out two papers in the literature in which this methodological inconsistency can be

found: Kininmonth et al. (2010b) and Andrello et al. (2013).

In Materials and Methods, we introduce the essential graph theory concepts for our

scope. In Results, we present our argument on the base of the analysis of a literature data

set. In the last section, we draw our conclusions and provide perspectives.

2.1.3 Materials and Methods

A graph G is a couple of sets (V,E), where V is the set of nodes and E is the set of edges.

The set V represents the collection of objects under study that are pair-wise linked by an

edge aij, with (i, j) ∈ V , representing a relation of interest between two of these objects.

If aij = aji, ∀(i, j) ∈ V , the graph is said to be ‘undirected’, otherwise it is ‘directed’. The

second case is the one we deal with when studying marine connectivity, where the edges

values represent the transfer probabilities between two marine zones (e.g., Kininmonth

et al. 2010a; Kininmonth et al. 2010b; Andrello et al. 2013; Rossi et al. 2014).

In a graph, there can be multiple ways (called paths) to go from a node i to a node j

passing by other nodes. The value of a path is the sum of the weights of the edges com-

posing the path itself (e.g., Bondy et Murty 1976). In general, it is of interest to know

the shortest or fastest path σij between two nodes, i.e. the one with the lowest value.

But it is even more instructive to know which nodes participate to the greater numbers

of shortest paths. This can be known by calculating the betweenness value for each node



2.1. On the Calculation of Betweenness Centrality in Marine Connectivity
Studies Using Transfer Probabilities 19

in the graph. The betweenness value of a node k, BC(k), is defined as the fraction of

shortest paths existing in the graph, σij, with i 6= j, that effectively pass through k,

σij(k), with i 6= j 6= k:

BC(k) =
∑
i 6=k 6=j

σij(k)

σij
(2.1)

with (i, j, k) ∈ V . Betweenness is then normalized by the total number of possible

connections in the graph once excluded node k: (N − 1)(N − 2), where N is the number

of nodes in the graph, so that 0 ≤ BC ≤ 1.

Although betweenness interpretation is seemingly straightforward, one must be care-

ful in its calculation. In fact betweenness interpretation is sensitive to the node-to-node

metric one chooses to use as edge weight. If, as frequently the case of the marine con-

nectivity studies (e.g., Kininmonth et al. 2010a; Kininmonth et al. 2010b; Andrello et al.

2013; Rossi et al. 2014), one uses transfer probabilities as edge weight, betweenness loses

its original meaning. Based on the details given in their Methods sections, this seems to

be the case of Kininmonth et al. (2010b) and Andrello et al. (2013). In this case, edge

weight would decrease when probability decreases and the shortest paths would be the

sum of edges with lowest value of transfer probability. As a consequence, high between-

ness would be associated to the nodes through which a high number of improbable paths

pass through. Exactly the opposite of betweenness original purpose.

We propose to solve this inconsistency by using a new metric for the edge weights. It

is still based on transfer probabilities aij, but it transforms it in order to conserve the

original meaning of betweenness, by ensuring that a larger transfer probability between

two nodes corresponds to a smaller node-to-node distance. Therefore, the shortest path

between two nodes effectively is the most probable one. So that high betweenness is as-

sociated to the nodes through which a high number of probable paths pass through.
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In the first place, in defining the new metric, we need to reverse the order of the proba-

bilities in order to have higher values of the old metric aij correspond to lower values of

the new one. In the second place we also consider three other facts: (i) transfer proba-

bilities aij are commonly calculated with regards to the position of the particles only at

the beginning and at the end of the advection period; (ii) the probability to go from i

to j does not depend on the node the particle is coming from before arriving in i; and

(iii) the calculation of the shortest paths implies the summation of a variable number of

transfer probability values. Note that, as the aij values are typically calculated on the

base of the particles’ positions at the beginning and at the end of a spawning period, we

are dealing with paths whose values are calculated taking into account different numbers

of generations. Therefore, the transfer probabilities between sites are independent from

each other and should be multiplied by each other when calculating the value of a path.

Nevertheless, the classical algorithms commonly used in graph theory analysis calculate

the shortest paths as the summation of the edges composing them (e.g., the Dijkstra al-

gorithm, Djikstra 1959 or Brandes 2006). Therefore, these algorithms, if directly applied

to the probabilities at play here, are incompatible with their independence.

As a consequence, we define the weight of an edge between two nodes i and j as:

dij = ln

(
1

aij

)
(2.2)

This definition is the composition of two functions: h(x) = 1/x and f(x) = ln(x). The

use of h(x) allows one to reverse the ordering of the metric in order to make the most

probable path the shortest. The use of f(x), thanks to the basic property of logarithms,

allows the use of classical shortest-path finding algorithms while dealing correctly with

the independence of the connectivity values. In fact, we are de facto calculating the value

of a path as the product of the values of its edges.

It is worth mentioning that the values dij = ∞, coming from the values aij = 0, do not

influence the calculation of betweenness values via the Dijkstra algorithm. Note that dij is

both homogeneous: αdij = ln
(

1
aαij

)
, for any constant α and any (i, j) ∈ V ; and additive:
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dil + dlj = ln
(

1
ail·alj

)
= ln

(
1
aij

)
= dij, for any (i, l, j) ∈ V . So that it has the physical

properties of a distance. Also, note that both aij and dij are both dimensionless.

We explicitly note that, a priori, other metrics permit to make the weight decrease when

probability increases: 1−aij, 1/aij, log(1−aij) and −aij are the most intuitive. However,

with some simple examples it is possible to show that: 1 − aij is biased towards paths

with fewer edges; 1/aij can fail when calculating shortest paths as sum of their edges; and

log(1−aij) and −aij fail when there are negative cycles in the graph. See XXX Appendix

A or the Supporting Information for a complete discussion of these metrics.

2.1.4 Results

The consequences of the use of the raw transfer probability (aij) rather than the distance

we propose (dij) are radical. To show this, we used 20 connectivity matrices calculated

for Guizien et al. (2014). They were calculated from Lagrangian simulations using a 3D

circulation model (seeMarsaleix et al. 2006) with a horizontal resolution of 750 m. Spawn-

ing was simulated by releasing 30 particles in the center of each of 32 reproductive sites

(hereafter identified as nodes) for benthic polychaetaes alongshore the Gulf of Lion (NW

Mediterranean Sea), on the 30 m isobath, every hour from January 5 until April 13 in

2004 and 2006. The proportions of particles coming from an origin node and arriving at

a settlement node after 3, 4 and 5 weeks were weight-averaged to compute a connectivity

matrix for larvae with a competency period extending from 3 to 5 weeks.

As an example, in Fig 2.1 we show the representation of the graph corresponding to

the 7th of the 20 connectivity matrices. The arrows starting from a node i and ending in

a node j represent the direction of the element aij (in Fig 2.1a) or dij (in Fig 2.1b). The

arrows’ color code represents the magnitude of the edges’ values. The nodes’ color code

indicates the betweenness values calculated using the metric aij (in Fig 2.1a) or dij (in

Fig 2.1b).
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In Fig 2.1a the edges corresponding to the lower 5% of the weights aij are represented.

These are the larval transfers that, though improbable, are the most influential in deter-

mining high betweenness values when using aij as metric. In Fig 2.1b the edges corre-

sponding to the lower 5% of the weights dij are represented. These are the most probable

larval transfers that —correctly— are the most influential in determining high between-

ness values when using dij as metric. While in figure Fig 2.1a the nodes with highest

betweenness are the nodes 31 (0.26), 27 (0.25) and 2 (0.21); in Fig 2.1b the nodes with

highest betweenness are nodes 21 (0.33), 20 (0.03) and 29 (0.03).

As we show in Fig 2.2, betweenness values of the 32 nodes calculated using the two

node-to-node distances aij and log(1/aij) are drastically different between each other.

Moreover, in 10 out of 20 connectivity matrices, the correlation between node ranking

based on betweenness values with the two metrics were not significant (p-value > 0.05).

In the 10 cases it was (p-value < 0.05), the correlation coefficient was lower than 0.6 (data

not shown). Such partial correlation is not unexpected as the betweenness of a node with

a lot of connections could be similar calculated with aij or dij if among these connections

there are both very improbable and highly probable ones, like in node 21 in the present

test case. Furthermore, it is noticeable that if one uses the aij values (Fig 2.2a), the

betweenness values are much more variable than the ones obtained using dji (Fig 2.2b).

This is because, in the first case, the results depend on the most improbable connections

that, in the ocean, are likely to be numerous and unsteady.

2.1.5 Conclusion

We highlighted a lack of methodological information in the works by Kininmonth et al.

(2010b) and Andrello et al. (2013), applying graph theory to marine connectivity study.

The methodological information in those work suggest that the authors did not reverse

the probability when calculating shortest paths. Such an error would lead to consider the

most improbable paths as the most probable ones. We showed the potential consequences
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(a) (b)

Figure 2.1: Representation of the connectivity matrix 7 and corresponding betweenness values

using different metrics. The left side colorbars indicates betweenness values, the right side col-

orbars indicate the metric values. (a) Results obtained by using aij as edge weight, (b) results

obtained by using dij as edge weight. In (a) the lowest 5% of edges weights are represented. In

(b) the lowest 5% of edges weights are represented. Note the change in the colorbars’ ranges.

(a) (b)

Figure 2.2: Betweenness nodes in the Gulf of Lion for the 32 sites using 20 different connectivity

matrices obtained with Lagrangian simulations by Guizien et al. (2014). (a) Results obtained

by using aij as edge weight; (b) results obtained by using dij . Note the change in the colorbars’

ranges.
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of this methodological error by analyzing a published data set of connectivity matrices

for the Gulf of Lion Guizien et al. (2014). Therefore, we invite the reader to reconsider

the part of methodology regarding the betweenness calculation proposed by Kininmonth

et al. (2010b) and Andrello et al. (2013) and consequent results. In particular, the con-

clusions drawn by the authors about the importance of specific MPAs in maintaining the

connectivity across the MPAs network in the Mediterranean Sea need to be revisited in

order not to mislead eventual conservation policies.

Accordingly to these results, we proposed the use of a node-to-node metric for graph the-

ory studies on marine connectivity that solves the inconsistency and provides a meaningful

way to calculate shortest paths and —as a consequence— betweenness, when relying on

transfer probabilities issued from Lagrangian simulations. In particular, this new metric

permits to reverse the probability and to calculate the value of a path as the product

of its edges. Moreover, this metric is not limited to the calculation of betweenness alone

but is also valid for the calculation of every graph theory measure related to the concept

of shortest paths: for example, shortest cycles and bridging centrality Costa et al. (In

Preparation).
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2.2 Tuning the interpretation of graph theory measures

in analyzing marine larval connectivity: The Gulf

of Lion study case.

2.2.1 Introduction

In the ocean, habitat fragmentation leads to the geographical separation of marine popu-

lations. However, most marine species exhibit a dispersive larval stage (Horson, 1946)

which ensures the maintenance of the spatial coverage of these populations. This is

made possible by the exchange of individuals during reproduction events, forming a so-

called metapopulation (Hanski , 1999). Nowadays, oceans are increasingly threatened by

multiple anthropogenic stressors (Lubchenco et al., 1999), among which the increase of

fragmentation due to habitat destruction. This process alters the connectivity within a

metapopulation and may endanger the persistence of the latter. Indeed, connectivity is

the mechanism that permits to a spatially isolated population to resist to local pertur-

bations through the supply of individuals from other populations when self-recruitment

is depleted. Moreover, connectivity promotes gene flow to balance genetic drift and avoid

inbreeding (Wright , 1931). It follows that, setting up adequate spatial planning policies

(Boersma et Parrish, 1999), with minimal impact on marine species persistence, should

include connectivity assessment.

Consequently, in recent years, different methodologies have been developed for tack-

ling marine connectivity assessment; each with their own advantages and shortcomings

(see Kool et al., 2013 and Lagabrielle et al., 2014). Among these methodologies, graph

theory has been increasingly employed due to its adaptability to different contexts (Moila-

nen, 2011). For example, it was applied to the study of landscape connectivity (Urban et

Keitt , 2001); to the study of the connection between marine reefs (Treml et al., 2008);

to infer gene flux in marine populations networks (Rozenfeld et al., 2008); to examine
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network topology of species (Kininmonth et al., 2010b); for the identification of marine

sub-populations (Jacobi et al., 2012); and for the estimation of connectivity among ma-

rine Marine Protected Areas (Andrello et al., 2013).

Moreover, in connectivity studies many different graph theory measures have been

proposed to identify the sites playing certain functions within an ecological network (Ray-

field et al., 2010; and Galpern et al., 2011). In the literature, some graph theory measures

highlighting sites ensuring a large transfer in ecological networks have been proposed as

relevant for conservation (e.g., Treml et al., 2008; Rozenfeld et al., 2008; Andrello et al.,

2013). However, this point is not bereft of controversies. For example, the equivalence

between large transfer and conservation relevance remains unproven (sensu Moilanen,

2011; and Lagabrielle et al., 2014).

Herein we want to reexamine the ecological interpretation of some graph theory mea-

sures in the context of marine metapopulations of three species of benthic invertebrate

(sedentary adult stage with dispersion during the larval stage). For doing this, graph

theory measures are compared with results of existing ecological studies assessing the

regional persistence (Guizien et al., 2014), the genetic structuring (Padron et Guizien,

2015) and regional assemblages structure of soft-bottom benthic invertebrates in the Gulf

of Lion (Labrune et al., 2007). Moreover, we extend the analysis in Guizien et al. (2014)

to the multiple-species case.

The goal is to assess which of the graph theory measures that we consider in this study

is in better agreement with the information provided by these studies. As a result, the

conservation relevance of the different graph theory measures will be clarified.

The Gulf of Lion was selected because of the numerous studies, both physical and

biological, already performed in this area that can be used to interpret and validate our

results. In the 10 to 30 m bathymetric depth range, the GoL is characterized by a large

continental margin dominated by soft-bottoms forming a continuous habitat for soft-
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bottom invertebrates. Its hydrodynamics is complex and highly variable (Millot , 1990).

Depending on wind forcing, currents in the study zone can be either eastward or south-

westward (Estournel et al., 2003; Petrenko et al., 2008). The circulation is strongly influ-

enced by the Northern Current, which constitutes an effective dynamical barrier blocking

coastal waters on the continental shelf (Petrenko, 2003) and delimits the regional scale of

hydrodynamic connectivity. Exchanges between the GoL and offshore waters are mainly

induced by processes associated with the Northern Current (Petrenko et al., 2005).

Moreover the recent study by Rossi et al. (2014) supports the choice of spatial scales of

the size of the GoL as an appropriate closure scale for a metapopulation, meaning that

the GoL populations are not fueled by populations outside the GoL. In fact, for month-

long periods of larval dispersal, larval transfer was higher within the GoL that with areas

outside it (Rossi et al., 2014).

The paper is organized as follows. In the Materials section, we discuss the main char-

acteristics of the graph theory input: 60 connectivity matrices issued from Lagrangian

dispersal simulations. In the Procedures section, we detail the graph theory measures we

tested. In the Assessment section, we present the systematic analysis of the hydrological

connectivity matrices with graph theory measures. The graph theory measures’ conser-

vation meaning that descends from the comparison with previous ecological studies is

finally discussed.

2.2.2 Materials and Methods

The common input to metapopulation model and graph theory analyses are the connec-

tivity matrices specifying the larval transfer probabilities between 32 reproductive sites

along the shore of the Gulf of Lion (Figure 2.3). These sites cover a substantial part

of the available habitat in the GoL for soft-bottom benthic species Aloisi et al. (1973).

Larval transfer probabilities were determined by means of Lagrangian simulations, that
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Figure 2.3: Schematic representation of the typical circulation in the Gulf of Lion. The

thick arrow represents the dominant alongshore Northern Current. The thinner arrow

represents the eastward current that can be detected in stratified conditions or under

particular wind field conditions. The positions of the 32 studied sites are plotted. The

sites 1, 10, 18 and 32, used for the habitat loss scenario in Guizien et al. (2014), are

highlighted by bigger gray dots. Node 21 is the smallest of the gray dots. The gray lines

correspond to the 100 m, 200 m, 1000 m and 2000 m isobaths.
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were obtained using a 3-D circulation model (see Marsaleix et al., 2006) with a horizon-

tal resolution of 750 m. Spawning was simulated by releasing 30 particles in the center

of each of 32 sites alongshore the GoL, on the 30 m isobath, every hour from January

5 until May 16 in 2004 and 2006. The final positions of larvae after 3, 4 and 5 weeks

(corresponding to the pelagic larval period) were processed to compute the proportion

of the larvae coming from an origin site and arriving at a settlement site. Connectivity

matrices were then built for ten consecutive 10-day spawning periods in each year and

for each of the three different pelagic larval periods, for a total of 60 connectivity matrices.

2.2.2.1 Metapopulation Model

The spatio-temporal dynamics of benthic invertebrate populations with a dispersive

pelagic larval stage were simulated with the spatially explicit metapopulation model of

Guizien et al. (2014). The model describes explicitly, in discrete times and for a set of

patches with different areas, the spatial density dynamics of only the sedentary adult

stage resulting from local survivorship, and reproductive input potentially contributed

by all the other patches forming the metapopulation. Reproductive input results from

offspring production rate in source patches, its redistribution among the different patches

through a larval flow connectivity matrix and recruitment success in destination patches,

the latter being regulated by intra-specific competition for space.

The model was parameterized to describe the spatio-temporal dynamics of a 2-year

life expectancy species dwelling in the soft-bottom habitat of the Gulf of Lion. The species

was assumed to reproduce once a year with a dispersive pelagic larval phase lasting from

3 to 5 weeks. Such trait correspond to Ditrupa arietina, the dominant polychaetes species

of the infralittoral soft-bottom benthic communities of the gulf (Labrune et al., 2007). In

the simulations, demographic parameters were assumed to be spatially uniform for the

10-30 m depth range to more clearly reveal the effect of connectivity on spatial structure.

Propagule production rate was set to 500 and site saturating density was set to 25,000
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ind m−2 Recruitment success was also considered to be spatially uniform, and used to

quantify species persistence to metapopulation connections breakdown.

The continuous sand facies bed spanning the 10 to 30 m isobaths along the gulf was

discretized into thirty-two contiguous sites as in Guizien et al. (2014) to describe larval

transfer within the infralittoral soft-bottom habitat of the gulf. Connectivity matrices,

with local retention rates on the diagonal, and transfer rates between distant sites off of

the diagonal, were quantified from Lagrangian larval dispersal simulations. Simulations of

larval dispersal in the gulf used three-dimensional currents and turbulent kinetic energy

computed at a resolution of 750 m × 750 m following interpolation between the hourly

outputs (Guizien et al., 2006). Spawning was simulated by releasing thirty neutrally

buoyant larvae in the center of each of the 32 sites, on the 20 m isobath, every hour

during the reproductive season. As Ditrupa arietina reproduce in late winter-early spring

in the NW Mediterranean Sea (Charles et al., 2003), a 100-day reproductive season (from

January 5 at 0h until April 13 at 23h) was considered and divided into ten consecutive 10-

day spawning events in 2004 and 2006 (see details in Guizien et al., 2012). In the absence

of knowledge regarding sinking or swimming behaviour of the trocophore Ditrupa arietina

larvae (no shell), larvae were considered neutrally buoyant. Three connectivity matrices

corresponding to the three different pelagic larval durations (PLD) were built for each

spawning period, and the proportion of larvae coming from the center of any site and

arriving in each of the thirty-two sites was multiplied by the ratio of the areas of origin

to the destination sites.

Three groups of simulations of Ditrupa arietina population density spatial distribution

over a duration of 50 life-expectancy cycles were carried out, starting with a low uniform

spatial density of 0.4% of the site’s carrying capacity. Asymptotic stable equilibrium was

defined as the average of the population density between the 45 and 50 life-expectancy

cycles. Connectivity was either set deterministically (the same matrix repeated every

year) or stochastically (a random matrix picked up every year among the twenty variants).

When connectivity was set stochastically, ensembles of 500 simulations were performed

for each set of the other parameters in order to evaluate the variability arising from the
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connectivity sequence. The average regional coverage was defined as the ratio between

the regional average of population density and the saturating capacity.

Simulation settings are summarized in Table 2.1.

Simulations group 1 explored the resistance of a Ditrupa arietina to the removal of

sets contiguous patches among the 32 patches forming the metapopulation for each of the

20 different connectivity variants. For each connectivity variant, the recruitment success

value corresponding to the limit for regional persistence of Ditrupa arietina in the full

network i.e. with all 32 habitat patches was determined by varying recruitment success

from 10−6 to 1 (10 regular steps within each log10-interval), similarly as in (Guizien et al.,

2012). Then, applying this recruitment success value uniformly in all patches, the proce-

dure consists in gradually increasing the number of patches removed from the network

(lost habitat patches) starting from any location in the metapopulation. For each of the

32 initial patches, the minimum number of lost habitat patches around it causing average

regional coverage at equilibrium of a 2-year lifespan species pass below 0.4% was detected.

Simulations group 2 explored the resistance of Ditrupa arietina to the removal of one

patch among the 32 patches forming the metapopulation considering the inter-annual

variability in connectivity patterns. For each patch removed, the recruitment success

value was varied from 1.8% to 3% by step of 0.05%. The largest recruitment success value

for which the average regional coverage at equilibrium of the ensemble of 500 simulations

yielded pass below 0.4% (species disappearance) was seeked for.It is used to rank patches

importance in Ditrupa arietina regional persistence: the larger the recruitment success,

the more important the site is.

Simulations group 3 explored the resistance of a Ditrupa arietina to the removal of

sets contiguous patches among the 32 patches forming the metapopulation, similarly

to simulations group 1, except considering the inter-annual variability in connectivity

patterns. Thus, connectivity was no more the same every year but varied randomly from

year to year (stochastic connectivity case). The fixed and uniform recruitment success of
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3%, that was determined as the limit for regional persistence of Ditrupa arietina in the 32

patches network (Guizien et al., 2012) was applied. The same procedure as in simulations

group 1 was applied that is gradually increasing the number of patches removed from

the network (lost habitat patches) starting from any location in the metapopulation. For

each of the 32 initial patches, the minimum number of lost habitat patches around it

causing average regional coverage at equilibrium of a 2-year lifespan species pass below

0.4% in 10%, 50% and 90% of 500 simulations were seeked for.

Group 1 Group 2 Group 3

Connectivity D S S

Propagule production rate 500 500 500

Life expectancy 2 years 2 years 2 years

Disturbance varying number of habitat loss one habitat loss varying number of habitat loss

Number of simulations 20 500 500

Recruitment success fixed to persistence threshold with all habitat patches [1.8:0.05:3]% 3%

Table 2.1: Settings for the three simulation groups.

2.2.2.2 Graph Theory

A graph G is a couple of sets (V,E) where V is the set of nodes and E is the set of edges.

The set V represents the collection of objects under study that are pair-wise linked by an

edge representing a relation of interest between these two objects. When the relation is

symmetric, the graph is said to be ‘undirected’, otherwise it is ‘directed’. An example of

an undirected graph in the context of ecological networks is the genetic distance among

populations used in Rozenfeld et al. (2008), while an example of directed graph is the

probability of connections due to the current field between two Marine Protected Areas

as in Andrello et al. (2013). If every existing edge has the same importance as the others,

the graph is said to be ‘binary’ (e.g, Rozenfeld et al., 2008): the edges can exist or not. If

each edge has a specific relative importance, a weight can be associated to each of them

and the graph will then be called ‘weighted’ (e.g, Andrello et al., 2013). In the present

study, we deal with directed weighted graphs. The nodes of our graphs represent the 32
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sites in the GoL. Thus, henceforth we will only use the term ‘sites’. The edges of our

graphs represent the not null probability that a Lagrangian particle released in one site

is transported to another site, after a certain amount of time corresponding to its larval

duration period. It follows that the edge weight quantifies the amount of larvae exchanged

between two sites in one generation.

Typically, one is interested to identify the nodes that are more important in a network.

This can be done by calculating different so-called centrality measures, each targeting

nodes with different characteristics.

A simple centrality measures is strength centrality. The total weight of the connections

of a node i ∈ V is called strength ki. In a directed graph, it is possible to distinguish

between in-strength, out-strength and total strength. The first one is the sum of the val-

ues of the edges terminating in the node: kini =
∑

j aji with j ∈ V and i 6= j, where the

values aij are the terms of the connectivity matrix A. The second one is the sum of the

values of the edges starting from the node: kouti =
∑

j aij. The total strength of a node i is

ki = kini + kouti . Nodes with high strength values are said to have high strength centrality.

In classical graph theory studies, . In connectivity studies,.. andrello or kinni.

A more refined version of the same concept is eigenvector centrality. Where strength

centrality gives a simple count of the intensity of connections a site has, eigenvector

centrality is based on the idea that not all connections are equal. In general, connections

to sites who are themselves important will give to a site more influence than connections

to less important nodes. If the centrality of a site i is xi, we can allow for this effect by

prescribing xi to be proportional to the average of the centralities of i’s network neighbors:

xi =
1

λ

N∑
j=1

aijxj

where λ is a constant. Defining the vector of centralities x = (x1, x2, . . . ), we can rewrite

this equation in matrix form as

λx = Ax
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Hence, x is an eigenvector of the adjacency matrix with eigenvalue λ. In order to have x

positive, λmust be the largest eigenvalue of the adjacency matrix and x the corresponding

eigenvector. The eigenvector centrality defined in this way accords each site a centrality

that depends both on the number and the intensity of its connections: having a large

number of connections is still relevant, but a site with a smaller number of high-quality

contacts may be more important than one with a larger number of middling contacts.

In classical graph theory studies, eigenvector centrality has been used to identify the

most influential people in a social network, key nodes in the Internet, electrical or urban

networks, and diseases super-spreaders (see Barrat et al., 2008, and references therein).

Also, a modified eigenvector centrality is employed by web search engines (Altman et

Tennenholtz , 2005).

In connectivity studies, Andrello et al. (2014) uses eigenvector centrality to identify sites

contributing the most to population persistence.

The k-core is the largest subnetwork comprising nodes of degree at least k. A vertex

i has coreness c if it belongs to a c-core in which all sites have strength at least equal to

c but not to any (c+ ∆c)-core in which sites have strength at least equal to c+ ∆c.

The concept of a k-core was introduced to study the clustering structure of social net-

works (Seidman, 1983); to describe the evolution of random graphs (Bollobás , 1984); and

to identify large functional assemblages in proteins (Bader et Hogue, 2003).

The clustering coefficient CC, as defined by Fagiolo (2007), is the the geometric mean

of all triangular linkages within the set of neighbors for a selected site divided by the

maximum possible neighbor linkages that the site could possibly form. For a directed

weighted graph the clustering coefficient of a node i, CC(i), can be written as:

CC(i) =

[
A1/3 + (AT )1/3

]1/3
ii

2 [ki(ki − 1)− 2fi]
(2.3)

where AT is the transpose of the connectivity matrix and di counts the pair of edges

both pointing to the same node (e.g., i← j and i← j) that does not generate triangles:
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fi =
∑

j 6=i aijaji.

Intuitively, the clustering coefficient measures the local cohesiveness of the network. In

classical graph theory studies, CC is normally used to infer the behavior of sites with

certain CC characteristics (e.g., trading countries, Fagiolo, 2007). In marine connectivity

it has been proven useful in determining the small-world behavior of the dispersion in the

Great Barrier Reef: describe how community formation can facilitate the effective inter-

action of distant individuals across an entire population where there are only interactions

between small groups of neighbors (Kininmonth et al., 2010b).

In a connected directed-unweighted graph (i.e., directed-unweighted with no discon-

nected parts), it is possible to define the shortest path σij connecting two sites i ∈ V and

j ∈ V as the shortest possible alternating sequence of sites and edges, beginning with

site i and ending with site j, such that each edge connects the preceding site with the

succeeding one. The definition can be extended to directed weighted graphs: the shortest

path has the lowest cost between two sites. The most frequent choice to define the cost

of a path is the sum of its edges’ weights. Nonetheless, when defining edges as larval

transfer probabilities, one has to define the cost of a path as the product of its edges’

weights (Costa et al., In Preparation). So that, when calculating shortest paths and other

measures based on them, we transform the connectivity matrix according to:

dij = log

(
1

aij

)
(2.4)

Cycles are defined as those paths that, starting from site i ∈ V , end up to the site i itself,

after a certain number L of steps. In order to neglect the effect of the particles remaining

at the same site with respect to the effect of the ones leaving the site and coming back,

we only consider cycles with L > 2. In connectivity studies, one of the essential requisites

for ensuring the persistence of a species in a given zone is the high probability to see the

larvae returning home after a certain number of generations (see Hastings et Botsford ,

2006, for details). This means that the more probable the cycle starting from a given site,
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the more likely the site is important for persistence. In fact, in this case, the site survival

would be quite independent from the import of larvae from other sites. Thus it can act

as a source in our graph (Hastings et Botsford , 2006). Once transformed the connectivity

matrices according to Equation 2.4, we can identify the more probable cycles for each

node by looking for the shortest cycles of a certain length L departing from each node.

In this study we considered L = 4.

The efficiency of a network measures how efficient is the flow over the network by

calculating the average shortest path of a network:

E(V ) =
1

N(N − 1)

∑
i6=j

(i,j)∈V

σij (2.5)

One can also restrict the calculation of E to the neighborhood of a given node. In this

case we refer to the concept of local efficiency:

Eloc(Vi) =
1

N

∑
i∈V

E(Vi) (2.6)

where Vi is the neighborhood of i.

Local efficiency reveals how much the system is fault tolerant (ref), thus it shows how

efficient the communication is between the first neighbors of i when i is removed. In

classical graph theory studies, .

Betweenness centrality BC(i), i ∈ V , is based on the concept of shortest path. Be-

tweenness estimates the importance of a site i by counting the fraction of existing short-

est paths in the graph σlj,∀(l, j) ∈ V | l 6= j that effectively pass through this site

σij(i),∀(l, i, j) ∈ V | i 6= l 6= j:

BC(i) =
∑
l 6=i 6=j

σlj(i)

σlj
(2.7)

We then normalized the betweenness value by the total number of possible connections

in the graph: (N − 1)(N − 2), where N is the number of sites in the graph so that
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0 ≤ BC ≤ 1.

In classical graph theory studies, High values of the betweenness indicate that a site can

be linked with others on short paths. If one removes a site with high betweenness value it

will worsen the efficiency of the transfer across a graph by lengthening the paths between

many pairs of sites. For this reason, in connectivity studies it has been considered to be

a proxy for migration stepping-stones (Treml et al., 2008), genetic gateways (Rozenfeld

et al., 2008) and dispersion gateways (Andrello et al., 2013).

The mean average path σ is commonly used to characterize the topology of a network

(Albert et Barábasi , 2002):

σ =
1

N − 1

∑
i 6=j

σij (2.8)

A low mean average path means that the network is more concentrated and sites are not

far from each other. On the other hand a high value indicate that on average there are

many steps (i.e., generations in our case) between distant sites.

A widely used method for identifying clusters in physical networks is the maximum

modularity criterion introduced by Newman et Girwan (2004). Modularity Q is defined,

up to a multiplicative constant, as the difference between the number of edges falling

within given groups of sites and the expected value in a network that conserves the

strength values of the sites but with randomly placed edges (further details can be found

in Newman, 2006). Intuitively, random connections between groups of sites are unlikely

to be a meaningful cluster structure. Rather, we expect sites of a cluster to communicate

more with other sites belonging to the same cluster rather than with external ones.

Therefore, we can investigate the cluster structure of a graph by looking for the divisions

of the graph that most differ from a random pattern.

Given a network, let ci be the cluster in which site i is assigned. For a directed weighted
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graph the modularity assumes the form (see Nicosia et al., 2009, for details):

Q =
1

m

∑
i,j∈V

[
aij −

kouti kinj
m

]
δ(ci, cj) (2.9)

where ki and kj are the strengths of the sites i and j, m =
∑

i ki and δ(ci, cj) is the

Kronecker δ-function.

In particular, the first term in the summation indicates the real value of the connec-

tion between two sites. Instead, the second term indicates the value we expect by chance.

Therefore positive values of modularity will indicate the possible presence of cluster struc-

tures in our network. In classical graph theory studies, modularity has been used to . In

connectivity studies, it has been used by Kininmonth et al. (2010a).

The within-module degree z-score is a within-module version of degree centrality. If

ki is the strength of a site i to other nodes in its module si, ksi is the average of k over

all the nodes in si, and σksi is the standard deviation of k in si, then:

zi =
ki − ksi
σksi

(2.10)

The within-module degree z-score measures how well-connected node i is to other nodes

in the module.

2.2.2.3 Comparing metapopulation model and graph theory

In order to determine the graph theory measures that give the most reliable identification

of sites important for persistence, we calculated the correlation coefficient between the

minimum recruitment success of each site with the value of the different graph theory

measures. Indeed, the higher the minimum recruitment success Rmin needed in a certain

site to preserve the metapopulation after the removal of a sites around it, the more im-

portant the site is. So that, if a graph theory measure actually gives information about

persistence we expect a high value of that measure for the same node as well. Therefore,
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a high correlation between Rmin and the graph theory measure is expected. The only

exception are the shortest cycles. Indeed, the shortest a cycle the most probable it is; so

that a low value of the shortest cycles is expected to correlate with high values of Rmin.

Also, in order to calculate Rmin in a way consistent with the shortest path calculation,

the metapopulation model analysis removed each time the all the nodes composing the

shortest cycle (with L=4) starting from each nodes.

We calculated the correlation on 20 connectivity matrices for each PLD. Successively,

we calculated the mean value of the Spearman correlation coefficient (or rank correlation

coefficient) associated to a significant p-value (< 0.05) for each PLD. In the following,

the number of significant p-values (out of 20) is denoted as #vals. The rank correlation

coefficient aims to identify the graph theory measures that better reproduces the hierar-

chy calculated by the metapopulation model analysis. However, for conservation policies

it could be of greater interest to just identify the most important sites and eventually

discard the information on the relative importance between sites. In order to identify the

graph theory measures that best identifies the most important nodes we calculate, for

each metric, the swapping score between the hierarchy of the most important site for

metapopulation modelling and the hierarchy based on the different graph theory mea-

sures. In particular, we define the swapping score as the number of differences between a

couple of hierarchies.

2.2.3 Results

The connectivity matrices calculated with a PLD of 1 and 2 weeks correspond to net-

works with a significantly higher average path length σ than the networks obtained with

a PLD of 3, 4 and 5 weeks. in fact, the average path length for a PLD of 1 and 2 weeks

were σ1w = 0.25 and σ2w = 0.15 respectively. Instead, for PLDs of 3, 4 and 5 weeks we

obtain: σ3w = 0.05, σ4w = 0.10 and σ5w = 0.05. We can see that the latter ones are lower
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than the former. Moreover, while for PLDs of 1 and 2 weeks we found –by modularity

maximization– that the sites in the GoL are organized in three clusters, for PLDs of 3, 4

and 5 weeks we found only two clusters (see Table 2.2). These facts indicate that while

for PLDs of 1 and 2 weeks the network is more sparse and divided, for PLDs of 3,4 and 5

weeks the network is more dense and interconnected. Accordingly, the modularity value

decreases as PLD augments. Modluarity values is 0.22 for a 3-weeks PLD, 0.17 for 4 weeks

and 0.14 for 5 weeks. The reason for this is we can expect a particle in the GoL to travel

a maximum 300km per week in the GoL (considering an average velocity of 50cm/s in

Northern current, see Figure 2.3). Therefore, for more than 2 weeks a particle can easily

travel across the GoL even if it travels at a lower average speed. As a consequence, the

network is more connected than in the previous case.

The correlation coefficient and the number of significant p-values obtained for each

graph theory measure and each PLD are reported in Table 2.3.

Strength is always significantly correlated in the most part of cases. However, the number

of significant correlation coefficients is lowest for a 1 week-PLD. This last fact seems to be

valid in general for all the graph theory measures. The mean correlation coefficient ranges

between 0.45 for a 1 week-PLD and augment with the PLD up to 0.77. In particular, for

PLDs of 3, 4 and 5 weeks, strength is the better correlated graph theory measure.

Eigenvector centrality is significantly correlated with the metapopulation model analysis

in few cases and its mean correlation coefficient is always below 0.54.

The core number is well correlated for all PLDs even though, for a 1 week-PLD its corre-

lation is significant in just two cases out of 20. However, the minimum mean correlation

coefficient (0.57) is obtained for a 2 weeks-PLD and the maximum one (0.70) for a PLD

of 5 weeks.

Clustering coefficient’s mean correlation coefficient ranges between the 0.49 and the 0.58.

Also, it is significantly correlated in more than half of the cases for PLDs of 2, 3, 4 and

5 weeks. Only in the 1 week-PLD case it is correlated in less than half (9) of the cases.

Shortest cycles overall not correlated with Rmin and its correlation coefficient is signifi-
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PLD

[weeks]
# clusters Sites

1 3

1-15

16-24

25-32

2 3

1-12

13-19

20-32

3 2
1-17

18-32

4 2
1-16

17-32

5 2
1-17

18-32

Table 2.2: Number of clusters found by modularity maximization for each PLD and nodes

composing them.
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cant in half or less of the half of the cases independently of PLD.

Betweenness’ mean correlation coefficient ranges between 0.45 for a 1 week-PLD to 0.62

for a 5-weeks PLD. Its correlation coefficient is significant in more than half of the cases

for all PLD, but the 1 week one.

Z-score’s mean correlation coefficient increases from 0.45 to 0.70 with the PLD. Also, it

is significantly correlated in most of cases for all PLDs, but the 1 week one.

The swapping scores between the hierarchy based on the different graph theory mea-

sures and the one based on metapopulation model analysis are reported in Table 2.4.

Therein, we also report the most important site that was most frequently found by the

different graph theory measures and by metapopulation model.

In the case of a 1 week-PLD, betweenness is the graph theory measure that, on average,

better identifies the first three most important sites for persistence. Also, it is the only

graph theory measure that most frequently identifies the site 21 as more important for

betweenness as the metapopulation model analysis does.

In the case of a 2 weeks-PLD, core number is the graph theory measure that better iden-

tifies the first three most important sites for persistence. However, betweenness is still the

only graph theory measure that most frequently identifies the site 21 as more important

for betweenness as the metapopulation model analysis does.

In the case of a 3 weeks-PLD, strength and clustering coefficient are the graph theory

measures that better identifies the first three most important sites for persistence. How-

ever, betweenness is the only graph theory measure that most frequently identifies the

site 21 as more important for betweenness as the metapopulation model analysis does.

In the case of a 4 and 5 weeks-PLD, betweenness both better identifies the first three

most important sites for persistence and identifies the site 21 as more important for be-

tweenness as the metapopulation model analysis does.

Overall, the graph theory measures that are better correlated with Rmin for PLDs of

1 and 2 weeks are core number, clustering coefficient and strength. For longer PLDs, they
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are strength, Z-score and core number. The graph theory measures that more reliably

identifies the most important site for persistence is betweenness. Betweenness is also the

graph theory measure that generally better identifies the first three most important sites

for persistence; even though, occasionally, other metrics (core number for a 2 weeks-PLD;

strength and clustering coefficient for a 3-weeks PLD) perform slightly better.

2.2.4 Discussion and conclusions

Connectivity estimation is crucial in order to set up effective conservation policies to

face the deleterious effects of anthropic pressure and climate change on coastal marine

populations. Graph theory has increasingly been applied in the context of connectivity

studies but a general consensus on its interpretation has not yet been reached. In order

to clarify which among the different graph theory measures that can be applied to the

study of connectivity, we compared graph theory analysis’ results with the results issued

from a metapopulation model. Indeed, metapopulation model have been extensively used

in the context of connectivity estimation and its interpretation is settled.

Our study, considered species with a passive PLD ranging from 1 to 5 weeks, the study

area being the Gulf of Lion. We considered two spawning events in two different years

and calculated the connectivity matrices between 32 reproductive sites by means of a

numerical ocean circulation model. These connectivity matrices were used as common

input of metapopulation models and graph theory analyses.

For short PLDs (1 and 2 weeks) the communities in the Gol are not solidly connected

over the whole GoL. Indeed, we observe three clusters with higher modularity values

with respect to the modularity value of the two clusters we observe with longer PLDs.

For short PLDs we observe rather low correlations between the graph theory measures

and the metapopulation model analysis’ results. A reason for this is probably the fact

that the communities are not well connected. Therefore, the effects of local demography
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are much more important than in the case of long PLDs. Indeed, the untold hypothesis

at the base of connectivity estimation by mean of graph theory analysis is often that the

local demographic effect are ignored and that connectivity is maintained by means of the

sole marine currents driving the transport of propagulae between distant sites.

For longer PLDs we observe higher correlations between graph theory and metapop-

ulation model results. This suggests that in the GoL, persistence of species dispersing

passively is likely more due to the transport by current than to local demographic aspects.

Overall, the strength of a site results the most reliable indicator for persistence among

the graph theory measures that we considered. Its correlation can attain high values and

be significant in the vast majority of cases. Therefore, strength can be reliably used to

evaluate the relative importance for persistence of different sites. However, the graph the-

ory measure that more reliably identifies the single most important site for persistence

is betweenness. This peculiarity of betweenness could likely be important in the frame of

conservation policies that –due to obvious limitations– cannot preserve all the reproduc-

tive habitats but rather focus their efforts on the most important sites.
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2.3 Extra Material

2.3.1 Bridging centrality

When exploring the graph theory literature looking for measures that could potentially

be applied to the connectivity study, I encountered the bridging centrality (Hwang et al.,

2008). The available studies in some undirected cases seemed promising. Thus I general-

ized to the directed case and applied to our study case. The results were reported in a first

version of our study that was rejected due to the the fact that the metapopulation model

study with which I compared our results did not rank all the 32 reproductive sites in the

GoL. In the new version, we did not report the results relative to the bridging centrality

because we significantly augmented the number of graph theory measures employed and

because bridging centrality was never used before in connectivity studies. Moreover, some

other measures resulted to be better correlated with persistence than bridging centrality.

Bridging centrality (BR) was first proposed by Hwang et al. (2008) for undirected

unweighted graphs (see Figure 2.4 for an example). For our analysis we reformulated it

in order to extend its use to directed weighted graphs.

Bridging centrality highlights those sites that connect different clusters of a network (see

Hwang et al., 2008). It is derived both from the betweenness value of a site and from the

bridging coefficient that accounts for the probability of leaving the direct neighborhood

of the site by starting from one of the sites composing it. Intuitively, sites with a high

number of such edges fall on the boundary of clusters. In Hwang et al. (2008), for a site

i ∈ V , the bridging coefficient is defined as:

Ψuu(i) =
1

ki

∑
v∈Vi

∆(v)

kv − 1
(2.11)

where Vi is the direct neighborhood of i: the set of sites reachable from i in one step.

∆(v) is the out-strength of sites v ∈ Vi once deleted the edges going from v to other sites

in Vi.
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I classical graph theory studies, it has been used identify critical nodes that are important

for the robustness of the network (Nanda et Kotz 2008; Zhang et al. 2010).

We propose the way to generalize the bridging coefficient to directed weighted graphs by

accounting for the weight of the edges and by checking which edges are effectively leaving

the neighborhood of the site. Then, we correct the out-strength of i via the term −avi
and the strength of v via the term −(aiv + avi). Note that, for this calculation, all the

terms avv on the diagonal of the connectivity matrix are irrelevant. Hence, in the directed

weighted case, we redefine the bridging coefficient as:

Ψdw(i) =
1

ki

∑
v∈Vi

∆(v)− avi
kv − (aiv + avi)

(2.12)

In this way, we retain both the information on the flux of information through a

site (given by the betweenness) and the topological information on the position of this

site relative to clusters (given by the bridging coefficient). In fact, a site falling on the

border of a cluster and channeling a high flux of information will have both high bridging

coefficient and high betweenness values. As a result, the removal of such a high bridging

centrality site would have a much more disruptive effect than the removal of a site having

only either a high betweenness value or a high bridging coefficient (see Hwang et al., 2008,

for an analysis and discussion of this phenomenon in the undirected case). An important

aspect to pay attention to, when calculating the betweenness centrality and the bridging

coefficient of a site, is the different orders of magnitude in play. While the betweenness’

one is normalized to one, the bridging coefficient’s one is not: its value depends upon the

particular metric used to define the distance between the sites. In order to give to the

two parameters equal importance in characterizing the centrality of a site, we follow the

suggestions of Hwang et al. (2008), and (i) calculate the betweenness centrality and the

bridging coefficient for each site, (ii) calculate the rank vector of the sites on the base of

their value of betweenness and bridging values, and (iii) calculate the normalized bridging

centrality as:
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BR(i) = ΓBC(i) · ΓΨ(i) (2.13)

where ΓBR(i) is the rank of a site i in the betweenness vector and ΓΨ(i) is the rank of a

site i in the bridging coefficient vector. We then normalize bridging centrality by dividing

it by the product of the maximum possible ranks N2.

Figure 2.4: The red and yel-

low node has high bridging

centrality. The red node has

high betweenness centrality.

Nodes are divided into one

cyan and one green clusters.

If we eliminate the high-

betweenness node, commu-

nication between the two

clusters is still possible even

if less efficient.

But if we remove the high

bridging centrality-node, we

fragment the network in a

more severe way.
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persistence with graph theory

2.3.2 Visual explanation of graph theory measures

Hereafter, some graph theory measure are clarified in a visual way. For simplicity, we will

restrict the representation mostly to undirected unweighted networks. The captions give

a short definition of each measure, refer to Section 2.2.2.2 for the mathematical details.

Moreover, the sub-captions, the considerations about the value of the different measures

is always relative to the red dot.
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Unweigted undirected graph. Weigted undirected graph.

Unweigted directed graph. Weigted directed graph.

Figure 2.5: Types of graph.

High. Low.

Figure 2.6: Degree: number of edges emanating from a single node.
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persistence with graph theory

High. Low.

Figure 2.7: Clustering coefficient: how many of your nearest neighbors are connected to one

another.

High. Low.

Figure 2.8: Local efficiency: average shortest path connecting all neighbors of a given

node.
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High. Low.

Figure 2.9: Betweenness: number of shortest paths that pass through a given node.
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In this chapter I present a study I conducted in order to establish if the Reynold

Averaged Navier-Stokes numerical model Symphonie (Marsaleix et al., 2008) performs

better with certain turbulence closure schemes rather than other ones. This work has

been submitted to Ocean Modelling. Symphonie is a widely used model for both phys-

ical and biochemical studies and it has been extensively validated (see Section 3.1.3.1

for references). However, here the focus is on the modelling of turbulent quantities like

the kinetic energy dissipation rate and the turbulent diffusivity. A validation of this kind

has never been conducted for Symphonie and it is also one of the few examples in the

literature (e.g., Burchard et Bolding 2001; Ilicak et al. 2008; Reffray et al. 2015). The

importance of reliably modelling the turbulence is due to the sensitivity of the large scale

dynamics to the small scale energy dissipation and transfer. In particular, a modified

large scale circulation could have non negligible effects on the dispersion of propagulae

between distant reproductive sites.

The first aspect that could make a difference in implementing an ocean circulation

numerical model is the turbulence closure scheme (TCS). Let’s take a step back in order

to understand what it is.

Given the nonlinearity and consequent high sensitivity of the Navier-Stokes equations on

the initial conditions, a statistical approach to turbulent flows is often exploited. Within

this framework the Reynolds decomposition (u = u+u′) permits to obtain the equations

for steady shear flows. By shear flow, we mean flows in which velocity is predominantly
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one dimensional in nature like in large scale geophysical flows. However, the quadratic

nonlinear advective term in the Navier-Stokes equations gives rise to new terms involv-

ing the correlation of turbulent velocity fluctuations that couples the mean flow to the

turbulence. These terms are called Reynolds stresses (τij = −ρu′iu′j) and represent the

mean momentum fluxes induced by the turbulence. So that, in order to describe the

evolution of the mean flow, we need to describe these stresses. Unfortunately writing

a dynamical equation for the turbulent components u′ does not help because it would

involve higher-order correlations like u′iu′ju′k. We thus understand that in order to take a

statistical approach we paid a price. Before we had a deterministic –yet chaotic– set of

equations. Now, with a statistical approach, the quantities we are interested in, u′iu′j are

perfectly reproducible but unknown: we do not have a closed set of equations to describe

them. It is at this point that different approximations enter into play to add ad hoc extra

information and close the equations. The different "tactics" to parameterize the velocity

fluctuations’ correlations as a function of some other property of the flow are called tur-

bulence closure schemes.

The first proposed TCS dates back to Boussinesq (1872) who proposed a shear-stress

strain-rate formulation for the Reynolds stresses in mean flows: τxy = ρνT
∂ux
∂y

, where νT

is the eddy viscosity. The general idea behind this formulation is that the turbulent mix-

ing for momentum is analogous to the molecular transport of momentum, which leads

to the laminar stress τxy (see Tennekens et Lumley , 1972, for a derivation). Note that

this formulation states that the mean current is the energetic source for the turbulent

fluctuations. We now have a situation in which there is a continual two-way interaction

between the mean flow that generates and maintain the turbulence and the turbulence

itself that shapes the mean velocity distribution. It is precisely this last interaction that

we need to parameterize but this cannot be done without having some information about

the intensity of turbulence.

One family of TCSs, the so called k − `, basically proceeds in complete analogy to the

kinetic theory of gases and assumes that the eddy viscosity is proportional to the eddy

mean free path (or length scale) ` and to their characteristic velocity scale V : νT = `V ,
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where V = k1/2 =
√

1
2
u′2. This leads to a form for the eddy viscosity along the lines of

νT = `2 ∂u′x
∂y

(see Davidson, 2004, for a derivation). So that now the problem is shifted

again and we need to estimate ` on the base of some property of the flow. In the present

work we considered a formulation proposed by Gaspar et al. (1990) that links the mixing

length to the stratification of the flow (see Appendix 3.2.3 for more details).

Another family of TCSs, the k − ε, models the mixing length as function of u ∼ 3
√
ε`

exploiting the results of Kolmogorov (1942). We thus have a description of the turbulent

flow through an exact dynamical equations for k and an empirical dynamical equation

for ε.

More details about the particular k − ε and l = ` models that we exploited in the study

presented in this chapter can be found in Appendix 3.2.3.

We note at this point that the analogy between diffusion of momentum through turbu-

lence and the diffusion through molecular motion has some severe theoretical limitations.

For instance, turbulent eddies are distributed entities which continually interact, whereas

molecules are discrete and collide intermittently. Moreover, the mean-free path of molecu-

lar motion is small compared to the macroscopic dimensions of the flow. The same cannot

be said of the meanderings of turbulent eddies. Indeed, the large scale, energy containing

eddies frequently have a size comparable to the characteristic scale of the mean flow (see

Davidson 2004 for a more in depth-discussion). Nevertheless, this formulation of turbulent

motion classically performs well in the context of geophysical flows and provides realistic

results.

Among many other aspects that can affect the implementation of ocean circulation nu-

merical models, we study the influence of the choice of the surface and bottom boundary

conditions and of the stability functions parameterizing the unresolved higher moments

in the dynamical equations. Specific details are given in the rest of this chapter.
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The first part of this chapter coincides with the manuscript I submitted to Ocean

Modelling. I am currently revising the manuscript in order to address some comments of

the reviewers. Overall, the revision consist in adding some more numerical experiments

to the analysis. The new numerical experiments are already listed in Section 3.5.1.

In addition to the paper I submitted to Ocean Modelling, at the end of the chapter,

I also resume the preparatory work for this study. In particular, I will discuss some more

details of the physical theory at the base of the SCAMP measurements; the analysis of

the error on these measurements; the modification I made to the data analysis code; the

tests of the data analysis code that I conducted on numerically generated data.

Furthermore, in the extra materials I show some results that expands the results of the

submitted paper: four extra simulations that try to investigate the sensibility of the clo-

sure schemes to additional factors respect to the ones reported in the manuscript.

3.1 Comparison of in situ microstructure measurements

to different turbulence closure schemes in a 3-D nu-

merical ocean circulation model

3.1.1 Abstract

In situ measurements of kinetic energy dissipation rate ε and estimations of eddy viscos-

ity KZ from the Gulf of Lion (NW Mediterranean Sea) are used to assess the ability of

k−ε and k−` closure schemes to predict microscale turbulence in a 3-D numerical ocean

circulation model. Two different surface boundary conditions are considered in order to

investigate their influence on each closure schemes’ performance. The effects of two types

of stability functions and optical schemes on the k − ε scheme is also explored. Overall,

the 3-D model predictions are much closer to the in situ data in the surface mixed layer



60 Chapter 3. Numerical Models and Turbulence

as opposed to below it. Above the mixed layer depth, we identify a model’s configuration

that outperforms all the other ones. Such a configuration employs a k − ε scheme with

Canuto A stability functions, surface boundary conditions parameterizing wave breaking

and an appropriate photosynthetically available radiation attenuation length. Below the

mixed layer depth, reliability is limited by the model’s resolution and the specification of

a hard threshold on the minimum turbulent kinetic energy.

3.1.2 Introduction

Turbulence is an essential mechanism for the transport of energy, salinity, suspended

and dissolved matter. Turbulent fluxes of such quantities are the result of correlated,

small-scale fluctuations of the velocity field and of the transported quantity itself. The

prevalent turbulence production mechanisms in coastal ocean are: mean shear, unsta-

ble stratification, Langmuir circulation (Farmer et Li , 1995) and breaking surface waves

(Agrawal et al., 1992). For coastal ocean, mean shear is mainly generated by the action of

winds and tides, but also by surface waves and baroclinic flows (e.g., Thorpe, 2005), in-

cluding nonlinear internal waves (Toole et Schmitt , 1987). Unstable stratification results

from surface processes such as surface cooling, evaporation or differential advection (e.g.,

Kantha et Clayson, 2000). Destruction of turbulence occurs by transformation into po-

tential energy during stable stratification or viscous dissipation into heat (e.g., Kantha et

Clayson, 2000). The complexity of these processes by themselves and of their interactions

requires numerical models to cover a wide range of spatio-temporal scales and Reynolds

number (e.g, Burchard et al., 2008). This is especially true in the upper ocean where all

the above phenomena concur together to generate turbulence.

Upper ocean connects –through various turbulent mechanisms– the surface forcing from

the atmosphere with the quiescent deeper ocean where heat and fresh water are seques-

trated and released on longer time and global scales (Ferrari et Wunsh, 2009). Also,

upper ocean turbulence plays an important role in biological phenomena by, for example,
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determining phytoplankton growth rate (Thomas et Gibson, 1990), influencing primary

production (Flierl et Davis , 1993) and the onset of blooms (Taylor et Ferrari , 2011).

The complexity of modelling such mechanism within ocean circulation numerical models

gave rise to several approaches. In particular, many turbulence closure schemes have been

proposed. The ones most frequently found in the ocean modelling community’s literature

are the k−k` by Mellor et Yamada, 1982; the k−ε by Rodi , 1987; the k−kω by Wilcox ,

1988; the k−` by Gaspar et al., 1990 and the KPP by Large et al., 1994. Following recent

numerical modelling literature (Ilicak et al., 2008; Reffray et al., 2015), in the present

study, we consider the k−ε and k−` second moments closure (SMC) schemes. Note that

other kinds of closure schemes such as the KPP Large et al., 1994) are not considered

here being not as well suited as the other two schemes for a comparison with in situ data

of kinetic energy dissipation rate ε.

Additional complexity is added to the modelling by the interplay of the SMC and the

choice of boundary conditions (b.c.). Also the choice of surface and bottom boundary

conditions can profit of a vast literature (e.g., Craig et Banner , 1994; Stacey et Pond ,

1997; Estournel et al., 2001; Warner et al., 2005), aiming at modelling different forcing

mechanisms. Furthermore, different stability functions can be chosen in order to include

the effect of the parametrized non-local moments and pressure strain correlations in the

dynamical equations (e.g., Galperin et al., 1988; Kantha et Clayson, 1994; Canuto et al.,

2001). The choice of the optical scheme is particularly important considering the high

number of studies coupling Symphonie to biochemical models as it can influences turbu-

lent fluxes and nutrient availability.

Thus, the in situ validation of the closure schemes, boundary conditions, stability func-

tions, optical scheme and their interplay is fundamental for assessing the reliability of

numerical models (Warner et al., 2005; Peters et Baumert , 2007; Arneborg et al., 2007;

Ilicak et al., 2008).

The current study presents the comparison of kinetic energy dissipation rates ε mea-

surements and vertical eddy viscosity KZ estimations issued from a Self Contained Mi-
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crostructure Profiler (SCAMP) with the predictions of a 3-D numerical ocean circulation

model (Symphonie; Marsaleix et al., 2008) obtained with different model’s setup. The

aim is to gain some insights on which scheme and/or boundary conditions permit to have

the representation of turbulence activity closer to the observations.

Microstructure measurements with the SCAMP profiler have already been used for tur-

bulence estimations in lakes and ocean (e.g., Ruddick et al., 2000; Sharples et Moore,

2001; Burchard et al., 2002; Anis et Singhal , 2002; Sharples et al., 2003; Peters et al.,

2009; Steinbuck et al., 2010; Steinbuck et al., 2011; Cuypers et al., 2012; Jurado et al.,

2012; Bouffard et Boegman, 2013). The dataset we exploit is described in Section 3.1.3.

It consists in measurements taken in a coastal environment in the Gulf of Lion (GoL).

The GoL is located in the northwestern Mediterranean Sea and is characterized by a

large continental margin (Figure 3.1) and a complex hydrodynamics (Millot , 1990). Its

circulation is strongly influenced by the southwestward along-slope Northern Current.

This density current flows in a cyclonic way and constitutes a barrier between the coastal

waters of the continental shelf from the open northwestern Mediterranean Sea (Alberola et

Millot , 1995; Sammari et al., 1995; Petrenko, 2003). Cross-shore exchanges between the

GoL and offshore waters are regulated by wind induced dynamics (Estournel et al., 2003;

Hauser et al., 2003; Petrenko et al., 2017) and by processes associated with the North-

ern Current, such as intrusions into the continental shelf and barotropic and baroclinic

instabilities (Conan et Millot , 1992; Flexas et al., 1997; Petrenko et al., 2005; Barrier

et al., 2016). The Gulf of Lion is a suitable case study because of the high number of

physical (Qiu et al., 2010; Hu et al., 2011), sediment dispersion (Bourrin et al., 2011)

and biochemical (Pinazo et al., 2001; Herrmann et al., 2014) numerical studies carried

out there.

Symphonie has already been validated on a variety of different aspects like current

modelling and eddy generation (Rubio et al., 2009; Hu et al., 2011; Kersalé et al., 2013),

river plume dynamics (Reffray et al., 2004; Gatti et al., 2006) and dense water formation
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(Dufau-Julliand et al., 2004; Estournel et al., 2016). But a study of the different SMC

that the user can implement in the Symphonie code has not yet been done. In particular,

the modelling of the near-surface physical processes has been proved to be sensible to the

choice of SMC as well as the physical-biogeochemical models to the KZ values (Fraysse

et al., 2014).

In general, we can regard all modeled large-scale circulation features in an integrated

fashion as they result from successive calculation steps and approximations. Hence, a

major difficulty in validating numerical models –beside the high number of variables at

play– is the possible compensation of different errors between each other. This fact makes

difficult to attribute a specific amount of the total error on a certain quantity to a spe-

cific step in its calculation, in the present case the turbulence scheme. Here, our goal is

to assess the model predictions focusing on turbulence modelling in the most realistic

configuration we can achieve: 3-D dynamics with realistic forcing. Indeed, mixing has

a primary role in influencing the large-scale circulation motion (Rhines , 1988; Ferrari ,

2014). Nevertheless, the 3-D nature of the model brings in play an augmented number

of numerical issues, among which spurious numerical diffusion (Marsaleix et al., 2008;

Marchesiello et al., 2009; Hu et al., 2009) that are usually neglected in similar, but 1-D,

studies (Gaspar et al., 1990; Burchard et al., 2002; Reffray et al., 2015).

The manuscript is organized as follows. In Section 3.1.3 we describe the properties

of the numerical model, the microstructure in situ data and how we carry out the com-

parison between them and the numerical data. In Section 3.1.4 we report the results of

our analysis and we discuss them in Section 3.1.5. In Section 3.1.6 we summarize the

conclusions of our study.
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3.1.3 Materials and Methods

3.1.3.1 Numerical modelling

The numerical model Symphonie is a 3-D primitive equations, free surface, sigma coordi-

nate ocean model, based on Boussinesq and hydrostatic approximations (Marsaleix et al.,

2008; Marsaleix et al., 2009; Marsaleix et al., 2012). Components of current, temperature

and salinity are computed on a C-grid (Arakawa et Lamb, 1977) using a classic finite

difference method detailed in Marsaleix et al. (2006) and Marsaleix et al. (2008). This

model has been extensively used in studies of the Mediterranean Sea, mostly at the scale

of the continental shelves (Ulses , 2005; Estournel et al., 2003; Estournel et al., 2005),

generally comparing satisfactorily with available in-situ observations of classical hydro-

logical quantities. Symphonie has also been coupled to biochemical models for studies

that demonstrated the impact of the turbulence level on determining the vertical flux

of nutritive salts, the nutricline depth and –as a consequence– the results given by the

biochemical models (Ulses et al., 2016; Herrmann et al., 2013). However, a study of the

consequences of choosing a certain model’s implementation of the Symphonie code has

not yet been done. To fill this gap, we compare the model predictions of ε and KZ with

the values measured with the SCAMP profiler.

The model domain we use, shown in Figure 3.1, is that of Estournel et al. (2016). Note

that all the measurements sites are far from the open boundaries. The horizontal resolu-

tion of the model grid is 1/110 degree (about 1 km). All the numerical experiments we

perform cover the whole period in which in situ data are available: from 1 July 2010 to

13 March 2014, plus ten weeks of spin up.

In the vertical the model exploits a generalized sigma coordinate with 50 levels. Surface

fluxes are computed using the bulk formulae by (Large et Yaeger , 2004) and the 3-hours

ECMWF by Estournel et al. (2016). The boundary condition for ε is deduced with a

length scale reasoning from the value of the Richardson number (Estournel et Guedalia,

1987; Michaud et al., 2012), see Appendix 3.2.1 for more details. In order to simulate the

limiting effect of stable stratification, following Galperin et al. (1988), the minimum of ε
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is linked to the minimum turbulent kinetic energy value kmin through:

εmin = kmin
0.553N

0.53
√

2
(3.1)

As a default in Symphonie, kmin = 10−8 kg m2/s2; this implies εmin = 10−12 m2/s3.

The choice of this threshold follows from underestimating the more standard value of

kmin = 10−6 kg m2/s2 (Gaspar et al. 1990; Burchard et al. 2002), that is based on the

estimation of the internal wave activity.

Similar low-frequency buoyancy conditions are maintained for all numerical experiments

using a nudging procedure on temperature and salinity toward the corresponding MER-

CATOR fields (product PSY2V4R4). The nudging time scale is 30 days, enabling the free

development of higher frequencies (including those of the turbulence closure scheme), and,

at the same time, ensuring that the different turbulence schemes are tested in similar gen-

eral conditions of stratification.

We choose the a k − ε (Burchard et Bolding , 2001) and a k − ` (Gaspar et al., 1990)

closure schemes because, other than being the more exploited by Symphonie’s users, they

are also widely used in the wider scientific community. Reffray et al. (2015) –in a 1-D case–

showed that k − ε gives more reliable mixing estimation with respect to other schemes

widely used in the literature: k − kl, k − ω and k − `. The k − ` scheme in Reffray et al.

(2015) is based on Gaspar et al. (1990) but simplified for 1-D applications. We want to

test if the original scheme by Gaspar et al. (1990) performs better than k − ε in a 3-D

case.

Moreover, our questioning the numerical results’ sensitivity on the value of kmin follows

from the study by Gaspar et al. (1990). Therein the authors encouraged (but not imple-

mented) the use of a parametrization kmin rather than fixing a hard value. Herein we test

if a good result can be achieved in a simpler way by specifying a different value of kmin.

A study by Burchard et Bolding (2001) showed that, in a 1-D study of temperature and

mixed layer depth data of the well-known dataset OWS Papa (northern Pacific), the

k − ε closure scheme performs better when employing the stability functions proposed
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by Canuto et al. (2001) (commonly called Canuto A), rather than the ones by Kantha et

Clayson (1994), Rodi (1980) and Hossain (1980). On the other hand, Ilicak et al. (2008)

showed that –in a 3-D study of the Red Sea outflow– the stability functions of both

Canuto et al. (2001) and Kantha et Clayson (1994) perform similarly. We want to further

investigate the different performance of these two stability functions in a 3-D case. Note

also that this study –as opposed to Burchard et Bolding (2001) and Ilicak et al. (2008)–

has a strong focus on microstructure measurements and not only on more standard quan-

tities like mixed layer depth, temperature and salinity.

In the literature there are different formulations for KZ . In particular, it can include the

molecular diffusivity DT (so that we always have KZ > DT ; e.g., Burchard et Bolding

2001) or not (e.g., Han, 2014). Here we want to clarify the differences (if any) between

the two approaches.

Not having the necessary computational power to explore all the possible combinations

of these factors in a 3-D model (as done for example in a similar study in the 1-D case

by Reffray et al. (2015), and in a 3-D case by Ilicak et al. (2008) but on a shorter time

span), we restrict the study to a subset of combinations.

In particular, nine different numerical experiments employing different combinations

of turbulent closure schemes, boundary conditions, stability functions, values of the min-

imum of turbulent kinetic energy and optical schemes are analyzed here (see Table 3.1

for a concise summary).

Five of these numerical experiments employ a closure scheme based on a k − ε approach

(Burchard et Bolding , 2001) —hereafter marked by the prefix KE. The other four nu-

merical experiments employ a k − ` scheme based on Gaspar et al. (1990) (hereafter

marked by the prefix KL). Details of these nine numerical experiments can be found in

Appendix 3.2.3. We test the effect of two possible surface boundary conditions. The first

one (marked by a suffix set) supposes equilibrium between the production and dissipation

terms in the dynamic equation for k (see Equation 3.2.2). The second one (marked by a

suffix flu), takes into account the effect of breaking waves of all scales, as suggested by
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Craig et Banner (1994); see Equation A.1 and Appendix 3.2.1 for details. The numerical

experiments exploiting the KE scheme and using the stability by Canuto et al. (2001)

–instead of the ones by Kantha et Clayson (1994)– are marked by the suffix CAN. Simu-

lations with a higher minimum TKE –10−7 kg m/s2 instead of 10−8 kgm/s2– are marked

with a suffix MINk.

All the numerical experiments with a higher threshold on k are such that KZ > DT .

Therefore, in the other numerical experiments the total diffusivity could be smaller than

the molecular one.

One numerical experiment (marked by the suffix Opt) investigates the effect of the at-

tenuation length of the penetrative solar radiation Qsr. Qsr is parametrized as a two-band

exponential scheme (Maraldi et al., 2013):

Qsr(z) = Qsr(0)
[
Re−z/l + (1−R)e−z/lPAR

]
(3.2)

where the first right-hand term parameterizes the attenuation of red and near-infrared

radiation (whose attenuation length is l = 0.35 cm); and the second right-hand term is

the one of the visible and ultra-violet radiation; lPAR is the photosynthetic available radi-

ation (PAR) diffuse attenuation length. Qsr(0) is the fraction of the available penetrative

solar radiation assuming a constant albedo of 6.6%. Following Maraldi et al. (2013), the

lPAR default in Symphonie is set to 11 m. However, this value has to be considered as

an annual climatological estimation of the PAR. With this numerical experiment we test

the effect of the seasonality of lPAR by setting its value to 23 m coherently with the fact

that most of the in situ measurements were acquired in September when we expect a low

biological activity in the surface boundary layer of the GoL.

With this set of numerical experiments we can answer three principal questions: 1)

which SMC between k−ε and k− ` performs better with respect to our dataset? 2) what

is the effect of the b.c. on the results of the numerical numerical experiments? and 3)

what is the effect of the two stability functions?
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3.1.3.2 SCAMP measurements

An in situ estimate of ε can be derived from high-resolution vertical profiles of temperature

T . Batchelor (1959) derived the spectral shape of a conserved scalar field that is passively

advected by an incompressible turbulent fluid with a molecular Prandtl number Pr =

ν/D greater than 1 (seawater has Pr = 7 at 20◦C), where ν and D are respectively

the molecular viscosity and the molecular diffusivity of the scalar. In the present case

the scalar is the temperature. Gibson et Schwarz (1963) derived the one-dimensional

Batchelor spectrum E(K) of temperature gradient as a function of the rate of dissipation

of temperature variance χT , the kinetic energy dissipation rate ε, the molecular diffusivity

of temperature DT and the circular wavenumber K:

E(K) = f(χT , DT , KB) (3.3)

where KB is the inverse of the Batchelor length scale describing the length scales at

which fluctuations in scalar concentration (temperature in this case) can still exist before

being evened out by molecular diffusion. Therefore, (see Ruddick et al., 2000; Luketina

et Imberger , 2000 and Steinbuck et al., 2009 for details) once measured the temperature

vertical gradient at the millimeter scale and derived χT and KB by fitting the Batchelor

spectrum, a measure of ε follows from (Batchelor , 1959):

ε =
νD2

T

K4
B

(3.4)

The temperature gradient profiles were measured with a SCAMP profiler. This instru-

ment is equipped with a 100 Hz FP07 glass rod microthermistors (sensitivity of 0.001◦C).

Our SCAMP was deployed in an upward configuration. After deployment, it sinks to a

predetermined depth following an oblique trajectory and then rises up vertically at an ap-

proximately constant velocity U = 10−1 m/s. This type of trajectory permits the SCAMP

to get away from the ship and be free from the influence of the ship’s wake when rising

up in an undisturbed water column. This allows to have reliable measurements of ε and

KZ near the sea surface (Anis , 2006).
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The dataset (spanning the period 2010-2014) for this analysis consisted in 126 pro-

files of variable vertical extent —between 1 m below the surface and 100 m depth—

collected in different sites in the Gulf of Lion (Figure 3.1). The profiles were collected

during various oceanographic campaigns in the GoL conducted by the Mediterranean In-

stitute of Oceanography (MIO - Marseille, France). Because the SCAMP measurements

were opportunistically taken in cruises mainly not dedicated to turbulence measurements,

repeated casts were often not possible. Data were collected mostly during summer and

with meteorological conditions favorable to operations with a small boat, generally with

wave heights less than half meter. Precipitation was always absent or negligible. Surface

buoyancy flux was positive for 115 profiles indicating a gain of buoyancy by the ocean

surface.

Temperature gradient spectra were computed from 128 points (≈ 13 cm) windows

without overlap. The choice of this segmentation resulted from a sensitivity analysis us-

ing different segmentation methods proposed in the literature (see Appendix 3.3).

The vertical eddy viscosity coefficientKZ can be derived on the basis of the turbulence

intensity parameter Reb = ε/νN . Reb expresses the ratio of the destabilizing effect of tur-

bulence to the stabilizing effect of stratification and viscosity. In different Reb regimes,

the mixing efficiency, expressing the portion of the energy produced by shear which is dis-

sipated by viscosity, assumes different values and determines different vertical turbulent

diffusivity of density Kρ. Here we use a recent field-validated parametrization of Kρ as

function of Reb proposed by Bouffard et Boegman (2013) based on a previous parametriza-

tion derived by Shih et al. (2005). At very low Reb (Reb < 102/3/
√
Pr ≈ 1.7), the tur-

bulent regime is regarded as diffusive and Kρ is set equal to the temperature molecular

diffusivity DT = 1.4 × 10−7m2s−1. At low Reb (102/3/
√
Pr < Reb < (3 ln

√
Pr)2 ≈ 8.5)

turbulent mixing tends to be controlled by buoyancy effects with incomplete mixing

favoring up-gradient fluxes reducing the mixing efficiency. Here Kρ can be expressed as
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Figure 3.1: Numerical model domain. The color code represents the water depth. The Gulf

of Lion is magnified in the smaller box where the measurements sites are represented by

red dots. Note that many profiles were taken at the same location over time. The black

lines in the smaller box represent the 0, 50, 100, 500, 1000 and 1500 m isobaths.
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Kρ = 0.1Pr−1/4νRe
3/2
b . For moderate Reb (3 ln

√
Pr)2 < Reb < 400) the mixing efficiency

has the classical form derived by Osborn (1980):Kρ = 0.2νReb. For high Reb (Reb > 400),

turbulence is in an energetic regime, where Kρ = 4ν
√
Reb. Therefore, for high Reb the

buoyancy flux KρN tends to vanish together with stratification: KρN =
√
νεN N→0−−→ 0,

as we expect in weakly stratified fluids (Osborn, 1980).

As in the case of the Mediterranean Sea (e.g., Cuypers et al., 2012), when the density

variations are dominated by those of temperature, the density vertical eddy diffusivity

coefficient is assumed to be equal to the temperature vertical eddy diffusivity coefficient

(Peters et al., 1988). Assuming then a turbulent Prandtl number Prt = KZ/Kρ = 1

(Hogg et al., 2001), it is possible to estimate the momentum eddy viscosity (or eddy vis-

cosity) KZ to be equal to Kρ.

3.1.3.3 Comparison of numerical and in situ data

While the vertical resolution of the in situ profile of ε and KZ is constant (13 cm), the

vertical resolution of the model is variable and generally coarser (≈ 1− 2 m) than the in

situ one. In order to compare the numerical data to the measurements, the SCAMP data

are grouped in windows centered on each sigma level. Then, the median of each window

is calculated and compared to the numerical data at that sigma level. The choice of the

median permits to give less importance to outliers and reduce the error due to the fact

that the profiles were mainly single casts (Lozovatsky et al., 2005).

For both the in situ and numerical data, we define the surface mixed layer (MLD)

as the depth at which the temperature is smaller than the surface value by 0.5◦C (Anis ,

2006; Jurado et al., 2012). Then we separate the data in the MLD from the ones below

it. The data in the bottom layer are not considered for this analysis because of the low

number of in situ profiles near the sea bottom.
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Following Burchard et al. (2002), we define the decadal standard deviation of the

numerical values of ε as:

σε =

√√√√ 1

M

M∑
i=1

[
log

(
εmodi

m2s−3

)
− log

(
εobsi
m2s−3

)]2

(3.5)

where M is the number of points in a given profile. Similar definitions hold for the

decadal standard deviation of N (σN) and KZ (σKZ ). To calculate these quantities, no

division between data above and below the MLD is made because the number of in situ

and numerical values in the MLD can differ for a given profile. Hereinafter, the mean val-

ues of σε, σN and σKZ on all the profiles are denoted σε, σN and σKZ for ease of reading,

instead of < σε >, < σN > and < σKZ >.

We also compare the probability density functions (PDFs) of the in situ and numerical

values of kinetic energy dissipation rate ε, Brunt-Väisälä frequency N and eddy viscosity

KZ . In particular, the PDFs are calculated with a kernel density estimation (Bowman et

Azzalini , 1997) on the base of the frequency distributions of values from all the in situ

and numerical profiles.

In order to compare a distribution of numerical data g(x) with the distribution of the

in situ data f(x), we compute the squared difference between the empirical cumulative

distribution functions (Fn and Gn) of the two distributions:

∆2(S) =

∫ ∞
0

(
Fn(x)−Gn(x+ S)

)2
dx (3.6)

We define the shift S between two distributions as the shift of Gn(x) that permits to

minimize ∆2. A subscript will tell to which distribution the values of ∆2 and S refer to:

∆2
ε and Sε for the ε’s PDF; ∆2

N and SN for the N ’s PDF; ∆2
KZ

and SKZ for the KZ ’s

PDF.An estimation of the error on ∆2 values is estimated by re-sampling the in situ

empirical distribution function (Nerini et Ghattas , 2007) in order to further account for
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in situ measuring incertitude.

3.1.4 Results

To quantify the agreement between the numerical and the in situ data we use two meth-

ods. One takes into account the deviation of the numerical data from the in situ profiles

over the whole column and expresses it by the decadal standard deviations (Table 3.2).

The other approach looks at the shape of the probability density functions of the numer-

ical values of ε and KZ and expresses it by the squared differences and shift values above

and below the MLD (Tables 3.3 and 3.4).

Median in situ and numerical profiles of ε are shown in Figure 3.2 vs. nondimensional

depth z/MLD. Note that, the average value of the in situ MLD value is 27.3 m. As

reported in Table 3.2, all the numerical MLDs are systematically lower by ≈ 10 − 15%

compared to in situ MLDs. Overall, the KE numerical experiments predict a slightly

deeper MLD closer to the observations.

The thick lines in Figure 3.2 represent the median dissipation profiles calculated with

all the profiles we analyzed and the shades represent the 95% bootstrap confidence inter-

val. At the surface, all the numerical experiments agree within one order of magnitude

with the in situ data. However, KEflu is the numerical experiment with values the closest

to the observations. We also observe a difference between the effects of the equilibrium

b.c. and the flux b.c. on the KE and KL closure schemes. While near the surface the

numerical experiment KEset has a value of ε lower than KEflu, the numerical experiment

KLset has a greater value than KLflu.

As we descend the water column, beyond z/MLD = 1, the in situ data tend to become

more variable due to the lower number of profiles reaching depths greater than the MLD.

On the contrary, the numerical data tend to become much less variable. Moreover, there
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is an evident difference between the SMCs: when the lower threshold on k is applied, the

KE numerical experiments always have lower levels of turbulence with respect to the KL

numerical experiments with KEs’ median values of ε one order of magnitude lower than

the KLs’ ones. When a higher threshold on the kinetic energy k is applied, the difference

is slightly reduced.

At z/MLD = 0.5 the in situ data exhibit a kink that separates higher mixing at the

surface from lower mixing in the rest of the MLD. KEflu, KLflu, KLsetMINk and KLflu-

MINk are the numerical experiments that better reflect this behavior. Note also that the

in situ data show a clear increment of ε at z/MLD = 1.1 that is only slightly reflected

in some numerical data.

We do not show values for z/MLD > 2 because of the large bootstrap error bars due to

the lower number of profiles in that depth range.

Overall, looking at the column as a whole, the numerical experiments with a higher min-

imum value of kinetic energy (KEfluCANMINk, KEfluCANMINkOpt KLsetMINk and

KLfluMINk) have the lower average error with respect to the measurements (see values

of σε in Table 3.2) because of the better agreement with in situ data below the MLD.

Median in situ and numerical profiles of N and their error are shown in Figure 3.3 vs.

nondimensional depth z/MLD. Near the surface, the in situ data are considerably more

variable than the numerical data. However, the numerical data are of the same order

of magnitude as the measurements. As we go below the MLD, the median value of the

in situ data increases in the depth range 1 < z/MLD < 1.6. Overall, all the numerical

experiments do not show such a marked increase and are rather similar one to another (as

we expect because all of them are nudged to the MERCATOR fields). However, KEflu-

MINkOpt seems to be the numerical experiment that better reproduce the in situ data’s

trend right below the MLD.

Looking at the column as a whole, KEsetMINk has the lower average error with respect

to the measurements (see values of σN in Table 3.2).
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Figure 3.2: The thick lines represent median values of ε estimated from in situ data

(in black) and numerical experiments. The shades indicate 95% bootstrap confidence

intervals. Water depth z is adimensionalised with respect to the mixed layer depth MLD

for each profile.
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Figure 3.3: The thick lines represent median values of N estimated from in situ data

(in black) and numerical experiments. The shades indicate 95% bootstrap confidence

intervals. Water depth z is adimensionalised with respect to the mixed layer depth MLD

for each profile.
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The measurements of ε and N permitted to calculate the turbulence intensity pa-

rameter Reb. The in situ probability density functions of the in situ Reb are reported in

Figure 4.11 in the Extra Materials. In particular, in our dataset, 30% of the in situ Reb

values fell in the diffusive regime, 15% in the buoyancy-controlled regime, 29% in the

transitional regime and 26% in the energetic regime. If only the data above the MLD are

considered these numbers respectively become 17%, 10%, 31% and 42%; or 36%, 16%,

28% and 20%, if only the data below the MLD are considered.

Median in situ and numerical profiles of KZ and their error are shown in Figure 3.4

vs. nondimensional depth z/MLD. In the surface layer the numerical values are much

more variable than the in situ ones. The opposite is observed below the MLD.

Near the surface, KEflu shows the best agreement with the observations among the sim-

ulations with the lower threshold on k. KEset is not as good as KEflu, but it significantly

improves when the Canuto A stability functions. KLset and KLflu perform similarly but

have an error in opposite directions. Near the surface, KLset is higher than KLflu. The

same holds for KLsetMINk and KLfluMINk.

Below the MLD, the numerical experiments appear to be grouped on the base of the

threshold on k: no differences between different SMC and b.c. appear obvious. Notice-

ably, below the MLD, the numerical experiments with a higher threshold on the kinetic

energy k are more compatible with the in situ data than the other numerical experiments.

The median value of KZ below the MLD appears to have a seasonal behavior. In par-

ticular, it is equal to 5.90× 10−6m2/s2 in spring, 3.02× 10−6 in summer, 3.27× 10−6 in

autumn and 5.57× 10−7 in winter.

Overall, looking at the whole column, the numerical experiments that have the lower

average error with respect to the measurements are the four numerical experiments with

a high threshold on k, as the values of σKZ in Table 3.2 indicate.

The probability density functions of the in situ dissipation rate ε data (in black) and

of the numerical data are shown in Figure 3.5. Above the MLD (Figures 3.5a-b), the in
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Figure 3.4: The thick lines represent median values of KZ estimated from in situ data

(in black) and numerical experiments. The shades indicate 95% bootstrap confidence

intervals. Water depth z is adimensionalised with respect to the mixed layer depth MLD

for each profile.
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situ values show a clear bimodal behavior with one peak at ε≈5×10−10m2/s3 and one at

ε≈5×10−7m2/s3. The numerical distributions show this feature in a less marked way and

are generally low-biased with respect to the in situ data’s PDF. As values of Sε and ∆2
ε in

Table 3.3 show, above the MLD, the distribution more aligned to the in situ data one are

KEfluMINk and KEfluMINkOpt, while the distribution with the shape more resembling

the in situ data one is KEfluMINkOpt.

Below the MLD (Figures 3.5c-d), all the numerical PDFs have mean values similar to the

ones of the corresponding PDF in the surface layer, but are much more narrow than the

in situ data. KL numerical experiments have higher mean values than KE ones and the

numerical experiments with a threshold on k have higher mean values than the corre-

sponding numerical experiments without threshold. Below the MLD, none of the model

PDFs has a behavior resembling the in situ one: they are all peaked and not spread out

like the in situ distribution. As we see in Table 3.4, below the MLD, KLsetMINk and

KLfluMINk have the same shift with respect to the in situ distribution, while KEflu-

CANMINkOpt and KLfluCANMINkOpt have the lower value of ∆2
ε. But we note that

the differences between the values of ∆2
ε below the MLD are due to small differences in

the low right-end tails that are unlikely to be significative.

The probability density functions of the in situ stratification N data (in black) and

of the numerical data are shown in Figure 3.6. Both above and below the MLD, there is

no drastic difference between the numerical distributions in both shape and peak. The

similar behavior of all the numerical experiments can be due to the low frequency nudging

to the MERCATOR fields. Overall, above the MLD (Figures 3.6a-b), the numerical ex-

periments overestimate the stratification. Note that this is not evident by just looking at

the median profiles in Figure 3.3. As values of ∆2
N in Table 3.3 indicate, the distribution

more resembling the in situ one is KEfluCANMINkOpt.

Below the MLD (Figures 3.6c-d) the peaks of the numerical PDFs are less aligned than

above the MLD. In this layer, the numerical distributions show a peak at N≈5×10−3.3s−2

that is not present in the measurements. As values of ∆2
N in Table 3.4 show, KEfluCAN-
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a) b)

c) d)

Figure 3.5: a) and b): ε probability density functions issued from all the in situ (black

shade) and numerical data (thick lines) in the surface mixed layer for the KE closure

scheme and the KL closure scheme respectively. c) and d): the same but below the surface

mixed layer.
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MINk is the distribution with the shape more resembling the in situ one above the

MLD, while KEfluCAN is the more resembling below the MLD. We note that when the

secondary peak is removed the numerical experiment with the better N ’s PDF are KE-

fluCANMINk and KEfluCANMINkOpt.

The probability density functions of the in eddy viscosity KZ in situ data (in black)

and of the numerical data are shown in Figure 3.7. Above the MLD (Figure 3.7a-b), the

in situ values have three peaks with a higher peak at KZ≈5×10−4m2/s2. None of the nu-

merical experiment well reproduces this behavior. As values of σKZ in Table 3.2 suggest,

above the MLD the distribution more aligned to the in situ one is KLsetMINk. Besides,

∆2
KZ

values in Table 3.3 indicate that KEfluCANMINkOpt is the distribution with the

shape more resembling the in situ one. The effect of raising kmin is similar on the two

SMC families: it shifts the distribution towards higher values. However, KLsetMINk and

KLfluMINk show a prominent first peak and thus perform less well than KEfluCANMINk

and KEfluCANMINkOpt.

Below the MLD (Figures 3.7c-d) –similarly to what seen for ε– the numerical distribu-

tions are clearly different from the in situ one. ∆2
KZ

values in Table 3.4 indicate that

KEfluCAN is the distribution with the shape more resembling the in situ one. But, as we

already noted for the distributions of ε below the MLD (Figure 3.5), in this layer there

is not a real difference between the numerical experiments.

All the measurements of ε, N and KZ and the corresponding numerical data are

shown in Figure 3.8. It turns out that the point clouds reveal that the in situ values

are much less disperse than the model ones (not evident from the picture; see Supple-

mentary Data in the on-line version of this paper). In Figure 3.8a-b we can see six main

planes corresponding to: KEfluCAN, KEset and KEflu, KLset, KLflu and some in situ

data at low KZ . Indeed, these last points lie on a plane with constant KZ as prescribed

by the parametrization we used (see Methods and Discussion). Data belonging to the

numerical experiments with a higher threshold on k (KEfluCANMINk, KEfluCANMINk,
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a) b)

c) d)

Figure 3.6: a) and b): N probability density functions issued from all the in situ (black

shade) and numerical data (thick lines) in the surface mixed layer for the KE closure

scheme and the KL closure scheme respectively. c) and d): the same but below the surface

mixed layer.



3.1. Comparison of in situ microstructure measurements to different
turbulence closure schemes in a 3-D numerical ocean circulation model 83

a) b)

c) d)

Figure 3.7: a) and b): KZ probability density functions issued from all the in situ (black

shade) and numerical data (thick lines) in the surface mixed layer for the KE closure

scheme and the KL closure scheme respectively. c) and d): the same but below the surface

mixed layer. Note the difference in the range of the y axes in a) and b).
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KLsetMINk and KLfluMINk) are first found at KZ ≈ 2×10−6 (Figure 3.8b). The KE nu-

merical experiments have planes with an average value of ε that is lower than the average

value of ε of the KL numerical experiments. These last ones have lower average values of

ε than the numerical experiments with higher threshold on k. This closely mirrors what

we already noted in Figure 3.5c-d. But it turns out that the points lying on the planes in

Figure 3.8 do not belong exclusively to depths greater than the MLD (the differentiation

between above and below the MLD is not shown in Figure 3.8).

SMC b.c. kmin [m2/s2] Stability Functions lPAR

KEset k − ε Equilibrium 10−8 Kantha et Clayson (1994) 11m

KEflu k − ε Flux 10−8 Kantha et Clayson (1994) 11m

KEfluCAN k − ε Flux 10−8 Canuto et al. (2001) 11m

KEfluCANMINk k − ε Flux 10−7 Canuto et al. (2001) 11m

KEfluCANMINkOpt k − ε Equilibrium 10−7 Canuto et al. (2001) 23m

KLset k − ` Equilibrium 10−8 none 11m

KLflu k − ` Flux 10−8 none 11m

KLsetMINk k − ` Equilibrium 10−7 none 11m

KLfluMINk k − ` Flux 10−7 none 11m

Table 3.1: Set of numerical experiments performed for this study.

3.1.5 Discussion

By considering the values of decadal standard deviation, the shape of the probability

density functions and the median profiles, we can progress towards the identification of
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a)

b)

Figure 3.8: a) All in situ (in black) and numerical data of KZ , N and ε. b) All in situ

(in black) and numerical data of KZ and ε. The color code is the same as in the other

figures.
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MLD ratio σε σN σKZ

KEset 0.91 2.48 1.16 2.19

KEflu 0.91 2.43 1.15 2.16

KEfluCAN 0.85 2.42 1.14 2.11

KEfluCANMINk 0.94 1.88 1.16 1.63

KEfluCANMINkOpt 0.89 1.82 1.16 1.56

KLset 0.88 2.07 1.14 2.20

KLflu 0.87 2.10 1.14 2.21

KLsetMINk 0.85 1.59 1.12 1.46

KLfluMINk 0.86 1.67 1.14 1.54

Table 3.2: MLD ratio indicates the ratio of the numerical prediction of the MLD to the

in situ value < MLD >SCAMP = 27.3 m. σε indicates the mean value of the decadal

standard deviation of the ε profiles. σN indicates the mean value of the decadal standard

deviation of theN profiles. σKZ indicates the mean value of the decadal standard deviation

of the KZ profiles.
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Above MLD Sε ∆2
ε SN ∆2

N SKZ ∆2
KZ

KEset 1.31 0.010±0.002 -0.47 0.018±0.001 0.96 0.032±0.003

KEflu 1.21 0.008±0.001 -0.47 0.015±0.001 0.83 0.039±0.004

KEfluCAN 0.87 0.006±0.001 -0.50 0.016±0.001 0.46 0.021±0.003

KEfluCANMINk 0.62 0.0031±0.0009 -0.45 0.013±0.001 0.49 0.023±0.002

KEfluCANMINkOpt 1.07 0.0008±0.0003 -0.47 0.011±0.001 1.19 0.022±0.003

KLset 0.03 0.012±0.002 -0.41 0.014±0.001 -0.66 0.053±0.005

KLflu 0.34 0.041±0.005 -0.52 0.017±0.001 0.31 0.060±0.005

KLsetMINk 0.07 0.082±0.006 -0.43 0.017±0.001 -0.15 0.139±0.009

KLfluMINk 0.03 0.014±0.003 -0.41 0.014±0.001 -0.68 0.022±0.003

Table 3.3: Sε indicates the shift of the numerical distribution of ε in the surface layer

respect to the in situ one. ∆2
ε is the squared difference between the numerical and in

situ distribution of ε values in the surface layer. Similar definitions apply for different

subscript variables. Errors are calculated with a re-sampling procedure.
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Above MLD Sε ∆2
ε SN ∆2

N SKZ ∆2
KZ

KEset 1.97 0.180±0.006 0.22 0.004±0.0005 0.96 0.032±0.004

KEflu 1.93 0.163±0.008 0.19 0.005±0.0006 0.83 0.039±0.004

KEfluCAN 1.98 0.143±0.008 0.22 0.002±0.0003 0.46 0.021±0.004

KEfluCANMINk 0.91 0.136±0.007 0.22 0.006±0.0006 -0.66 0.023±0.003

KEfluCANMINkOpt 0.88 0.11±0.006 0.22 0.008±0.0009 -0.68 0.022±0.002

KLset 1.21 0.186±0.008 0.22 0.003±0.0005 0.50 0.053±0.004

KLflu 1.2 0.168±0.007 0.23 0.004±0.0005 1.19 0.060±0.005

KLsetMINk 0.26 0.203±0.006 0.22 0.004±0.0006 0.31 0.080±0.007

KLfluMINk 0.29 0.22±0.004 0.24 0.008±0.0009 -0.15 0.022±0.002

Table 3.4: Sε indicates the shift of the numerical distribution of ε below the surface layer

respect to the in situ one. ∆2
ε is the squared difference between the numerical and in

situ distribution of ε values below the surface layer. Similar definitions apply for different

subscript variables. Errors are calculated with a re-sampling procedure.
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an optimal Symphonie’s configuration with respect to our dataset.

The decadal standard deviation values are suited for whole-column comparisons be-

tween numerical experiments and in situ data, when an idea on the general behavior of

the numerical experiment is of interest (e.g., Burchard et al., 2002). However, we are also

interested to details of the model’s configuration that likely have a major effect only in

the MLD and cannot be appreciated by this metric.

The comparison of the shape of the numerical and in situ probability density functions

permits to better investigate the numerical experiments’ behavior above the MLD. In

particular, it permits to appreciate the model’s response to the different configuration

choices on the full range of values of ε, N and KZ . For example, Figure 3.5a-b shows that

the effect of raising the threshold value of k is not just a mere shift as it is suggested by the

σε values and the median profiles (Figure 3.2). In fact, the numerical experiments with a

higher threshold (KEfluCANMINk, KEfluCANMINkOpt, KLsetMINk, KLfluMINk) are

not merely shifted towards higher values but also show significant differences in the peaks’

heights.

The visual inspection of the median profiles permits to appreciate details that are not

immediately captured by the decadal standard deviation and the spectral shape. For

instance, the ε median profiles of the numerical experiments with the default threshold

on k (KEset, KEflu, KLset, KLflu) suggests that we are underestimating the turbulent

activity (3.5a-b). By using Equation 3.1 and a value of ε ≈ 10−4m2/s3 that we can

infer from the in situ data below the MLD (Figure 3.2), we estimated the value of a

more appropriate threshold (k ≈ 10−7m2/s2) that was used for the numerical experi-

ments with the higher threshold. As Figures 3.2 and 3.6 and the values of σε and σKZ in

Table 3.2 indicate, this new threshold permitted to get better estimates of both ε and KZ .

The analysis of ε data above the MLD permits to get an idea of the effect of b.c.,

stability functions and optical scheme. The effect of the surface boundary conditions is

readily seen by visually inspecting the ε median profiles (Figure 3.2). The KEset, KE-
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flu, KLset and KLflu profiles highlight that, at the surface, the equilibrium boundary

condition determines ε values lower than both the observations and the values of the cor-

responding numerical experiments employing a flux b.c. Note that the values of ε close

to the surface that one obtains using a certain b.c. also depend on the employed SMC.

In fact, the k − ε and the k − ` schemes have different values of wind drag coefficients.

As a consequence, an influence of the boundary conditions is also found in the ε’s PDFs

(Figure 3.5). In fact, the value of ε at which the PDFs die out is different for the schemes

employing the equilibrium b.c. and the ones employing the flux b.c. and does not depend

on the threshold on k. Indeed, the right peak at higher ε values is mainly due to values

from the depth range 0 ≤ z/MLD ≤ 0.5 (data not shown).

Moreover, the k−ε numerical experiments with a flux boundary condition seem to better

follow the in situ ε median profile at z/MLD ≈ 0.5. At this depth, the in situ data show

an inflection that we interpret as an average mixing layer depth. This can be justified by

inspecting the median profiles of turbulent kinetic energy (see Figure 4.12 in the Extra

Materials). In fact, these lasts show that the depth of the inflection in the numerical

profiles coincides with the depth at which the kinetic energy has a similar inflection or

reaches its minimum value. This depth, thus, identifies a layer in which turbulence is ac-

tive. Likely, the better performance of the flux b.c. in estimating the mixing layer depth

indicates that wave breaking plays an important role in determining the mixing layer

depth.

Secondly, the effect of the stability functions is made clear by both the median pro-

files and the PDFs of ε. In Figure 3.2 it appears that the Canuto A stability functions

augment the agreement with respect to the observations (cf. KEflu vs. KEfluCAN), es-

pecially near the surface. The same information is given by the PDFs (Figure 3.5; Table

3.3): KEfluCAN’s PDF has just two peaks as the in situ PDF and, thus, it is in better

agreement with the observations.

While KEfluCAN and KEfluCANMINk show better PDFs, the inflection at the mixing

layer depth (that was reproduced by KEflu) is lost. This is likely due to the predominance
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of the the effect of the Canuto A stability functions over the effect of the flux b.c. rather

than to the threshold on k. In fact, the profile KLfluMINk reproduces well the mixing

layer depth.

Thirdly, the effect of the optical scheme is best seen by looking at the ε PDF (Figure

3.5). Indeed, we see that the modified optical scheme enables KEfluCANMINkOpt to

reproduce remarkably well the in situ distribution. We attribute this significant improve-

ment to the better estimation of the temperature and salinity profiles (see Figures 4.13

and 4.14 in the Extra Materials) that, in turn, permits to have a better stratification.

Indeed, the profile of N (Figure 3.6) of KEfluCANMINkOpt is slightly better than the

one of KEfluCANMINk. Even if this is not captured by the values of SN (Table 3.3), we

note that –right below the MLD– KEfluCANMINkOpt better reproduces the bump that

we observe in the in situ stratification. However, it is not straightforward to say how this

can influence the dynamics above the MLD (indeed the KEfluCANMINkOpt’s N PDFs

are totally comparable with the ones of KEfluCANMINk).

The analysis of the N data indicate that all the numerical experiments overestimate

the stratification above in the surface layer (Figures 3.6a-b). On the other hand the strat-

ification is well reproduced by all the numerical experiments below the MLD. The only

absent feature in the numerical data of N is a bump of high values right below the MLD

where the entrainment takes place and where we also observe higher levels of turbulence

(see Figure 3.2). Overall, below the MLD the numerical PDFs of ε and KZ markedly

differ from the in situ ones: they are more peaked than the in situ PDFs. A possible cause

for this behavior could be the too coarse resolution of the model that does not permit

to adequately resolve turbulent processes below the MLD or to the different natures of

mixing mechanisms.

Also the analysis of the KZ probability density functions leads to the conclusion that

KEfluCANMINkOpt is the better configuration. Even though the values of ∆2
KZ

in Table
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3.3 indicate that there is not a clear difference between KEfluCANMINk and KEfluCAN-

MINkOpt, we note that KEfluCANMINkOpt KZ PDF has three peaks as the in situ

PDF whereas KEfluCANMINk’s PDF has only two. In general, the k − ε scheme per-

forms significantly better in reproducing the KZ ’s in situ PDF. This is likely due to the

advantage of k − ε in estimating ε with respect to k − `.

Overall, the effect of the formulation of KZ including the molecular diffusivity DT did

not cause significative differences, probably because the turbulence level is too high to

allow to appreciate the difference. Here we do not show a numerical experiment in which

we change only this aspect of the model’s implementation. However, one example is given

in the Extra Materials (Figure S5).

The analysis of the data below the MLD shows a sharp disagreement between the nu-

merical and the in situ values of ε and KZ . However, we can observe three main features:

i) the typical value of numerical ε depends on the SMC that one employs; ii) the model

values of ε and KZ are much less variable than the measurements; iii) setting an hard

threshold on the kinetic energy limits the reliability of the modeling this layer.

The first point is made clear by Figure 3.2. In fact, we can see that when the same

threshold on k is applied, the ε values obtained with the k − ε scheme are one order of

magnitude smaller than the ones obtained with the k − ` scheme.

The second point is illustrated by Figures 3.5c-d and 3.6c-d. Therein, the numerical PDFs

in the lower layer are much less spread out than the in situ ones. A possible cause for

this could be the resolution of the model that does not permit to adequately resolve the

turbulent processes in this layer.

Also, a possible cause for the sharp discrepancy between numerical and in situ PDFs

below the MLD could be the use of a hard threshold for k. In fact, Figure 3.8 suggests

that this choice leads to a non-physical result, with many low-energy points on a sin-

gle plane in the space (KZ , N, ε). This behavior descends directly from Equations B.6

and B.7 implying ε = ckcεk
2/KZ for the KL scheme and from Equations B.3 and B.4
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implying ε =
√

2ck5/6/KZ for the KE scheme (where ck, cε and c are constants). This

is exactly the behavior we observe in Figure 3.8b, with the planes following the line

log ε = − logKZ + const. Thus, the points on the planes in Figure 3.8 are values with a

minimal kinetic energy. In situ data do not show this behavior, suggesting that specify-

ing a hard value for kmin is likely not the best choice. A more suitable approach would

probably be a parametrization of kmin on the base of the different turbulent processes

at play. For example, Gaspar et al. (1990) hypothesized the use of a parametrization on

the internal wave field activity when dealing with data in a depth range similar to the

one in our analysis. Note here that such a solution is likely to depend on the amount of

numerical mixing and to the processes that are resolved by each model.

3.1.6 Conclusions

Vertical mixing in the surface layer of the ocean plays an essential role in both physical

and biochemical phenomena. Therefore, it must be correctly estimated. Different turbu-

lence closure schemes have different performances in predicting mixing. Moreover, the

problem is made more complicated by the interplay of the SMC with other aspects of

ocean dynamics numerical modelling like boundary conditions, stability functions and

optical scheme. The influence of the minimum value of kinetic energy that is allowed in

has also been investigated.

We performed nine numerical experiments and compared their estimates of the turbu-

lent quantities ε and KZ to in situ microstructure measurements in the Gulf of Lion. In

particular, two SMCs were considered: a k − ε scheme proposed by Burchard et Bolding

(2001) (herein KE); and a k − ` based on Gaspar et al. (1990) (herein KL). We consid-

ered two surface b.c.: one supposing equilibrium between the production and dissipation

terms in the dynamic equation for k (herein set); and one taking into account the effect of

breaking waves of all scales based on Craig et Banner (1994) (herein flu). We considered
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the stability functions proposed by Kantha et Clayson (1994) and Canuto et al. (2001). In

addition, we also considered two different attenuation lengths for the photosynthetically

available radiation in the model’s optical scheme. The combinations of these factors that

we explored are resumed in Table 3.1.

A recent study by Reffray et al. (2015) showed that, in a 1-D situation, the KE closure

scheme gives better mixing estimates than other widely used SMCs . However, that study

did not compare KE to a mixing length scheme based on Gaspar et al. (1990). Our study

fills this gap. Moreover, our study exploits a 3-D model that, by definition, considers more

terms in the dynamical equations than what 1-D models do. Also, our study compares the

modeled turbulence activity directly to microstructure turbulence measurements rather

than with derived quantities like the mixed layer depth.

The two SMCs do not show relevant differences when estimating KZ both above and

below the MLD. The fact that the two SMC perform similarly in estimating KZ when

KL has an advantage in estimating ε, is not explained by differences in estimating N and

need further investigation in the future.

Previous studies, in 1-D and 3-D numerical simulations, gave conflicting indications on

the effect of the stability functions proposed by Kantha et Clayson (1994) and Canuto

et al. (2001) on the KE scheme. In our study, the effect of the Canuto A stability functions

on the KE is to improve the performance of the closure scheme when the ε’s and KZ ’s

PDFs are considered.

Our study shows that choosing the value of the kinetic energy threshold plays a

pivotal role in approaching the observations below the MLD (see Figures 3.2 and 3.4).

Nonetheless, we found a non physical behavior of the numerical experiments for low ki-

netic energy levels. This supports the idea that the minimum of kinetic energy should

rather be parametrized as function of different turbulent mechanisms rather than being a

hard threshold (as already hypothesized by Gaspar et al., 1990). Our study also suggests

that such a parameterization should also depend on the SMC that is employed. Indeed,
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we found that the two SMC predict different turbulence levels below the MLD even when

they employ the same threshold on the turbulent kinetic energy.

We found that the attenuation length of the photosynthetically available radiation

plays an important role in determining the stratification and, as a consequence, the per-

formance of the model in predicting ε and KZ . This result highlights the importance of

biological activity in influencing physical processes.

Our study shows that the comparison with in situ microstructure data can effectively

help in setting up the implementation of a SMC for an ocean numerical model. In the

future, we should expect more studies of this kind as new automated instrumentation

becomes available. In particular, microstructure and wave height probes mounted on au-

tonomous platforms, such as drifting profilers or gliders, will permit to have new and

bigger datasets, especially during adverse meteorological situations. Moreover, this kind

of data will provide essential data to developers of future ocean-wave coupled models,

as these are expected to significantly advance the ocean modelling state of the art by

reducing the need of general surface boundary conditions.
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3.2 Appendices

3.2.1 Boundary conditions

3.2.2 Surface boundary conditions for k

Equilibrium

The k surface boundary conditions can be obtained hypothesizing equilibrium between

production and dissipation. Using the surface momentum boundary conditions:

KZ

(
∂u

∂x
,
∂v

∂y

)
=

(τx, τy)

ρ0

and the wind stress τ =
√
τ 2
x + τ 2

y , we obtain:

ks =
τ/ρ0√

21/2c3
0SM

Flux

Alternatively, the boundary conditions can be specified as surface flux conditions, namely:

KZ
∂k

∂z
= F (3.2.1)

where the surface flux can be computed as F = 100(τ/ρ0)3/2 (Craig et Banner , 1994) or

directly prescribed from the ‘wave to ocean’ turbulence flux computed by a wave model

when available.

3.2.2.1 Bottom and surface boundary conditions for ε

The ε surface and bottom conditions are computed on the first level under the surface

and above. Let z1 denotes the distance between this level and the considered boundary.

Boundary conditions for ε are obtained from k and Equation 3.2.3.2, using the latter with

some appropriate hypothesis for lB a boundary length scale value. A simple formulation

(Warner et al., 2005) is eventually given by lB = 0.4(z1 + z0) , where z0 is a length scale
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representing the roughness of the bottom boundaries. Unfortunately, this formulation

potentially leads to unrealistic high values when the underlying hypothesis of neutral

stratification is no longer valid (a situation that is more likely to occur in deep zone where

the vertical grid resolution near the bottom is generally coarse). One way to solve this

problem is to introduce a dependency on the Richardson number (Estournel et Guedalia,

1987; Michaud et al., 2012):

lB =



0.4(z1 + z0) if Ri < 0

0.4(z1 + z0)(1− 5Ri) if 0 ≤ Ri ≤ 0.16

0.4(z1 + z0)(1 + 41Ri)−0.8 if Ri > 0.16

3.2.3 Closure schemes

3.2.3.1 k − ε scheme

Following Burchard et Bolding (2001), the equations describing the dynamics for k and

ε are:
dk

dt
=

∂

∂z

(
KZ

∂k

∂z

)
+ P +B − ε (3.2.2)

∂ε

∂z
=

∂

∂z

(
KZ

σ

∂k

∂z

)
+
ε

k
(c1P + c3B − c2ε) (3.2.3)

where P = KZ

{(
∂u
∂z

)2
+
(
∂v
∂z

)2
}

and B = g
ρ0
KT

∂ρ
∂z

are the production terms due to shear

and buoyancy respectively. Parameters values issued from Warner et al. (2005) are given

in Table 3.5.

The eddy viscosity KZ and the temperature eddy diffusivity KT used in Equations 3.2.2

and 3.2.3 are given by:

KZ =
√

2klSM , KT =
√

2klSH (3.2.4)
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Table 3.5: Free-parameters of the SYMPHONIE k − ε closure scheme (Warner et al.,

2005).

Free parameters values

sigm σ = 1.3

sigm c0 = 0.5544

sigm c1 = 1.44

sigm c2 = 1.92

sigm c3 = 1 B > 0

c3 = −0.52 B < 0

The turbulent length l is related to k, TKE and ε according to

l = c3
0k

3/2ε−1 (3.2.5)

SM and SH , the quasi-equilibrium stability functions defined by Kantha et Clayson

(1994), depend on the Richardson flux number.

3.2.3.2 k − ` scheme

We used the k− ` closure scheme proposed by Gaspar et al. (1990). Therein the authors

assume ε to be (following Kolmogorov , 1942):

ε = cεk
3/2/lε (3.2.6)

where k is the TKE, k =
√
u′2 + u′2 + w′2 and cε = 0.7 (following Bougeault et Lacarrere,

1989).

The eddy momentum diffusivity is related to TKE according to:

KZ = cklk
√
k
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where ck has to be determined.

The dissipation and mixing length scales lk and lε are the ones proposed by Bougeault

et Lacarrere (1989):

lε = (luld)
1/2

lk = min(lu, lk)

that are determined through

g

ρ0

∫ z+lu

z

[ρ(z)− ρ(z′)]dz′ = k(z)

g

ρ0

∫ z−ld

z

[ρ(z)− ρ(z′)]dz′ = k(z)

where ρ is the water density.

As highlighted by Gaspar et al. (1990), these length scales have a straightforward physical

interpretation: they are the distances traveled upward/downward by a fluid particle by

converting all of its kinetic energy into potential energy.

Hypothesizing the turbulence to be stationary and homogeneous Gaspar et al. (1990)

show that, in stably stratified regions, the model parameterizations yields:

KZ =
√

2Pr−1ckkN
−1 (3.2.7)

ε =
1√
2
cεkN (3.2.8)

from which it follows that ck = 0.1.
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3.3 Segmentation and quality fit

In order to apply the Batchelor’s theory to the temperature gradient one has to divide the

data into segments in which turbulence can be considered homogeneous, viz. the turbulent

motion can be regarded as a random motion which average properties are independent

of position in the fluid. Given the fact that the first aim is to fit the data to a theoretical

Batchelor’s spectrum, arguably the best segmentation method is the one giving the fits

with the best quality.

To determine the fit quality we use a Maximum Likelihood Estimation technique. Fol-

lowing Ruddick et al. (2000), we calculated the goodness of a fit by maximizing the joint

probability of the measured spectrum with respect to the theoretical Batchelor spectrum.

Hence, the higher the joint probability, the higher the fit goodness. In the following we

call this joint probability JP (corresponding to C11 in Ruddick et al., 2000).

To make the fit goodness criteria more rigorous, following Sanchez et al. (2011) we also

require that: i) the mean absolute deviation (MAD) of the ratio between the in situ and

theoretical spectra within the fitting domain be lower than 1.1; ii) the signal to noise

ratio (SNR) be lower than 1.3; iii) the likelihood ratio (LHR) –which quantifies if the

measured spectrum fits the Batchelor’s spectra or a power-law spectrum better– be lower

than 2.

We tested which of the following segmentation methods permitted to have the bet-

ter fits in our dataset: a segmentation based on an eight order AR model by Imberger

et Ivey (1991) (II91); a constant segmentation of 1024 data points in which the values

of temperature gradient variance in 7 sub-segments are in the same order of magnitude

proposed by Sanchez et al. (2011) (S11), a constant segmentation of 1024 data points

with no overlap suggested by Cuypers et al. (2012) (C12); a constant segmentation of 128

data points with 50% overlap suggested by Moniz et al. (2012) (M12); a constant 512

data points segmentation with no overlap; and a constant 1024 data points segmentation
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with 30% overlap. In practice, we fitted the segmented data to the Batchelor’s spectrum

following the fitting procedure of Steinbuck et al. (2009) and we compared the results

searching for the distribution of JP values with the greater proportion of high values.

The results are depicted in Figure 3.9.

(a) (b) (c)

(d) (e) (f)

Figure 3.9: a) JP values distribution obtained with the II91 segmentation method, b)

same as a) for S11, c) same as a) for C12, d) same as a) for M12. e) same as a) for

a constant 512 points segmentation. f) same as a) for a 1024 points segmentation with

30% overlap. The red curve is the cumulative distribution of JP values for each case

and the vertical line marks the point where the cumulative distribution equals 0.6. The

database for this analysis comprehended 126 profiles with an average depth of 50m in

various meteorological conditions in the Gulf of Lion.

In Figure 3.9 the histogram of the JP values is plotted with the cumulative distribu-

tion of the latter. Note that each histogram is normalized to the total number of segments

obtained with the corresponding segmentation method. As it is evident by eye, the M12

is the segmentation method that gives the highest percentage of good profiles, as high-

lighted by the higher histogram bars on the right end of the distribution with respect to
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the other cases. Moreover this is the method that has the vertical line lying at the highest

value, meaning that a higher percentage of segments have a better fit. Furthermore cases

b), e) and d) show that progressively reducing the segmentation window gives better re-

sults. Case f) also shows, when compared to c), that adding overlap, though permitting to

have a higher resolution, does not augment the percentage of good fits. These evidences

suggest to apply a 128 points (≈ 12.5 cm) segmentation with no overlap. Anyway, not

needing such a high resolution in order to compare the in situ data with the numerical

data, we avoided the overlap. The distribution of JP values of this segmentation method

did not significantly differ from the one of M12 (data not shown).
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3.4 Extra Materials for "Comparison of in situ mi-

crostructure measurements to different turbulence

closure schemes in a 3-D numerical ocean circula-

tion model"

Figure 3.10: Probability density function of the turbulence intensity parameter Reb, ob-

tained with all the in situ data (black), the in situ data above the MLD (green) and the in

situ data below the MLD (blue). The dotted red lines indicate the separation between the

turbulence regimes. 1 indicates the diffusive regime; 2 the buoyancy-controlled regime; 3

the transitional regime; and 4 the energetic regime.
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Figure 3.11: The thick lines represent median values of temperature measured from in situ

data (in black) and numerical experiments. The shades indicate 95% bootstrap confidence

intervals. Water depth z is adimensionalised with respect to the mixed layer depth MLD

for each profile.



106 Chapter 3. Numerical Models and Turbulence

Figure 3.12: The thick lines represent median values of density measured from in situ

data (in black) and numerical experiments. The shades indicate 95% bootstrap confidence

intervals. Water depth z is adimensionalised with respect to the mixed layer depth MLD

for each profile.
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Figure 3.13: The thick lines represent median values of turbulent kinetic energy measured

from in situ data (in black) and numerical experiments. The shades indicate 95% boot-

strap confidence intervals. Water depth z is adimensionalised with respect to the mixed

layer depth MLD for each profile.
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a) b)

c) d)

Figure 3.14: In the upper panels the median profiles of kinetic energy dissipation rate for

the two numerical experiments with kmin = 10−6m2/s2 (suffix MINk2) are represented.

In a) KLsetMINk2 has molecular diffusion set to zero. In b) KLsetMINk2MINKz has

not null molecular diffusion. In the lower panels we represent the PDF of the ε values

obtained for these numerical experiments both above (in c) and below (in d) the MLD.
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3.5 Extra Material

3.5.1 Additional Simulations

In the first version of the paper submitted to Ocean Modelling, I included different nu-

merical experiments. Some were not included in the new version of the paper. These nu-

merical experiments exploited a higher threshold on the turbulent kinetic energy (kmin =

10−6m2/s2). This value was used on the base of previous literature (e.g., Gaspar et al.,

1990). This particular value improved the agreement between the numerical model and

the in situ data in the lower layer. However, the agreement within the mixed layer was

lower due to the too high level of turbulence induced by this threshold. This is showed

in Figures 3.15 and 3.16 on pages 110 and 111. Therein, KEsetMINk is a k − ε scheme

with equilibrium boundary conditions and kmin = 10−6m2/s2; KLsetMINk is a k − `

scheme with equilibrium boundary conditions and kmin = 10−6m2/s2; and KLsetMINKz

is a k − ` scheme with equilibrium boundary conditions and kmin = 10−6m2/s2 and such

that KZ > DT .

3.5.2 Data analysis toolbox

A considerable part of my work on the SCAMP data consisted in checking and further

developing the data analysis toolbox. Main changes (in red in Figure 3.17) consisted in

the data segmentation technique, error estimation, bug correction. Moreover, I changed

the calculation of KZ following (Bouffard et Boegman, 2013), coded the calculation of

adimensional Kraichnan profiles and modified the code in order to automatically analyze

multiple profiles. The toolbox is freely available at http://mio.pytheas.univ-amu.fr/

~costa.a/SCAMP/scritps/.

http://mio.pytheas.univ-amu.fr/~costa.a/SCAMP/scritps/
http://mio.pytheas.univ-amu.fr/~costa.a/SCAMP/scritps/
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Figure 3.15: Profiles of kinetic energy dissipation rate for all the numerical experiments

and the in situ data.

Data segmentation

In order to apply the Batchelor’s theory to the temperature gradient one have to di-

vide the data into segments in which turbulence can be considered homogeneous, viz.

the turbulent motion can be regarded as a random motion which average properties are

independent of position in the fluid.

The segmentation problem is not trivial due to the dependency of the measure on four

coordinates: three spatial variables ~x and time t. Consistently with the Batchelor’s theory

one can use the hypothesis of horizontal homogeneity to reduce the number of variables

to only two: z and t.

A first approach was suggested by Imberger et Boashash (1986), Imberger et Ivey (1991)

and Chen et al. (2002). They ignored the dependence on space and assessed the stationar-

ity of the temperature gradient time series by exploiting Wigner-Ville distribution or AR

models properties or wavelet analysis respectively. A second approach is to neglect the
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Figure 3.16: Probability density functions of kinetic energy dissipation rate for all the

numerical experiments and the in situ data both above the MLD (a) and below (b).

dependency on time. Sanchez et al. (2011) considered satisfying the segments in which

the values of temperature gradient variance in 7 subsegments are in the same order of

magnitude. A third approach neglecting both spatial and temporal dependency of the

turbulent process was more recently proposed by Cuypers et al. (2012) and Moniz et al.

(2012). The authors used a constant segmentation of 1024 data points (≈ 1m) with no

overlap and 100 data points (≈ 0.1m) with a 50% overlap respectively.

All these segmentation techniques are now coded in the s_process.m script. The compar-

ison of their performance on our dataset is detailed in Section 3.3.

Error estimation

The SCAMP measures the temperature T with a millimeter scale resolution. From this

it calculates the temperature gradient using windows of 128 values. From the gradient

we can derive the Batchelor spectrum linking T and the kinetic energy dissipation rate

ε. In fact, the spectrum is a function of the temperature variance dissipation rate χT and

the Batchelor wavelength kB. However, from the temperature we can derive χT but kB

remains unknown. To determine it, a Maximum Likelihood Estimation approach is used.

This approach returns the kB that maximises the probability of the measures (Ruddick
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mio_analyze_save.m

mio_scamptool_parametre.m

mio_analyze.m

s_process.m

mio_plot.m

(a) Folder tree analyzing SCAMP pro-

files one by one.

mio_analyze_save.m

mio_scamptool_parametre.m

mio_analyze_all.m

s_process_all.m

mio_plot.m

(b) Folder tree analyzing all SCAMP

profiles in a folder.

Figure 3.17: Folder tree of the mio_scaptool toolbox. Red scripts highlights where the

changes detailed in the following can be found.

et al., 2000). The error on kB is given by the Cramer-Rao inequality:

V = var(kB) ≥ − 1

E[∂2 lnP/∂k2
B]

(3.5.1)

Given kB we can derive ε (Gibson et Schwarz , 1963):

ε = νD2 · k4
B (3.5.2)

where ν is the water molecular viscosity and D the temperature molecular diffusivity.

Therefore, we have a value of ε every 13 centimeter with an error coming from the

error on kB. In the literature the error on ε is calculated using the relative standard

deviation RSD = σ/µ, where σ and µ are the standard deviation and the mean of the

measurements (Jurado et al., 2012). In particular, with error propagation, it can be shown

that:

RSD(ε) = 4 ·RDS(kB) = 4 ·RSD (3.5.3)
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In fact, if we define ε like this:

ε = αk4 (3.5.4)

with α = νD2 (cf. Equation 3.5.4) and k = kB for ease of notation; and the standard

deviation σk for k:

σk =

√∑N
i=1

(
ki − k

)2

N − 1
, (3.5.5)

where k =
∑N

i=1 ki.

By defining the N individual errors on k as

δki = ki − k , (3.5.6)

we can relate them to the N errors in ε making use of partial integration:

δεi =
∂ε

∂k
δki = 4αk

3
δki . (3.5.7)

Therefore the standard deviation of ε is equal to:

σε =

√∑N
i=1 δ

2
εi

N − 1
=

√√√√(4αk
3
)2∑N

i=1 δ
2
ki

N − 1
= 4αk

3
σk . (3.5.8)

Dividing this by the average of ε:

σε
ε

=
4αk

3
σk

αk
4 = 4

σk

k
. (3.5.9)

Now, we want to compare the ε values measured with the SCAMP with the one

predicted by the model. One problem is that the model has a much coarser resolution than

the SCAMP. In particular, we compare the model value with the median experimental

value M of the values between the model depths.

How can we derive the error on the median from the errors on the ε values? One appealing

way that I developed for doing it is reported here below. Unfortunately, it turns out it

cannot be applied to ε data because they are distributed lognormally (e.g.,Moum et al.
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1995). I report it hoping it will potentially be useful for other data.

The median of ε that we compare to the model is the median of 10-13 in a portion of

the water column. In the literature, it is consolidated that these values are distributed

lognormally:

p(ε) =
1

σ
√

2π
exp−(ln ε− µ)2/2σ2 (3.5.10)

where:

µ =

∫ ∞
0

εp(ε)dε (3.5.11)

and

σ =

∫ ∞
0

(ε− µ)2p(ε)dε (3.5.12)

Given these relations, it is possible to calculate the standard deviation and the median

of εS (σM).

In particular, if we can solve this integral:

σM =

∫ ∞
0

(ε−M)2p(ε)dε (3.5.13)

where M is the median of p(ε); and noting that

σM =

∫ ∞
0

(ε2 − 2εM −M2)p(ε)dε (3.5.14)

we can find an analytic relationship between M and µ. As a consequence, we can find

the error on M to be something along the lines of δM = αδµ = ασ.

The exact relationship can be found by solving the following equations:

P (ε ≤M) =

∫ M

0

p(ε)dε = · · · = 1/2 (3.5.15)
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P (ε > M) =

∫ ∞
M

p(ε)dε = · · · = 1− 1/2 = 1/2 (3.5.16)

However, this technique is not analytically solvable if we assume a lognormal proba-

bility distribution of ε. It certainly would by assuming a normal distribution.

An alternative is calculate the error on the SCAMP measures with bootstrap. In

particular, if we estimate the error on the whole water column between the model values

εM and the in situ measurements εS like:

S =

√∑N
i=1 (log εMi − log εSi )

2

N
(3.5.17)

To calculate the error on S we can use the classic error propagation technique:

δS =

√(
∂S

∂εM

)2

(δεM)2 +

(
∂S

∂εS

)2

(δεS)2 (3.5.18)

However, the errors δεM and δεS are not constant so that we must rewrite the equation:

δS =

√√√√ N∑
j=1

[(
∂S

∂εMj

)2

(δεMj )2

]
+

N∑
j=1

[(
∂S

∂εSj

)2

(δεSj )2

]
(3.5.19)

where δεSj can be calculated by comparing the measured median value and the boot-

strap estimate calculated by extracting 10-13 ε values from a lognormal distribution whose

parameters are determined on the dataset at study.

mbox Some exploratory analysis of this technique gave a 6% error estimate on the SCAMP

median value. δεMj can also be calculated with bootstrap by, for example, looking at suc-

cessive profiles.

Note that this error estimation could be useful in a profile-profile comparison between

in situ and numerical data. However, we did not need to estimate the error in the above

way for the study in Section 3.
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Bug in the code

We noticed that in the section IX.DETERMINE QUALITY FACTOR in the file

s_batfit.m supplied by PME, the fit quality factor R (see Section 3.1.3) is badly defined.

The user should substitute the line R = std((PSD_bat./Batchelor_spect)) ∗ dof^0.5;

with R = var(PSD_bat./Batchelor_spect); in order to be coherent with Ruddick et al.

(2000). We communicated the issue to PME who will correct the bug in its next release.
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On a global scale, the ocean deep circulation can be viewed in terms of interconnected

overturning cells that transport cold dense abyssal waters formed at high latitudes back

to the surface (see Figure 4.1). This meridional overturning circulation (MOC) has been

known for a long time (Sverdrup 1933; Stommel 1958) but still the mechanisms that

provide the energy to sustain it are not well understood. We know that the main energy
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source for the MOC is the wind (Ferrari et Wunsh, 2009). However, there still is not

a consensus on how this energy reaches the deep ocean and how it goes up through

mixing. Indeed, the mechanism causing mixing are the ones that permit water motion

across isopycnals (see Figure 4.2 on page 122). Classically, Munk (1966) estimates that

an average value of turbulent viscosity Kρ = 10−4m2/s2 is needed to explain the observed

overturning circulation. Such a value is hardly measured in the open ocean. Therefore, in

the recent years, the question has shifted on where this "missing" mixing takes place.

Figure 4.1: Meridional over-

turning circulation in the At-

lantic. Different color high-

light the different overturn-

ing cells forming the MOC.

Image source http://www.

goes-r.gov/

Polzin et al. (1997) showed that near the bottom –above rough topography– there is

a sufficient amount of mixing to close the energetic budget proposed by Munk (1966).

Afterward, many confirmations to that study has been found (e.g., Ledwell et al. 2000;

Watson et al. 2013).

Furthermore, Mashayek et al. (2015) showed that a vertical decrease of mixing is es-

sential in order to successfully reproduce the macroscopic characteristics of MOC with

numerical models. A variety of phenomena has been proposed to explain the enhanced

bottom boundary mixing (e.g., internal waves breaking, Nikurashin et Ferrari 2009; tides,

Finnigan et al. 2002; topographically trapped waves Kunze et Smith 2002). Recent high-

resolution numerical simulations (Figure 1.5) pointed to hydrostatic phenomena (such as

form drag) as possible generating mechanism of bottom boundary mixing. In order to

http://www.goes-r.gov/
http://www.goes-r.gov/
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Figure 4.3: Zonally averaged meridional overturning streamfunction [4 Sverdrup (Sv; 1 Sv

5×106 m3/s)] overlaid by isopycnals in the deep ocean. (top) A case with a constant diapy-

cnal diffusivity of KZ = 3 × 10−4 m2/s; (bottom) a case with k decaying from 10−3m2/s at

the bottom to 10−5m2/s at the top with a e-folding scale of 500 m. The arrows represent the

direction of the circulation. Figure reproduced from Mashayek et al. (2015).

understand if form drag can potentially permit to close the energy budget of the MOC,

we exploit a dataset issued from a tracer release experiment (Ledwell et al., 2016) that

highlights enhanced mixing above topography and prescribe a vertical variation of Kρ in

order to reach an agreement between the observations and a 2-D model. As a result, the

parameters characterizing form drag-generated bottom mixing are derived.

A further complication of the problem comes from the measure of the amount of tur-

bulent kinetic energy that is irreversibly converted to background potential energy as a

result of turbulent mixing in a stably stratified fluid as the ocean. As well summarized

by Venayagamoorthy et Koseff (2006): the conventional method for relating estimates of

turbulent dissipation, ε, to turbulent diapycnal diffusivity, Kρ, is based on a simplified

turbulent kinetic energy formula first proposed by Osborn (1980), namely: Kρ = Γ ε
N2 ,

where N is the stratification and Γ is the so-called mixing efficiency. Major inherent as-

sumptions of indirect methods are that the turbulent flow is statistically stationary and
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homogeneous. These assumptions are used to simplify the energetics of the turbulent flow

field. A value of Γ = 0.2 was used by Osborn based on some controlled laboratory exper-

iments by Britter (1974), but many studies over the last few decades have attempted to

parameterize Γ as function of the strength of the stratification, which is commonly quan-

tified either in terms of the gradient Richardson number Rig = N2/S2, where S = dU/dz

is the mean shear rate (e.g., Itsweire et al. 1993; Imberger et Ivey 1991); or in terms of

the turbulence intensity parameter Reb = ε
νN2 , where ν is the water kinematic viscosity

(e.g., Shih et al. 2005; Bouffard et Boegman 2013). However, a universal parameterization

of Γ remains elusive.

For the comparison of the SCAMP measurements with the numerical model Symphonie

I chose to use the parameterization proposed by Bouffard et Boegman (2013) due to the

similarities of the turbulent dynamics in our two studies: shear induced turbulence in the

surface mixed layer.

However, the turbulent mechanisms in the bottom boundary layer are not yet well un-

derstood and it is still not clear which parameterization is more appropriate. As a con-

sequence, even if there are good leads pointing to the fact that the mixing efficiency is

variable also in these regions of the ocean (Pascal Bouruet-Aubertot, personal communi-

cation), for this study we chose to use the classical constant value.

As regards my thesis, diapycnal mixing plays also a pivotal role in the vertical disper-

sion of larvae and pollutants. Regarding these last ones, a very active field of research is

the understanding of how small scale processes translate into large-scale impacts on the

fate and transport of hydrocarbons in the ocean.

But the study of the transport by mixing of larvae in the deep ocean is also gaining visi-

bility. In fact, marine populations in the coastal ocean are diminishing as a result of the

intense anthropic pressure on the coastal environment. Moreover, the deep ocean commu-

nities are the ones that are expected to replenish or even recolonize the despoiled coastal

environment. The study of these communities and of their ability to possibly sustain the

coastal marine communities heavily relies on numerical dispersion studies. As already put
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forward in the previous chapter, the numerical circulation models have some limitations

that must be understood and possibly overcome in order to make reliable predictions of

the larvae spawning from the deep ocean.

In the previous chapter the focus was on the numerical models’ limitations in predict-

ing mixing in the water column. This was possible as the mixing processes in the water

column are relatively well understood. However, as explained above, our knowledge of

bottom boundary mixing processes is still incomplete. As a consequence, in the present

chapter, we focus on a new parameterization of diapycnal mixing that –if implemented–

could ameliorate the dispersal prediction of the numerical models.
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Figure 4.2: Diapycnal mixing followed by isopycnal dispersion. Isopycnal surfaces (of constant

density) are shown as full lines and dots mark a region of very small neutrally buoyant particles.

Initially, in (a), the density gradient is uniform and given by ρ = ρ0(1 − N2z/g), where z is

the upward vertical measured from the mean depth of the mixed region and N is the buoyancy

frequency of the water. Turbulence illustrated in (b) leads to the homogenization of a patch

(c), so that the density in section A-A through the center of the patch is now as shown at

the left. The density profiles outside the mixed patch is unchanged and as shown in (a). If

the pressure at the top of the mixed region at z = h is p0, that within the mixed region is

pI = p0 + hzgρ0dz = p0 + gρ0(h − z), and that in the surrounding ambient water is pA =

p0 + hzgρdz = p0 + gρ0[(h− z)− (N2/2g)(h2 − z2)] = p1 − gρ0(N
2/2g)(h2 − z2) < pI at levels

−h < z < h. There is therefore a horizontal pressure gradient that causes the mixed region to

spread laterally whilst, to conserve volume, it collapses vertically as shown in (d), intruding,

into the surrounding water along the isopycnal surface that has the density of the mixed region.

During the turbulent mixing, and in the process of intrusion, waves may be radiated into the

surrounding quiescent fluid. The spread of the patch leads to the dispersion of particles along

the isopycnal surface. The effect of the Earth’s rotation will eventually cause the divergent flow

in the spreading patch to rotate anticyclonically under the action of Coriolis forces, whilst fluid

converging to replace it will rotate cyclonically. This sketch is grossly oversimplified. In practice,

turbulence may not homogenize a region (either in density or in particle distribution) and may

be associated with momentum transfers that affect the subsequent horizontal dispersion. Image

reproduced from Thorpe (2005).
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4.1 Spatially Inhomogeneous and Temporally Intermit-

tent Boundary Mixing along the Northern Deepwa-

ter Gulf of Mexico

4.1.1 Abstract

An anthropogenic tracer reported in Ledwell et al. (2016) was released along an isopycnal

at approximately 1100 m water depth, 150 m above local bottom on the continental slope

of the Northern Gulf of Mexico. Sampling after 4 months returned an average interior

diapycnal diffusivity estimate of 1.3 × 10−4 m2 s−1. Sampling at one year returned a

background interior mixing rate an order of magnitude smaller, 1.5± 0.5× 10−5 m2 s−1,

and an inference that the 4 month estimate is dominated by a boundary process. In

this work we examine ancillary evidence collected during the field program that might

explain the observed diapycnal dispersion. We find only background (1 × 10−5 m2 s−1)

mixing levels in the interior Gulf of Mexico, diagnosed from the application of finescale

parameterizations to LADCP/CTD data. If these interior estimates are representative

of climatological mixing rates, it also implies the 4 month tracer dispersion estimate is

dominated by a boundary mixing process. However, estimates of boundary mixing from

LADCP/CTD data at the time of the 12 month survey are not sufficient to explain the 4

month tracer dispersion. Plausibility that the inferred boundary mixing could result from

non-propagating form drag is explored with a 2-dimensional time dependent advection

diffusion model. The model is used with current meter data to establish the expectation

that flow over complex topography situated on the continental slope provides a turbulent

energy source sufficient to explain the tracer dispersion. The model estimates indicate a

significant sensitivity to sub-inertial forcing associated with Hurricane Isaac.
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4.1.2 Introduction

The catastrophic blowout of the Deepwater Horizon (DWH) oil well in April 2010 released

about 5 million barrels of oil and 2.5 × 108 standard m3 of natural gas, and has so far

cost over $40 billion in cleanup and fines. The research program initiated by the Gulf

of Mexico Research Initiative (GoMRI) has stimulated research in a number of fields,

but there remains a critical need to understand how small scale processes translate into

large-scale impacts on the fate and transport of hydrocarbons in the ocean. Motivation

for the proposed study comes from an anthropogenic tracer release funded as part of

the GISR (Gulf of Mexico Integrated Spill Response Consortium) response to GoMRI-III

which was directed at documenting the linkages between small scale processes and large

scale effects.

The tracer release (Ledwell et al., 2016) consisted of a 25 km streak of CF3SF5 injected

on an isopycnal surface at about 1100 m depth approximately following the 1250 m

isobath. The tracer was sampled 5-12 days after release, at 4 months and lastly at the

1 year point. Differences in the vertical tracer distribution between injection and the 4

month time interval reveal a cross-isopycnal (diapycnal) diffusivity of Ktracer = 1.3×10−4

m2 s−1. This is a relatively large number, some 20 times larger than that associated with

the background internal wavefield in the ocean interior (Polzin et al., 2014a).

Lowered Acoustic Doppler Current Profiler (LADCP) and CTD profiles obtained co-

incident with the tracer sampling at the 1 year point enable an independent estimate of

diapycnal mixing through the use of ’finescale parameterizations’ (Polzin et al., 2014a).

The finescale parameterization seeks to estimate the net transfer of energy to smaller

scales as high frequency waves refract in near-inertial shear at vertical wavelengths of

tens to hundreds of meters. This energy transport shows up at vertical scales smaller

than 1 m as internal wave breaking and turbulence, with a fraction of this (about 15%)

appearing as diapycnal mixing. An extensive review of the methodology and uncertainties

is provided in Polzin et al. (2014a). Results from this study indicate background mixing

rates in the Gulf of Mexico interior and thus locate the proximate cause for the observed
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4 month tracer dispersion at the northern boundary.

There are two broad categories of forcing mechanisms for the inferred boundary mix-

ing. One class emphasizes that the large scale inclination of the Gulf of Mexico (GOM)

continental slope approximately matches that of ray trajectories associated with energy

containing frequencies of the internal wavefield: near-inertial (periods of approximately

1 day) and tidal motions (diurnal and semi-diurnal). Reflection of internal waves under

these approximate matching (critical) conditions is understood to result in significant

velocity gradients and mixing (e.g. Eriksen, 1985; Garrett et Gilbert , 1988). While GOM

tides are relatively weak (Kantha, 2005) there may be a notable near-inertial source asso-

ciated with sea-breeze forcing at diurnal periods (Zhang et al., 1991a,b). A second class

of turbulence forcing mechanisms emphasizes topographic variability superimposed upon

the large-scale continental slope. Topographic irregularities will impose their horizontal

scales on the flow field, potentially leading to significant vertical gradients and mixing.

A mechanism that recommends itself as an explanation for the intense boundary mixing

inferred from the GISR tracer and LADCP/CTD measurements is that of low frequency

currents associated with Loop Current Eddies and Topographic Rossby Wave variabil-

ity (Hamilton et Lugo-Fernandez , 2001; Oey et Lee, 2002; Hamilton et Lugo-Fernandez ,

2009) and local atmospheric forcing. When the amplitude of the topographic variability is

small and has length scales permitting the radiation of internal waves, internal lee waves

(Bretherton, 1969) are generated. When the topographic variability is large, however,

near-boundary wave breaking, hydraulic like effects, flow separation and vortex shedding

arise and dominate the radiating response (e.g. Baines , 1995). The distinction between

’large’ and ’small’ is quantified in this context by a steepness parameter

s = Nhrms/U (4.1.1)

in which N is the buoyancy frequency, hrms represents the root-mean-squared topographic

perturbation and U the impinging flow. There is a significant literature in the atmospheric

science community (Alexander et coauthors , 2010) as it was noted quite early (e.g. Palmer

et al., 1986) that inclusion of the associated drag was necessary to eliminate westerly wind
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biases in atmospheric general circulation models. This drag arises as pressure differences

across topographic obstacles, i.e. ’form drag’. While that body of literature (e.g. Lott et

Miller , 1997; Scinocca et McFarlane, 2000; Garner , 2005) provides a wealth of informa-

tion, the underpinning of that literature is one of isolated topography in the hydrostatic

non-rotating approximation and the issue of momentum, i.e. drag. The oceanic paradigm

needs to address the issues of non-isolated (complex) topography and rotational effects.

The oceanic observational constraints differ as well, as they concern diapycnal mixing,

an issue of turbulent energetics, not momentum.

As a rule of thumb, the non-propagating form drag that arises in s & O(1) high drag

states is parameterized with a bluff drag formula (e.g. Baines , 1995; Scinocca, 2001),

τ/ρ =
1

2
CdU

2 `d

L2
(4.1.2)

with a drag coefficient 1 < Cd < 10, U representing the upstream flow, d(s) a steepness

dependent depth of the blocked flow and ` the width of the obstacle. The formulation

is for isolated topography and the factor L2 represents the total area of the domain.

Rotation is not a part of the discussion of (4.1.2). The relevant paradigm on the northern

continental slope is likely that topography is interconnected and ’complex’ rather than

isolated, with rotational effects being important on the dominant scales of topographic

variability (1-10 km).

This scale of variability and much of the phenomena are familiar to us in our envi-

ronment on the Earth’s surface. On the other hand, (4.1.2) could be used to describe

the effects of roughness elements such as trees, shrubs, coral reefs, etc. What is intended

here is form drag associated with hills, mountains, ridges and mud waves which dominate

hrms and occasionally finds the label of ’orographic form drag’. We use this terminology

to avoid confusion that might occur with topographic ’roughness’ being interpreted as a

’roughness length’ in the context of log-layer formulations akin to (4.1.2).

Here we postulate that diapycnal mixing associated with such orographic drag can be

cast as

KρHN
2 = Rf [

Cd
2

d

`
]U3 (4.1.3)
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in which the flux Richardson numberRf represents the proportion of turbulent production

that gives rise to a turbulent buoyancy flux, turbulent production is cast as τU and H

represents the height scale over which the turbulent production is dissipated.

If we had looked at this from the perspective of potential energy anomalies ∆PE

associated with mixed layers in uniform stratification, for which

∆PE =
1

12
N2H3 ,

asserted that the mixed layer height scales as H = U/N and then assumed that such

overturns occur at a rate of U/L where L is the scale associated with the dominant scales

of the complex topography, we would arrive at

KρHN
2 =

1

12
U3H

L
. (4.1.4)

Thus (4.1.3) is difficult to distinguish from (4.1.4) if Cd = 1. Our approach is to engage in

idealized 2D modeling of the tracer evolution, treating [Cd
d
`
] andH as tunable parameters.

Comparison of numerical results with observations provide best fit parameters of Cd
2
d
`
≈

0.06 and H ≈ 2U/N . If we interpret d/` as d = hrms
∼= 100 m and ` ∼= 2π/20 km the

dominant topographic length scale, best fit drag coefficients are Cd ∼= 3.6, similar to

1 < Cd < 10 found in the literature (Baines , 1995).

Section 4.1.3 presents our methods, Section 4.1.4 the results of our data based analysis

that demonstrates the observed finescale variability is insufficient to explain the observed

tracer dispersion. These results are interpreted in an imaginative way, subjected to ap-

propriate observational constraints, using an idealized 2-D advection/diffusion scheme in

Section 4.1.5. Our conclusions, summarized in Section 4.1.6, are based only indirectly on

the observations, as no measurements are yet available in the boundary region which wee

argue dominates the mixing.
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4.1.3 Data and Methods

4.1.3.1 LADCP/CTD

Simultaneous LADCP/CTD data were collected during the R/V Pelican 14-05 cruise,

one year after the tracer release. The LADCP system consisted of an upward- and a

downward-pointing Teledyne/RDI Workhorse 300-kHz (WH300) ADCP, as well as a

battery case, mounted on a LUMCON rosette frame. Except on profiles 24-29, when

the bin size was halved in an attempt to increase the effective vertical resolution, all

LADCP data were collected with a bin size of 8 m, and 2 m blanking distance. Out

of the three different WH300 ADCPs used on the cruise, one had all four transducers

misconnected. The affected ADCP data files from profiles 1–43 had to be repaired for

processing with the LDEO IX_10 software to obtain horizontal velocity profiles. CTD

data were obtained from sensor pairs on a Sea-Bird SBE 9plus instrument. The CTD

data were affected by ship motion, introducing noise at 5 m vertical wavelengths (Fig.

4.4) and limiting the ability to identify overturns and estimate Thorpe scales. Typical

closest bottom approaches are 10-15 meters above the seabed.

4.1.3.1.1 Finescale Parameterization The contribution of internal wave breaking

to Kρ is assessed using the finescale parameterization formula for turbulent production,

P (Polzin et al. (2014a), their equation (40)), given by

P = 8× 10−10 f

fo

N2cosh−1(N/f)

N2
o cosh−1(No/fo)

Ê2 3(Rω + 1)

4Rω

√
2

Rω − 1
. (4.1.5)

The factor Ê represents a band-limited estimate of the shear spectral density relative to

the high-wavenumber asymptote of the Garrett and Munk (1976) spectrum, 2πN2/10, and

Rω is the ratio of shear to strain spectral density. Shear is the gradient analogue of kinetic

energy and strain represents the rarification and compression of isopycnals as a gradient

analogue of potential energy. The factor
√

2
Rω−1

is a single-frequency interpretation of

the expected value of the aspect ratio, kh/m, in a broadband wavefield, in which kh is the

magnitude of the horizontal wavenumber and m is the vertical wavenumber. The factors
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fo = 2πΩ | sin(32.5 degrees latitude)| and No = 3 cph are normalization constants, with

Ω equal to twice the Earth’s rotation rate. The diapycnal buoyancy flux associated with

this turbulent production is RfP , giving a diapycnal diffusivity Kρ = RfP/N2, where

the flux Richardson number Rf
∼= 0.15 and N2 is the buoyancy gradient.

An extensive review of this finescale parameterization is presented in Polzin et al.

(2014a), which documents the parameterization’s use and its potential for bias. The most

important of these relating to instrumental limitations is the bandwidth for estimating

the spectral density at high wavenumber. The bandwidth was chosen here on the basis of

avoiding high wavenumber noise, Figure 4.4. No attempt was made to subtract noise or

correct for suppression of oceanic signal by the data processing algorithms. Our analysis

relies on a strain-only algorithm below approximately 1500 m, due to decreasing signal-

to-noise ratios in the LADCP measurements.

A significant physical limitation of the finescale parameterization is that it represents a

closure for wave-wave interactions, not for hydraulic-like processes. A practical limitation

is that the finescale parameterization relies upon Fourier methods to isolate signal from

noise; the associated spectral windowing process will not capture the full dynamic range

of internal wave driven mixing if it is strongly enhanced at the bottom boundary.

As a further quality control measure we also require a neutral density (potential

temperature) anomaly three times larger than a lower bound, γnrms = (0.5−1.0)×10−3/3

(θrms = 1× 10−4 C).

4.1.3.2 Current Meters

As part of the Gulf Integrated Spill Response (GISR) project, six deep current meter

moorings (M1-M6, black squares in Fig. 4.5) were deployed around the BP Deepwater

Horizon spill site in the northern Gulf of Mexico. The moorings were initially deployed for

a period of one year from 10 July 2012 to 09 July 2013. They were serviced in July 2013

and five were redeployed for one more year. Each mooring contained an upward-looking

TRDI 75-kHz ADCP on the top, three Aanderaa Recording current meters (RCM11),
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dual acoustic releases and an anchor. On M1, four additional InterOcean S4-A current

meters were installed between 790 and 1090 m depth. Table 1 describes the locations,

instrument depths and total water depths of those moorings. Currents were sampled

at an hourly rate and stored internally. The ADCPs used are Teledyne RDI workhorse

long ranger acoustic profilers with a beam angle of 20 degrees and an acoustic center

frequency of 76.8 kHz. The depth cell (bin) size of the ADCPs was set to be 16 m with

blanking distance of 24 m. The RCM11s are single point recording current meters using

the Aanderaa Doppler Current Sensor (DCS) technology. RCM11s were configured with

additional sensors for temperature, conductivity, pressure and dissolved oxygen.

Table 4.1: Locations, instrument depths, total water depths of M1-M6 deepwater current

moorings. *collected by S4 current meters.

Mooring Latitude Longitude ADCP depth (m) Single-point CM depths (m) Water depth (m)

M1 28.4999 -88.5001 690 790*, 890*, 990*, 1090* 1690

1290, 1490, 1677

M2 28.7484 -88.7463 535 635, 835, 1020 1035

M3 28.7499 -88.2501 837 937, 1137, 1317 1337

M4 28.4998 -89.0001 336 436, 636, 816 836

M5 28.2503 -88.7499 1150 1250, 1450, 1630 1650

M6 28.0001 -89.0001 812 912, 1112, 1297 1312

4.1.3.3 Orography

Topographic variability (orographic variability) on scales of 100 m to 10 km is required to

characterize the hydrodynamic response. Measurements at a resolution of better than 100

m are available from multibeam surveys for the northern Gulf from the NOAA National
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Geophysical Data Center, U.S. Coastal Relief Model, at the web site: http://www.ngdc.

noaa.gov/mgg/coastal/crm.html.

The steepness parameter s = Nhrms/U (Baines , 1995) is a fundamental non-dimensional

variable quantifying the behavior of continuously stratified flow in a hydrostatic, non-

rotating parameter regime. It represents the ratio of topographic slope to that of internal

lee waves arising in the linear limit. Identifying typical vertical and horizontal topo-

graphic scales can be straightforward for isolated topography, but complex topography

such as that situated on the GoM continental slope can exhibit a multiplicity of scales

that introduces ambiguity into the interpretation of s.

One interpretation (Nikurashin et al., 2014) is to consider only those horizontal scales

contributing to freely propagating lee waves (f < kU < N) within the definition of

hrms. We used a spectral approach to define the topographic variance in this bandwidth

and for characteristic stratification rates and horizontal velocities of 0.05-0.20 m s−1 find

characteristic steepness values of s ∼ O(1) (0.5-3). This strongly suggests a significant

role for non-propagating orographic form drag.

4.1.3.4 Tracer

Details of the tracer experiment are described in Ledwell et al. (2016). Here we highlight

the findings that are important to the argument here.

A map of the column integrals of tracer found at the stations occupied four months

after the tracer release is shown in Figure 12 in Ledwell et al. (2016), together with the

location of the tracer injection, the mooring locations and the path of a RAFOS float

deployed with the tracer. The tracer was sampled between 5 and 12 days after the release

just to the southwest of the injection. The rms spread of the tracer about the target

isopycnal surface was approximately 15 m, which is quite narrow compared with later

surveys.

The 4-month survey found the vertical distribution of the tracer to be considerably

broader near the continental slope than in the interior. Thus, the stations were divided

http://www.ngdc.noaa.gov/mgg/coastal/crm.html
http://www.ngdc.noaa.gov/mgg/coastal/crm.html
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into two sets: those shoreward, and those seaward of the 1500-meter isobath, a boundary

which seemed to separate the broader profiles from the narrower, for the most part. The

two sets of profiles were averaged separately to place limits on the turbulent diffusivity,

as follows.

A turbulent diapycnal eddy diffusivity of 1.3 × 10−4 m2 s−1 was estimated using a

model of the one-dimensional diffusion equation taking the initial profile to the 4-month

mean interior profile. The diffusivity required to bring the initial profile to the 4-month

boundary profile, on the other hand, was estimated to be greater than 4× 10−4 m2 s−1.

These results indicated that the diffusivity in the boundary region, Kboundary, is much

greater than the interior diffusivity Kinterior. However, since it could not be known how

much time any of the tracer had spent in the interior versus the boundary region (e.g.

4.1.6), it was not possible to assign an accurate value to the diffusivity in either region,

from the 4-month survey. There is also arbitrariness in the choice of isobath used to

distinguish boundary from interior.

The mean vertical profile from the survey at 12 months (Ledwell et al. (2016), their

Figure 14) was nearly indistinguishable from the mean interior profile at 4 months. Ap-

plying the model to the transition between these two profiles yielded a diffusivity of

(0.15 ± 0.05) × 10−4 m2 s−1, much smaller than either diffusivity from the first period.

This must be an upper limit on Kinterior, since the dispersion of the tracer would still have

been influenced by processes near the boundaries, although it had spent relatively little

time there. The inference is that Kboundary must have been much greater than 1.3× 10−4

m2 s−1.

4.1.3.5 Numerical Scheme

Numerical solutions of the advection-diffusion equation are obtained using a Forward-

Time Central-Space (FTCS) scheme. Velocities and isopycnal and diapycnal diffusivities

are functions of y, z and t. A Von Neumann stability analysis determines the time step

∆t of the simulation through the condition ∆t ≤
(

2·max{K‖}
(∆y)2

+ 2·max{K⊥}
(∆z)2

+ V
∆y

+ W
∆z

)−1

,
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where K‖ is the isopycnal diffusivity, K⊥ the diapycnal diffusivity, V the maximum value

of horizontal velocity andW the maximum value of vertical velocity. Given this condition,

computational constraints determined the grid spacing we used. For the present study

the grid sizes are ∆y = 500 m in the horizontal and ∆z = 5 m in the vertical.

4.1.4 Observations

4.1.4.1 Finescale Parameterization

Stations having significant tracer concentrations (Figure 4.6) were binned into three

groups: a collection of ’boundary’ stations in water depths of 1400 m and shallower,

a group of open ocean stations immediately to the south, and a group in a region occu-

pied by the Loop Current to the southeast. Statistical uncertainties in diffusivity estimates

based on averaging a collection of 10-20 LADCP profiles are approximately a factor of ±2

and thus the results (Figure 4.7) at the injection level are unequivocal: in the open ocean

Kinterior
∼= 1 × 10−5 m2 s−1. This diffusivity estimate is an order of magnitude smaller

than that inferred from the overall dispersion rate of the tracer, including the boundary

regions, though it agrees well with the diffusivity experienced by the tracer between 4

and 12 months when most of the tracer was in the interior. An enhancement to some

3 × 10−5 m2 s−1 is noted in the bottommost 300 m of the boundary stations. However,

this enhancement is not sufficient to explain the vertical dispersion of the tracer, which

requires a spatial/temporal mean value over most of the GOM several times larger.

There are a number of pertinent caveats about this finescale parameterization. First,

it is not an all purpose turbulent closure; it addresses only interactions between internal

waves. It would not, for example, detect non-wave-induced turbulence associated with

hydraulic effects, flow separation and vortex shedding from complex topography. Second,

it is based upon a spectral method that limits the ability to capture anomalous enhance-

ments of mixing in the bottommost 50 m. Here we have used 320 m vertical intervals with

a Hanning window. Despite such caveats, the finescale parameterization is fully capable

of detecting internal-wave-induced mixing at a rate of K ∼= 1× 10−4 m2 s−1 in the GOM
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interior. It is not there.

Experience based upon observations (e.g. Polzin et al., 1997) and modeling of inter-

nal tides above rough topography (Polzin, 2004a,b) strongly suggests that if Kboundary

were associated with an internal wave process, the finestructure parameterization method

should have returned diffusivity estimates that come much closer to balancing the tracer

budget than the estimated 3× 10−5 m2 s−1.

4.1.4.2 Internal waves?

The ADCP data from the GISR moorings were examined by lowpass filtering velocity

data at frequencies smaller than 2f to limit ping-to-ping uncorrelated noise and then first

differencing on scales of 48 m. There are occasional incidences of shear variance exceeding

N2, which implies diffusivities 2-3 orders of magnitude above background values by a

number of methodologies (either the finescale parameterization (Section 4.1.3.1.1) or a

shear-instability closure (Polzin, 2014)). However, the persistence of such features was

not sufficient to imply annual averaged values in excess of 1 × 10−4 m2 s−1. In short,

internal wave diagnostics applied to the GISR moored ADCP data do not explain the

high values of diffusivity affecting the tracer.

There is a near-inertial response to Hurricane Isaac. However, it is not the largest in

the moored ADCP record. Greater internal wave shear is apparent with enhanced eddy

velocities in the later 6 months of the records.

4.1.4.3 If not Internal Waves, then Non-propagating Orographic Form Drag?

Our investigations of this data set included estimates of a buoyancy deficit at the bound-

ary relative to the interior and a characterization of near-boundary density profiles in the

context of mixing. Buoyancy anomalies of both signs could be discerned at the boundary

relative to the interior over vertical scales of hundreds of meters. But there was nothing to

suggest that this could be anything other than the thermal wind signature associated with

a time varying eddy field. Occasional density profiles exhibited detached mixed layers of
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O(10’s) of m height, reminiscent of features described by Armi et Jr. (1976) and Armi

(1978). A particularly suggestive example appears in Figure 4.8 with the orographic con-

text appearing in Figure (4.9). However, the emphasis is on the word occasional, rather

than dominant. Investigation of near boundary data via a Thorpe scale analysis was lim-

ited by noise in the CTD profiles at 5 m vertical wavelengths, Fig. 4.4, as mentioned

earlier.

Form drag comes in both propagating and non-propagating forms, with internal lee

waves representing the former and hydraulic-like effects, etc., representing the latter. In

the s ∼ O(1) high drag parameter regime applicable to the GoM, the non-propagating

component dominates the total drag (e.g. Baines 1995). While there is an outstanding

question of how efficiently the non-propagating drag is converted to a turbulent buoy-

ancy flux, the non-propagating drag is deposited near the boundary whereas this need

not be the case for internal lee waves. Both issues serve to focus attention upon the

non-propagating component as the most likely agent of near boundary diapycnal tracer

mixing.

4.1.5 Boundary Mixing

For the purpose of defining a back-of-the-envelope mixing estimate related to this bound-

ary process, one can crudely regard the tracer dispersion as a tracer weighted average of

an intense boundary process characterized by tracer amount Cboundary and a weak interior

process acting upon C interior:

C interior(t)Kinterior + Cboundary(t)Kboundary = CtotalKtracer

If boundary contributions dominate,

Kboundary
∼=

Ctotal

Cboundary(t)
×Ktracer (4.1.6)

The implication here is that Kboundary needs to be in excess of Ktracer = 1.3 × 10−4 m2

s−1 by a factor of Ctotal/Cboundary with the complication that Cboundary and C int can be
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quite time dependent. In order to avoid defining boundary and interior regions and time

spent in there to arrive at a weighted mean prediction for Ktracer, we turn to a numerical

assessment.

4.1.5.1 Numerics

In this section we pursue a pattern matching exercise in which we ask whether plausible

distributions of isopycnal stirring and diapycnal mixing result in tracer dispersion that

is consistent with the observations. Isopycnals are assumed to be flat and the northern

Gulf of Mexico continental slope is represented as a planar sloping boundary.

We solve the time dependent advection-diffusion equation for tracer concentration C,

∂tC + ∂yK‖(y, z)∂yC + ∂zK⊥(y, z, t)∂zC + v∗∂yC + w∗∂zC = 0 (4.1.7)

with K‖(y) an isopycnal stirring coefficient and K⊥(y, z, t) a diapycnal mixing coefficient.

The diapycnal velocity w∗ arises from the divergence of the turbulent buoyancy flux and

v∗ is the corresponding isopycnal velocity required by continuity.

We report boundary and interior concentration profiles by averaging over the model

domain so as to mimic the tracer sampling as accurately as possible. Interior profiles

represent an average from the 1500 m model depth to 255 km offshore. Boundary profiles

are an average over depths of 1000-1500 m.

4.1.5.1.1 Diapycnal Mixing We utilize a production-dissipation-buoyancy flux de-

composition of the turbulent kinetic energy equation to specify the diapycnal dispersion

rate K⊥. We will assume that the buoyancy flux K⊥N
2 can be related to turbulent

production P using a constant flux Richardson number Rf , K⊥N2 = RfP and assume

Rf = 1/6. An entirely ad hoc approach is taken by modeling the vertical structure of K⊥

using an exponential depth dependence. The depth integrated production rateW is then

equated with a quadratic drag law,

W = [
1

2
Cd
d

`
]U3 , (4.1.8)
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with 1
2
Cd

d
`
treated as a tunable parameter. Thus:

K⊥(y, z) = K⊥(y0, z0)e−(z−z0)/h(z) +Kint
⊥

K⊥(y0, z0)N2(z0) = Rf
1

2
Cd
d

`
U3/h(z0)

h(z) = βU/N(z) (4.1.9)

Kint
⊥ = background diffusivity

w∗(y, z) =
∂z(K⊥(y, z)N2(z))

N2(z)

Line two in (4.1.10) arises from integrating the buoyancy flux while assuming N2(z) to be

slowly varying relative to h(z): ∂zN
2(z)

N2(z)
� h−1. The height scale h in line 3 is taken to be a

multiple β of the height scale characterizing the hydrostatic, non-rotating result, (Baines ,

1995). Our initial results, summarized in an error map presented below, assume N2(z)

to be slowly varying in lines two and five. Our estimates of β are consistent with this

assumption. Use ofN2(z) in line 5 (results not shown) returns best fit parameter estimates

that vary by less than 50%. The boundary is specified by z0 = αy0+b with slope α = 1/50.

The factor U is constrained with time series of near-bottom velocity measurements from

GISR mooring M6, Fig 4.5. Linear fits to the 12 month, near-boundary buoyancy profile

are used to specify N2(z).

4.1.5.1.2 Isopycnal Stirring The effects of isopycnal stirring are parameterized us-

ing a specification that acknowledges eddy length scales are limited by the distance to

the boundary (the ’law of the wall’):

K‖ =

u(y − y0) if K‖ < 1000 m2 s−1

1000 m2 s−1 otherwise

(4.1.10)

This formulation gives rise to a pseudo-advection (Davis , 1991) at a rate u which will

tend to move the tracer center of mass away from the boundary region, as suggested by

observations of column integrated tracer as a function of distance from the boundary,

Fig. 4.11. A value of u = 0.01 m s−1 and a limiting value of K‖ = 1000 m2 s−1 returns an

eddy length scale of 100 km. This representation of isopycnal stirring is likely the most
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unrealistic part of the model. Much of the tracer is likely swept off the boundary in a

single event after Isaac (Ledwell et al., 2016) and the pseudo-advection prescribes a more

continuous connection with the interior.

4.1.5.1.3 Initial Conditions Initial conditions are taken as the vertical structure

from the 5-12 day sampling. A Gaussian distribution with rms width of 100 m defines

the lateral distribution.

4.1.5.2 Results

The numerical assessment was set up with four tunable parameters: β, u, 1
2
Cd

d
`
, and Kint

⊥ .

Best fit values are of (β, u, 1
2
Cd

d
`
, and Kint

⊥ ) = (2, 0.01 m s−1, 0.06, 1− 3× 10−5 m2 s−1)

were determined using an error metric that consists of the mean square difference between

observed and predicted 4 month concentration profiles, Figures 4.12 – 4.14, for both inte-

rior and boundary regimes. An error map in the (β, u, 1
2
Cd

d
`
, and Kint

⊥ ) parameter domain

(Fig. 4.15) depicts the results of our parameter search, which includes only qualitative

information about isopycnal stirring, as variability in the isopycnal coordinate, Fig. 4.11,

is greater than in the diapycnal coordinate. Better fits are possible for interior profiles at

the expense of agreement with the boundary profiles, and vice-versa. Best fit parameters

are Cd
2
d
`
≈ 0.06 and H ≈ 2U/N . If we interpret d/` as d = hrms

∼= 100 m and ` ∼= 2π/20

km the dominant topographic length scale, inferred drag coefficients are Cd = 3.6, similar

to 1 < Cd < 10 found in the literature (Baines , 1995).

The most serious drawback of this 2-d modeling approach is revealed in the numerical

solutions as the interplay between the pseudo-advection of tracer away from the boundary

and the time dependence of diapycnal mixing via U that can be understood through the

tracer weighted estimate (4.1.6). The pseudo-advection in (4.1.10) is required to move the

tracer center of mass away from the northern boundary, as evidenced in the four month

observations (Figure 4.12). Near boundary work estimates (Figure 4.10) are dominated

by Isaac, so that the cross slope advection at the time differential between injection

and Isaac is crucial to the model results as that cross slope pseudo-advection translates
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directly into an increasing height above boundary.

We tried to address this by

• adding a constant 50-100 m2 s−1 to K‖ (4.1.10), thinking that such a representation

could be rationalized by the presence of topographically trapped motions along the

slope. Overall it was not possible to reach as good agreement as with a straight

law-of-the-wall representation. There was no change in best fit drag coefficient Cd.

• excluding Hurricane Isaac. Replacing the time series of U3 with its mean value ([0.08

m s−1]3) resulted in significant degradation of the boundary error metric. Replacing

the extreme values of U associated with Hurricane Isaac (in excess of 0.18 m s−1)

with 0.12 m s−1 has the most effect upon the ability of the numerics to replicate

the observations. Agreement with the boundary profile was especially poor.

• a Gaussian depth profile, e−π(z−z0)2/4h2 , changes the proximity of downwelling rela-

tive to the diapycnal buoyancy flux. It was possible to reach a good agreement with

the observations using both Gaussian and exponential formulations. The best-fit

Gaussian drag coefficients were a factor of two larger.

An interpretation suggested by results in Ledwell et al. (2016) is that the tracer is

swept off the boundary in a single event related to the confluence of along-slope eddy

velocity some 50 days after the tracer injection and 25-30 days after Isaac, resulting in

the wholesale ejection of tracer from the boundary.

There is one direct observational constraint given by a single float released to track the

tracer injection. This float grounded on the continental slope immediately after Hurricane

Isaac (Ledwell et al., 2016), see also a movie in Supplemental Material. In contrast, with

u = 0.01 m s−1, approximately 1/7 of the tracer remains at the boundary to be mixed

during Isaac. The afore mentioned episodic nature of off slope transport could imply drag

coefficients Cd an order of magnitude smaller with boundary diffusivities of 10−3 rather

than 10−2.
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4.1.6 Summary and Discussion

In this study we have examined ancillary data collected in conjunction with a tracer

release in which the space/time dependence of the tracer dispersion strongly implies a

boundary mixing process. The ancillary data provide no evidence for a sufficiently intense

boundary mixing process, but also suggest that interior mixing processes are an order of

magnitude smaller than required to explain the tracer dispersion. Noting that our metrics

of boundary mixing are based upon internal wave dynamics, we propose that the required

boundary mixing is associated with non-propagating form drag that arises in response to

flow over rough topography on the northern continental slope of the Gulf of Mexico.

In order to be one step more quantitative than a simple back-of-the-envelope argu-

ment, we forward the conjecture that a fraction (Rf ) of the energy conversion associ-

ated with a quadratic drag formulation (4.1.10) appears as a diapycnal buoyancy flux.

Our estimates utilize observed near-bottom current measurements and observed strat-

ification profiles. Empirical fits to the tracer distribution suggest 1
2
Cd

d
`
Rf
∼= 0.06 and

Kint
⊥ = 1−3×10−5 m2 s−1. We have used a law-of-the-wall prescription in order to affect

off-boundary tracer transport along isopycnals and have noted a substantial dependence

upon the isopycnal off-boundary tracer transport and the timing of energetic diapycnal

mixing at the boundary. Our interpretation is that the isopycnal stirring prescription

(4.1.10) draws down the boundary concentration level too quickly relative to the passage

Hurricane Isaac. Effective drag coefficients Cd could be smaller by an order of magnitude

if all the tracer remained at the boundary for Isaac.

In terms of practical implications, we note that with a strong dependence of diapycnal

mixing on near-bottom velocity, a direct connection of diapycnal mixing to near-bottom

velocity as a response to extreme atmospheric events and the propensity that such events

could be correlated with the destruction of petroleum industry related infrastructure

together imply that the subsequent fate of blow-out related hydrocarbons could be highly

dependent upon the parameterizations laid out in this paper.

Our proposed hypothesis to explain the observed tracer dispersion has roots in a
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discussion between Garrett (1979) and Armi (1979), relating to Armi et Jr. (1976) &

Armi (1978), and draws its motivation for a 2-d model from that historical context.

Armi interprets detached mixed layers in CTD casts from the western North Atlantic as

providing evidence for ventilation of the abyssal ocean at rates of O(1 × 10−4 m2 s−1).

Garrett (1979) criticizes this on energetic grounds, suggesting that the required energy

source is not to be found with a quadratic drag law (4.1.2), U ∼ O(0.1 m s−1) and

Cd = 1 × 10−3. This represents the standard closure for viscous stresses associated with

a no slip boundary condition. Regional estimates of subinertial velocities characterizing

the data examined by Armi peak to values of O(0.2) m s−1 only within a limited area

under the Gulf Stream (Schmitz , 1984). A second criticism leveled by Garrett (1979) is

that boundary layer turbulence will result in the mixing of mixed water in the boundary

layer, implying a small buoyancy production relative to the turbulent production rate,

i.e. a small flux Richardson number, Rf . A third criticism is that, if considering the two

dimensional problem encapsulated within his figure, there is a remaining issue of how

to transport mixed fluid away from the boundary. One sees these questions developed

further in Trowbridge et Lentz (1991) and Garrett et al. (1993), etc.

Our view is that near boundary mixing is significantly more intense than envisioned

in these earlier papers and we emphasize the role of non-propagating form drag associ-

ated with orography on scales of 0.1-10 km, not viscous stresses associated with a no slip

boundary condition. With orography, the effective drag coefficients are orders of magni-

tude larger and mixing is associated with highly sheared regions in well stratified regions

of O(U/N) height above the bottom. We conjecture that the 3-dimensional character of

orography may, as well, provide more efficient off-boundary buoyancy transport than the

configuration of a 2-d, planar sloping boundary.

Acknowledgments

The skill and cooperation of the masters and crew of R/V Brooks McCall, operated

by TDI Brooks, Inc. and of R/V Pelican, operated by the Louisiana Universities Ma-



142 Chapter 4. Bottom boundary mixing and diffusion

rine Consortium (LUMCON) were essential to the success of the cruises from which

the data reported herein were obtained. KP gratefully acknowledges conversations with

Larry Armi. Funding for GISR is provided by BP through the Gulf of Mexico Re-

search Initiative (GoMRI), and is administered by the Consortium for Ocean Leader-

ship. The GISR data used in this study are available via the GoMRI GRIIDC data base

(https://data.gulfresearchinitiative.org).

AA, SD , JL and ZW recognize funding from GISR/GoMRI contract # SA12-09/GoMRI-

006; AC recognizes funding by the Ministére de l’Education Nationale, de l’Enseignement

Supérieur et de la Recherche; and KP from WHOI’s ISP program.



4.1. Spatially Inhomogeneous and Temporally Intermittent Boundary
Mixing along the Northern Deepwater Gulf of Mexico 143

Vertical Wavenumber (cpm)
10

-3
10

-2
10

-1
10

0

S
p

e
c
tr

a
l 
D

e
n

s
it
y
 (

s
-2

 /
 c

p
m

)

10
-6

10
-5

10
-4

10
-3

Figure 4.4: An example of shear (black solid) and strain (red) spectra illustrating signal-to-noise

and choice of bandwidth. The green solid line represents ping-to-ping uncorrelated noise at 10

times the theoretical minimum rate. Dashed lines are an attempt to represent the effects of

averaging and processing. Blue lines denote the high wavenumber asymptote of the Garrett and

Munk spectrum. See Polzin et al. (2014a) for further details. In this study, the shear spectral

level Ê (4.1.5) was estimated at wavelengths of 160 m and smaller under the criterion that the

observed spectra (black solid) lie a factor of 3 above the estimate noise (green dashed). Noise

in the CTD data at 0.2-0.4 cpm are related to ship heave in ocean swell being communicated

down the lowering wire.
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Figure 4.5: Bathymetry and station positions for the GISR experiment. Black squares denote

the positions of the GISR moorings, large red circles locate the tracer injection, large green circles

the initial 5-12 day sampling. Other dots depict tracer sampling stations at 4 and 12 months.

Positions of Hurricane Isaac are indicated at 6 hourly intervals. Bathymetry is contoured every

200 m between 200-3000 m and every 50 m between 500-1500 m water depth. Black contours

are used to emphasize the 500, 750, 1000 and 1250 m isobaths.
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Figure 4.6: Station positions for the year 1 GISR tracer survey are rendered as circles. Column

integrals of tracer concentration are indicated by relative shading of the circles. White indicates

no tracer was found. Black lines depict isobaths at a 500 m contour interval. Boxes indicate

binning into ’Boundary’, ’South’ and ’East’ averages for the finestructure analysis, Fig. 4.7.
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Figure 4.8: Vertical profile data from station 31. Left hand panel: potential density anomaly

relative to 1200 dBars. Right hand panel: north-south velocity (red), east-west velocity (blue).

Bottom track estimates and shipboard ADCP velocity estimates are rendered in black. Note

the differing extent of the vertical axes. In both panels the vertical axis extends to the actual

bottom (∼= 1225 m). There are regions of significantly reduced stratification suggestive of either

mixed layers or isopycnal separation in a partial hydraulic jump. Significant shear (0.1 m s−1

over 40 m) is noted beneath this feature, implying a gradient Richardson number smaller than

one. These data were collected above a ridge saddle (Figure 4.9) and lend themselves to an

expectation of strongly enhanced mixing associated with highly sheared flow on the lee side of

the ridge.
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Figure 4.9: The orographic context for Station 31. This station was taken at a ridge saddle

with the near-bottom velocity being east-to-west.
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Figure 4.10: Estimates of∫
U3dt for the bottommost

current meters in the 6-

element GISR moored ar-

ray. The 4 grey panels indi-

cate the time of the tracer

injection (G02), the pas-

sage Hurricane Isaac, the 4-

month and 12 month sam-
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U3 statistics between injec-

tion and 4 month sampling

are dominated by Isaac. The

bottom current meter in the

south-west quadrant of the

array (M6), collocated with

the injection site, was used

to specify the near-bottom

velocity U in the mixing

scheme (4.1.10).
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Figure 4.11: Four month

column integrated tracer

concentrations averaged as

a function of distance from

the 1500 m isobath from

observations (blue) and

model (black) with (β =

2, u = 0.01, 1
2Cd

d
` = 0.06

and Kint
⊥ = 3 × 10−5 m2

s−1). Despite the observed

variability there is an ob-

vious requirement for the

tracer center of mass to

migrate off the boundary,

which is addressed with the

pseudo-advection parameter

u (4.1.10).
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Figure 4.12: Four month tracer distribution with (β = 2, u = 0.01, 1
2Cd

d
` = 0.06 and

Kint
⊥ = 3 × 10−5 m2 s−1). Green vertical lines delimit the horizontal extent of the 4 month

tracer sampling and the extent of averaging for the numerically derived interior and boundary

dispersion estimates. The black dot depicts the location of the initial condition. The vertical

coordinate is the height above the target surface (hat).
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ary profile comparison for

observations (blue) and

model (black) with (β =

2, u = 0.01, 1
2Cd

d
` = 0.06

and Kint
⊥ = 3 × 10−5 m2

s−1). Note the vertical asym-

metry about the injection

level implying a downward

increase in diapycnal mixing.
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Figure 4.15: An error map in (β, u, Cd and K int
⊥ ) space. There are two color panels with in

each parameter square. The left panel represents the interior profile and the right the boundary.

Each large square contains a constant Cd and β. Within each large square there is a three-by-

four matrix of possible (K int
⊥ , u) entries. Mean-square error estimates are normalized to ’best

fit’ parameters (β = 2, u = 0.01 m s−1, 1
2Cd

d
` = 0.06 and K int

⊥ = 3 × 10−5 m2 s−1), which is

indicated as a green shading. Better fits can be obtained in one domain (interior or boundary)

only at the expense of the other.
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4.2 Extra Material

Here, I briefly report the main mathematical details to replicate the results reported in

the paper.

Exponential profile

First, we impose the following form of the diapycnal diffusivity:

KZ(z) = KZ(0)e−zN/βU

Then we have to determine KZ(0) by hypothesizing that the energy for the mixing is

supplied by a flow with velocity U :

6N2

∫ ∞
0

KZ(0)e−zN/βUdz = CdU
3

By imposing KZ(∞) = 0 , this implies:

KZ(z) =
CdU

2

6βN
e−zN/βU +Kbk

Z (4.2.1)

with Kbk
Z being the background diffusivity.

It can be of interest to derive the form of the diffusivity as function of the distance

x from the slope. To do this we transform the vertical length scale z = βU/N into

x = βU
N

cosα
sinα
∼ 1

α
z, where α is the slope of the continental shelf (α = 0.002 for the Gulf of

Mexico). By considering that z/α = x it follows dz = αdx and we obtain:

KZ(x) =
CdU

2

6βN
e−xNα/βU +Kbk

Z

We now calculate the vertical velocity due to mas conservation. Given Equation 4.2.1

and the following form for the diapycnal velocity:
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w∗ =
∂
∂z

(
KZ

∂ρ
∂z

)
∂ρ
∂z

=
∂
∂z

(KZN
2(z))

N2

it follows:

w∗ =
1

N2

CdU
2

6β

[
∂N(z)

∂z
e−zN/βU +N

∂e−zN/βU

∂z

]
+
Kbk
Z

N2

∂N2(z)

∂z

Given:



N2(z) = c1z + c0 → ∂N2

∂z
= c1

N(z) =
√
c1z + c0 → ∂N

∂z
= c1

2
√
c1z+c0

∂
∂z
e−zN/βU = ∂

∂z

(
−zN
βU

)
e−zN/βU =

[
−N
βU
− z

βU
∂N
∂z

]
e−zN/βU

it follows:

w∗ =
CdU

2

6βN2

[
c1

2
√
c1z + c0

− N2

βU
− zc1N

2βU
√
c1z + c0

]
e−zN/βU +

Kbk
Z

N2
c1 (4.2.2)
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Connectivity is crucial for the persistence of marine species populations facing an-

thropic pressure and climate change. The aim of this thesis was to investigate the physical

mechanisms that drive connectivity between distant marine populations. In particular, I

investigated the role of currents in sustaining persistence of marine populations and the

role of turbulence in influencing the modeling of passive larvae dispersion.

Before outlining the future research pathways identified by this thesis, we briefly recapit-

ulate the research strategy that we chose and its outcomes.

5.1 Conclusions

Due to contingent limitations, legislators cannot protect all marine sites. In order to set

up effective conservation policies they need to identify the most important sites for per-

sistence for a species or a set of species.

The advantage to apply graph theory to connectivity studies is due to its flexibility and

independence from demographic parameters that are difficult to estimate. For this rea-

son, the use of graph theory in connectivity studies has grown significantly in the last

decade (Moilanen, 2011) but its interpretation is still mainly based on studies that are
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intrinsically different from networks of marine areas. For example, those studies either

investigate relations between individuals that, by definition, have a personal behavioral

preferences (e.g., Mastrandrea et al., 2015) or relations between elements (e.g., proteins,

Vishveshwara et al. 2002) that do not have a behavior but are single entities not ecological

communities.

In order to clarify the ecological interpretation of graph theory, we set up a comparison

between graph theory and metapopulation model analysis. We chose as reference the

metapopulation model analysis because such analysis has been widely used for a much

longer time than graph theory. Moreover, its interpretation is more straightforward. We

wanted to assess whether the persistence of marine species that disperse passively can

be trustworthy obtained from information concerning only ocean currents and the basic

biological characteristics (e.g., PLD) of the species at study.

In particular, we considered different species in the Gulf of Lion that distinguish them-

selves by a different PLD. For each PLD, we calculated the probability of connection

between different reproductive zones in the GoL with Lagrangian simulations. The con-

nectivity matrices were then used as input for both metapopulation analysis and graph

theory analysis. Metapopulation model analysis estimated the importance of a site for

ensuring species’ persistence in the GoL by calculating the minimum recruitment success

required in that site in order to ensure the persistence when other nodes are deleted. In

fact, the higher the minimum recruitment success, the more important the node is. In

order to understand which graph theory measure could provide the same information,

we looked for correlations between the minimum recruitment success and different graph

theory measures.

The results suggests that the importance of the graph theory measures depends on the

topology of the network. In general, we can distinguish a first kind of topology (corre-

sponding to pelagic larval durations of 1 and 2 weeks) in which the density of the network

is lower and another kind of topology (corresponding to pelagic larval durations of 3, 4

and 5 weeks). The first topology is characterized by more dispersed networks with longer

average shortest paths between the nodes. On the other hand, the second topology is char-
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acterized by a more clustered networks with a lower mean shortest path. The correlations

of these graph theory measures with persistence change on the base of the topology. Core

number and clustering coefficient are the more reliable measures in the first case; z-score

and core number are the more reliable measures in the second case. The only graph theory

measure that results to be reliable in both topologies is the strength of the connections

of a site. Another important result of this study is that betweenness centrality is not

the graph theory measure that better correlates with persistence as previously assumed

in the literature (e.g., Andrello et al., 2013). Our results also show that modularity -in

contrast to what stated in previous literature (Thomas et al., 2014)- can reliably identify

sub-populations.

A key aspect for an effective numerical simulation of the larvae dispersion concerns

the turbulence modelling, in particular in the surface and in the bottom boundary layers.

The comparison of in situ turbulence measurements with the numerical model Sym-

phonie permitted to investigate the sensibility of numerical models to the turbulence

parameterizations in the surface boundary layer. In particular, we exploited in situ mea-

surements of kinetic energy dissipation rate ε and turbulent diffusivity KZ acquired with

an autonomous microstructure profiler (SCAMP) in the Gulf of Lion. Measurements

were acquired during different campaigns and, consequently, well adapted for a statistical

comparison with the predictions made by different TCSs integrated in the high-resolution

numerical model.

Previous studies in the literature (e.g., Burchard et Bolding 2001; Ilicak et al. 2008; Reffray

et al. 2015) also focused on different closure schemes and boundary conditions. However,

those studies mainly exploited in situ measurements of temperature and mixed layer

depths. From a turbulence point of view, those quantities can be viewed as "integrated"

quantities that are the final result of more than one process. Although the dynamics

of those quantities directly depends on turbulence, their modelling in a numerical way

mingles the effect of various approximations at different levels. As a consequence, it is

more difficult to directly point out which factor causes one TCS to perform better or
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worse than another one. Therefore, the originality of our approach consists in developing

a series of numerical experiments to identify more directly the different elements of a

TCS that could be changed in order to improve the numerical predictions of turbulence.

This is a particularly important point especially for the correct estimation of turbulent

fluxes.

Our study suggests that the modelling of ε is quite sensible to the choice of the TCS, b.c.

and stability functions. In particular, the k − ` scheme performs better, in the surface

layer, when employing surface boundary conditions specifying an equilibrium between

the wind stress and the turbulent production. Instead, the k − ε scheme performs better

when the surface boundary conditions link the turbulent production to the energy flux

through the surface, thus better accounting for the effect of breaking waves with respect

to the equilibrium boundary conditions. Furthermore, the k − ε’s performance consider-

ably improves when the Canuto A stability functions (Canuto et al., 2001) are used. This

improvement seems to be linked to the fact that less numerical values of ε are at the

threshold. However, this advantage does not extend to the prediction of KZ . In fact, the

two schemes seem to predict the turbulent diffusivity comparably well. One important

result of our analysis is that there is a bias between the two schemes’ predictions of ε

below the surface layer. In fact, when employing the same threshold on the kinetic energy

k, the k− ` values of ε in this layer are roughly one order of magnitude greater than the

ones predicted by the k−ε scheme. This result allows current or future Symphonie’s users

to be aware that the threshold on k has to be chosen also on the base of the TCS that

they are using. However, another important hint that our study provides is the fact that

the threshold on k should not be a fixed value but rather some kind of parameterization

dependent on the ocean’s interior dynamic. A phenomenon, that could fit as a suitable

candidate, on which such a parameterization could be based is the interior wave activity

(Gaspar et al., 1990).

The study of the generating mechanisms of bottom boundary turbulence is a necessary

start point to investigate the capability of deep ocean communities to sustain and possibly
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repopulate coastal communities. Moreover, it is pivotal in order to improve the predic-

tion of the evolution of contaminants (Ledwell et al., 2016, Polzin et al., Submitted). Our

study is based on the accumulated evidence (Polzin et al. 2014b; Ledwell et al. 2016) that

the mixing levels measured with microstructure probes are often not sufficient to explain

the ocean overturning circulation. In particular, this fact is highlighted by one tracer

release experiment’s data (GISR campaign, Ledwell et al. 2016). We exploited this data

set in order to estimate the values of the parameters characterizing form drag-induced

boundary mixing. To accomplish this, I implemented a 2-D numerical dispersion model

that was initialized with the data from the tracer release experiment and compared the

results with the tracer concentration measurements at the end of the GISR campaign.

Overall, our results suggest that the effective drag coefficients associated with highly

sheared regions in well stratified regions of O(U/N) height above the bottom, where U is

the velocity of the flow above topography and N the Brunt-Vaisala frequency, are orders

of magnitude larger than classical literature values (Cd ∼ 3.6). Our results potentially

imply that the standard closure for viscous stresses associated with a no-slip boundary

condition (Cd ∼ 1×10−3) is a substantial underestimation of the effective drag coefficient.

5.2 Perspectives

The approach we adopted to understand the information that can be gained applying

graph theory to connectivity assessment could profit from a comparison with metapop-

ulation models that incorporate genetic spreading (e.g., Padron et Guizien, 2015). This

would further enhance the reliability of graph theory in connectivity studies.

An important aspect of larvae’s dispersion that is currently ignored in dispersion modeling

is their swimming behavior and their PLD’s dependence on environmental variables like

temperature. In fact, a great number of larvae possesses some diel vertical migration in

response to light variations in the water column. Moreover, temperature can significantly

shorten the PLD thus affecting connectivity (Houde 1989; Cowen et al. 2000; O’Connor
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et al. 2007). This last aspect is particularly relevant if we reason in the framework of

climate change. In the near future, an urgent need is to assess how a rise in the water

temperature can negatively affect marine connectivity.

Furthermore, our analysis highlights a high temporal variability of the transfer patterns

and, as a consequence, of the graph theory measures (Figure 2.2). A natural question is

whether this variability plays a role in determining persistence. In other words, is it a a

winning strategy to permanently protect some well-specified sites ? Or should we consider

more closely the possibility to implement time-varying protection strategies?

Such protection strategies would require the knowledge in advance of the circulation pat-

terns. This can be done -to some extents- with numerical circulation models. An open

question is to what extent the knowledge of the current field must be known in order to

predict the likelihood for a certain site to have a high value of a certain graph theory

measure of importance.

On a practical point of view, protection policies of this kind still do not exist. However,

the need for their implementation is suggested by an increasing number of studies (Hob-

day et Hartmann 2006; Maxwell et al. 2015; Penna et al. In Press).

As we have already said, a natural continuation of this thesis would be the investi-

gation of the effect of different turbulence parameterizations on the simulation of larval

dispersion. Indeed, as we observed significant differences between the performances of dif-

ferent TCSs below the MLD, some differences in larvae dispersion have to be expected.

Further insights on the different performances of the possible turbulence parameteriza-

tions and other modelling aspects could be gained with dedicated experiments. In fact,

our SCAMP measurements were opportunistically taken and just a statistical compari-

son with the model’s predictions was possible. Therefore, a study of the response of the

TCSs to variations of turbulence intensity resulting from the evolution of meteorological

conditions was not possible. Consequently, it is still not understood if the response of

the different TCSs is equally fast (Burchard et al., 2002). Hence, it would be interesting

to have a dedicated project envisioning some one-day cruises -or, even better, a moored
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setting - targeting different meteorological situations. This would permit, through the ac-

quisition of repeated profiles, to follow the evolution of the turbulent activity and assess

the behavior of the model.

Moreover, multi-model comparisons could further highlight modelling limitations. By

comparing outputs of various models using the same TCS, eventual differences would

highlight the effect of, for example, vertical resolution, spatio-temporal resolution of the

forcing, bottom boundary conditions. This will shortly be accomplished by a study, in

the framework of the project Numerofix (PI P.Marsaleix, funded by the LEFE/GMMC

program of CNRS), in which a 1-D version of NEMO will be compared to the SCAMP

measurements that I analyzed.

A natural consequence of this kind of study is the investigation of the effect of differ-

ent model implementations on geochemical models. Both small differences in KZ and the

MLD values could potentially have sizable impacts on biogeochemical models’ predictions.

The effect of bottom boundary turbulence on connectivity is still difficult to quantify.

First, its parameterizations in current ocean models are inaccurate to model some mixing

mechanisms of the kind we studied in Chapter 4.

The mixing mechanisms in the bottom boundary region over rough topography that we

considered are form drag and hydraulic-like effects due to flow over rough topography.

However, the numerical model we implemented was an approximation of the actual ocean

dynamics. In 3-D flows, form drag may act in concert with boundary trapped waves and

instabilities arising from either wind forcing or eddies flow over topography. We must

investigate the relative importance and interplays of these different mechanisms. One

possible way that we have envisioned in a Marie-Curie proposal was to exploit high-

resolution non-hydrostatic numerical models. In fact, these models allow to explore in

detail the effects of different mechanisms; especially when used with unstructured mesh

grids that enable very high resolutions (∼ 10 cm) where and when it is needed (near the

bottom in this case). From 4-D comparisons of these model outputs and in situ measure-

ments, insights on the parameterization of the aforementioned phenomena would follow.
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Moreover, I will study the importance of such mechanisms in the polar regions during

my post-doc at the Korean Institute for Basic Science. Indeed, increased turbulent fluxes

induced by flows above rough topography could have crucial effects in augmenting sea

ice’s and ice shelves’ melting rates.
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