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Using numerical models to project the state of marine ecosystems several decades into the future is commonly advocated, in particular for inves-
tigating the possible effects of climate change. Numerical models are useful to explore how ocean climate and other drivers may regulate the
dynamics of marine ecosystems and constitute indispensable tools to test our conceptual representations of how marine systems function.
However, | argue here that these models might be of limited use to project the future state of marine ecosystems decades into the future
because several factors limit predictability. These include stochasticity, deterministic chaos, enablement vs. entailment, non-ergodicity, ecological
surprises, irreducibility, and limits to upscaling. Many simulations of ecosystem states in the distant future may be no more than a “grande illusion”
until explicit evaluations of how uncertainties increase with the time horizon of projection are performed.
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Projecting the future
In the book the value of science published in 1905, the mathematician
Henri Poincaré describes the role of science as follows: “la science
prévoit et Cest parce qu'elle prévoit qu’elle peut étre utile et servir de regle
"action”. [Science foresees, and it is because it foresees, that it can be
useful and serve as rule of action (translation by George Bruce
Halsted).] Prediction is identified as central to the role of science, a
point of view somehow apparently contradicted in Niels Bohr famous
quote that “prediction is very difficult, especially about the future”.

Whatever the degree of complexity of a model, the developers of
numerical models of ecological systems are generally trapped
between these two perspectives: justifying the existence of a model
by its predictive capabilities while recognizing that predictions of
future states of ecological systems may not be reliable.

Low predictive performances in marine ecosystem models are
usually attributed to the absence—or the poor representation—of im-
portant ecological processes in numerical formulations. This has often
served as justification to construct models of ever increasing complex-
ity, in which large numbers of detailed processes can be represented
simultaneously. Since the early simple marine ecosystem models
(Steele, 1974), increasing numerical capabilities have supported the

development of models of ever growing complexity, which can
combine ocean dynamics, biogeochemistry, biology of unicellular
organisms, animal behaviour, trophic interactions, human effects
through exploitation, pollution, or habitat modification, economical
dynamics, and even governance and policy (e.g. Holt et al., 2014).

I argue here that regardless of model complexity and refinement
of model components, there are limits to the degree of predictability
of marine ecosystems states into the future. I present below several
theoretical arguments that justify why predicting future ecosystem
states may not be achievable with reasonable levels of certainty
at time horizons of several decades, as commonly required for
climate change projections. By ecosystem state, I mean the “state
variables” in a particular ecosystem model and refer more generally
to an ensemble of ecosystem properties of interest to researchers
and managers alike, such as nutrient levels, primary production,
abundance, spatial distribution, phenology, age/size structure of
particular species or species groups, biodiversity, etc.

Stochasticity
Chance, randomness, or stochasticity express the unpredictability of
some events. Whether chance is a true feature in nature, as suggested
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by Prigogine (1996), or simply the result of our inability to accurate-
ly observe and model natural phenomena is a matter of debate.
However, the existence of apparent stochastic phenomena is undis-
puted. Throwing a dice or playing roulette are ways to produce a
random outcome, although these processes are primarily ruled by
the deterministic laws of Newtonian physics. Stochastic phenomena
are not just statistical nuisance that results in increased uncertainty
in ecological model projections, but rather structuring processes
in the evolution of life and dynamics of ecosystems. For example,
the two pillars of the theory of evolution are selection and variation,
with the latter being based on the randomness of DNA mutations
and recombination. In the—debated—ecological neutral theory,
many patterns of biological diversity are shown to emerge from sto-
chastic processes combined with specific constraints (Rosindell
et al., 2012). In marine fish populations, non-deterministic varia-
tions in migration routes have been shown to be essential to colon-
ization of new habitats or recolonization of lost habitats (Petitgas
et al., 2006, 2010). These examples illustrate how stochastic events
constitute an essential, but by definition unpredictable, component
of the dynamics of ecosystems.

Deterministic chaos

Deterministic chaos happens when the dynamics of a deterministic
(i.e. non-stochastic) system do not converge towards equilibrium
points or cycles but instead towards a succession of many possible
states, in a non-repeatable fashion. Deterministic chaos has been for-
malized for living systems since the mid-1970s (May, 1976). Specific
features of deterministic chaos include sensitivity to initial conditions
and limited predictability beyond certain time horizon. The ability to
predict system state at a certain time horizon depends on the sensitiv-
ity to initial conditions and on how accurate the initial state of the
system can be measured. The initial states of marine ecosystems, as
required by complex ecosystem models, are generally known with
poor accuracy because of the inherent difficulties in observing life
underwater. Hsieh et al. (2005) have shown that in the North
Pacific Ocean, non-linear processes that display chaotic behaviour
best represent variations in the biological states. If complex non-linear
dynamics operate in marine ecosystems, as suggested by empirical
studies (Hsieh et al., 2005; Glaser et al., 2014), this implies that
decadal predictions of the future state of the system may be highly un-
certain even when the underlying deterministic processes are known
exactly, which is usually not the case in ecology. Predictions with
acceptable levels of accuracy may only be achieved for short time
horizons, while in the longer term, uncertainties may be as large as
the chaotic attractor of the modelled system.

Enablement, not entailment

Numerical modelling approaches employed to simulate ecosystem
dynamics are predominantly inspired from, and built on, principles
developed for Newtonian physics. These include sets of differential
equations, knowledge on initial and boundary conditions, and the
division of a complex system into an ensemble of simpler constitu-
tive elements, i.e. reductionism. The engine of such model construct
is a set of deterministic relationships, each relating a cause to its
effects, i.e. entailment. A precondition for Newtonian models is
that the state space, i.e. the space describing the possible states of
the system, can be defined and that its dimensions remain un-
changed, or at least predictable. Longo et al. (2012) and Kauffman
(2014) have argued that this precondition cannot be met by living
systems because changes in the ecosystem configuration lead to
changes in the ensemble of adjacent possible opportunities for
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further evolution (the state space), so the temporal evolution of a
system constantly leads to new sets of possibilities. The formation
of new dimensions in the state space cannot be stated in advance,
i.e. it is unprestatable. The result is that no law entails the evolution
of living systems and that instead this is driven by the emergence—
i.e. enablement—of novel opportunities as life constantly adjusts to
its environment while modifying it. In marine ecosystems, enable-
ment can be exemplified by the introduction of new species, acci-
dently or not. This creates new opportunities for potential prey,
predators, parasites, or diseases to develop, thereby creating new
opportunities for prey, predators, and parasites of the latter, etc.
Species introduction can thereby enable a new, but unprestatable,
set of adjacent possible opportunities for ecosystem dynamics.

Non-ergodicity

Ecosystem models that use past observations as the basis for predic-
tions rely on system ergodicity, i.e. that the space of possible system
states has been appropriately explored in past situations. At least
several repetitions of an event are necessary to compute its probabil-
ity, but unfortunately, unique events are prevalent in ecosystem
dynamics. Following the reasoning of Ulanowicz (2009), it only
requires 75 distinguishable events to co-occur by chance to generate
a combinatory statistics of 75!2210'°®, a number greater than that of
all simple events than have occurred in the universe since its begin-
ning 13— 15 billion years ago (Elsasser, 1969). Thus, past ecosystems
states only cover a minute fraction of the gigantic number of possible
ecosystem configurations. In other words, the future states of
marine ecosystems are likely not contained in the set of their past
configurations. Process-based models can apparently circumvent
this problem by focusing on system processes rather than historical
correlations. They do not depend directly on the exploration of past
ecosystem states but nevertheless rely on the ergodicity of biological
processes, i.e. they require that the ensemble of possible ecological
processes has been observed in the past. But, living systems are char-
acterized by their ability to evolve, that is the ability to restructure
themselves and to develop new ways of functioning. As a conse-
quence, processes that drive their dynamics are continually altered
and the range of processes observed in the past cannot be expected
to cover those that will to operate in the future. The lack of ergodicity
is problematic for ecosystem models, because it implies that their
performance in reproducing past dynamics says little about their
ability to simulate future ones. For example, current ocean acidifica-
tion is driving marine ecosystems towards environments and
configurations that have not been experienced before and the pro-
cesses associated with bio-calcification, that were ignored in ecosys-
tem modelling efforts few decades ago, may be central to future
models. While it may be possible to achieve ergodic sampling of
physiological or behavioural characteristics, by studying many indi-
viduals in the same population, ergodicity is not achievable for eco-
systems since the historical trajectory of an ecosystem is unique, time
limited, and cannot be assumed to have explored the ensemble of its
possible trajectories. This is even true at the scale of marine commu-
nities or populations for which there are no available replicates to
ensure a full exploration of possible states. The earth system is an
extreme case in which the historical trajectory is evidently unique
and can only inform on an infinitesimal fraction of the possible
earth system states.

Expected surprises
Whether they are called ecological surprises, unexpected events,
unforeseeable catastrophes of black swans, ecological systems are
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always open for dramatic events that numerical models are not
designed to forecast (Duarte, 2014). While these may come as sur-
prises from a modelling perspective, these are so common in real
ecological systems that they can hardly come as a shock. Regime
shifts have been reported repeatedly in marine systems worldwide
(Blenckner and Niiranen, 2013), and so have major changes in
species dominance, such as outburst of the alien comb jelly
Mnemiopsis leidyi in the Black Sea (Daskalov et al., 2007), rapid ex-
pansion of the red king crab and snow crab in the Barents Sea
(Alvsvag et al., 2009; Windsland et al., 2014), or decadal booms
and burst of small pelagic fish populations over millennium time-
scales (Baumgartner et al., 1992). Observations, theory, and simula-
tion models can be, and have been, used to reconstruct the history of
catastrophic events in marine ecosystems, but this has provided little
additional capacity to predict similar events in the future, so it is
most predictable that marine ecosystems will continue to take
modellers by surprise.

Irreducibility

Introduced by Wolfram (2002), irreducibility refers to the impossi-
bility of constructing a simplified version of a computational system
and still reproduce its dynamics. In Wolfram’s New Kind of Science,
living systems are assimilated to complex computational systems.
Ecosystems display extremely large dimensionality driven by a
large number of variables operating at a large number of scales, a
situation often referred to as the “curse of dimensionality”
(Yodzis and Innes, 1992). Beckage et al. (2011) have argued that
the dynamics of these complex systems are computationally irredu-
cible and that the only way to “compute” the future state of an irre-
ducible ecological system is to allow the system itself to compute it.
In practice, only simplified representations can be constructed to
simulate ecosystem’s future and numerical models of ecosystem
dynamics, as complicated as they may be, are gross simplifications
of real-world ecosystems. Under the hypothesis of irreducibility,
these simplified representations cannot compute the future states
of ecosystems. While there exists theory and methodological
approaches to evaluate optimal degrees of complexity for statistical
models of simple systems (Burnham and Anderson, 2002), there is
yet no theory that establish a relationship between model complex-
ity and prediction accuracy for dynamical models of complex eco-
logical systems. The rhomboid approach suggested by de Young
et al. (2004) and following suggestions for models of intermediate
complexity (e.g. Collie et al., 2014; Plaganyi et al., 2014) have
attempted to define strategies for modelling populations in the
wild and still incorporate ecosystem features that get simpler as
they are situated further away from the main focus of the model.
For models that focus on the dynamics of the whole ecosystem,
however, it is not obvious where simplifications should be operated
and what degree of model simplification is acceptable to ensure
suitable reproduction of the dynamics of real ecosystems.

Limits to upscaling

Upscaling occurs when a deterministic process defined at a low level
of organization in a system (e.g. an individual organism) is used to
model the dynamics at a higher level of organization (e.g. a popula-
tion). For example, the effect of temperature on individual growth
or the effect of prey density on individual feeding rates can be quan-
tified experimentally and then used to parameterize growth func-
tions and trophic functional relationships. Typically, experimental
measures of growth and feeding rates consider isolated systems
with few state variables (e.g. species) and under few controlled
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pressures (e.g. temperature, food density). Marine ecosystems, on
the other hand, are open systems made up of a particularly large
number of components and under many possible pressures. In
these systems, the response of an individual species to temperature
or prey density may turn rather different from that observed under
controlled conditions, because the presence of other preys, ocean
currents, turbulence, variations in light or salinity, mating behav-
iour, parasitic infestation, etc., usually interact with, and can often
override, those of temperature and prey density alone. In a recent
review, Cahill et al. (2012) showed that the impact of warming on
population extinctions is predominantly driven by changes in
species interactions rather than by direct physiological effects of
temperature on individual populations. In other words, what are
considered externalities at a small experimental scale become inte-
gral parts of the picture at a larger scale. As a result, many determin-
istic processes operating at low level cannot easily be translated to
ecosystem level in a simple and useful way, even when they are
theoretically well grounded and empirically parameterized with
precision.

La grande illusion?

The above arguments are not new but are often not well recognized
when constructing marine ecosystem models. The result is that
when complex numerical simulation models are used to make
projections of ecosystem states several decades into the future (e.g.
Ellingsen et al., 2008; Wisz et al., 2015), these projections are often
met with a high degree of scepticism by end-users (Ruiz and
Kuikka, 2012).

Obviously, the development of simulation models is an ongoing
process and one can expect that modelling capabilities are constantly
improving. The continuous increase in computing power has nur-
tured great hope that complex ecosystems could be simulated by
equally complex numerical models, with a high degree of realism.
Fifty years after Holling’s aspiration to use computers as the ideal
tool to handle the conceptual problems faced in ecological analysis
(Holling, 1966), we are seeing the emergence of complex simulation
models of marine ecosystems at scales ranging from few kilometres
to regional seas, ocean basins, or even the entire globe (e.g. Ellingsen
et al., 2008; Huse and Ellingsen, 2008; Link et al., 2010; Chust et al.,
2014; Harfoot et al., 2014; Cressey, 2015). Interestingly, in his
seminal article on ecosystem resilience, Holling (1973) identified
important limits to numerical modelling of living systems and
emphasized that the conclusions derived from existing models did
not hold when (i) systems are composed of many components,
(ii) processes are complex (e.g. include feedback mechanisms),
(iii) spatial and temporal processes interact, and (iv) there is a
high degree of stochasticity; four situations that are the rule rather
than the exception in marine ecosystems. These limits can unfortu-
nately not be passed by brute force and predictive modelling
capability cannot expect to improve by the sole increase in comput-
ing power. In fact, rather the reverse may happen. When super
complex models are built by assembling multi-scale and multi-
purpose modelling bricks, the many assumptions and model par-
ameter uncertainties render the sensitivity of the models intractable,
which tend to increase, rather than reduce, projection uncertainties.
This is not to say that uncertainties are ignored in ecosystem
models and model projections. Rather, quantifying uncertainties
has become a central issue and it is now essential that model
projections be presented with associated uncertainty estimates.
Unfortunately, these estimates are usually limited to parameter un-
certainty and do not account for other sources of uncertainties that
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can have a more dramatic impact on projections (e.g. Planque et al.,
2011; Gregr and Chan, 2014).

The ongoing movement to promote predictive ecology (Evans
et al., 2012) is accompanied by confusion between “prediction” as
the necessary ingredient of science, a la Poincaré, and “prediction”
about the future. Prediction is critical in science to produce strong
inference sensu Platt (1964), i.e. to test model predictions against
empirical observations, but this does not equate to forecasting
the state of extremely complex natural systems decades into the
future. Physical events such as earthquakes or storms, which are
fairly well understood and described by theory that is supported
by testable predictions, cannot be predicted into the future
beyond relatively short time horizons. Model-based predictions,
decades into the future, are already performed, but nearly none
of these predictions are used directly for management purpose
(although many of these models get financial support under the pro-
mises of being applicable to management, Ruiz and Kuikka, 2012).
When complex whole-of-ecosystem models such as Atlantis have
been used in management, the purpose has generally been to inves-
tigate the trade-offs of various management options rather than to
make predictions about the future, and the intention has been to
provide insight into ecosystem dynamics rather than operational
tools for day-to-day management decisions (Fulton et al., 2011).

Whole-of-ecosystem (or end-to-end) models of marine ecosys-
tems support the reconciliation of reductionist and holistic ap-
proach, they offer a platform for multi-disciplinary collaborations
and provide the potential to match the demands and expectations
of many end-users. Output from these models can inform on the
directions in which various ecosystem components may respond
to specific pressures and provide useful description of the trade-offs
that results from physical, biological, economical, or historical con-
straints. However, their use as computational platforms to simulate
what ecosystems will look like decades into the future is questionable
(Figure 1). The ever-increasing list of environmental model predic-
tion failures (Pilkey and Pilkey-Jarvis, 2006) should act as a strong
warning against decadal or multi-decadal projections.
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Figure 1. Was the petincluded in the pet ecosystem model? (drawing:
Juliette Planque).
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There is a clear need to recognize the limits of numerical models
when projecting the states of marine ecosystems at time horizons of
decades and beyond, and to refrain from computing and dissemin-
ating projections when the uncertainties around these have not been
evaluated adequately. Without clear identification and quantifica-
tion of model projection uncertainties, simulations may simply be
faith-based constructions disguised behind complex computations.
It is equally critical to recognize that the building of more compli-
cated simulation models, even when supported with more empirical
data, may not resolve this issue. This does not undermine the value
of numerical modelling of marine ecosystem as an essential tool to
test our conceptual representations of how marine systems function
and to provide insight into the possible states and dynamics of these
systems. There is however a need to evaluate how these models may
contribute to the advancement of marine ecological understanding
and when they can be used or may be misused for projections.
Among others, two advances may improve marine ecosystem
model developments in the future. The first is to explicitly assess
how model prediction uncertainties increase with the time
horizon of projection (as done, for example, in Glaser et al.,
2014). In other words, it is necessary to determine the forecast
horizon of ecological predictions (Petchey et al., 2015). In this
way, it will be possible to provide reliable simulations of future eco-
system trajectories within “reasonable” time frames. The second ap-
proach is to construct models supported by few simple assumptions
on the limits of ecosystem configurations or rates of change rather
than on (often hypothetical) laws that regulate ecosystem trajector-
ies. In this way, it is possible to investigate what can happen in the
future rather than to predict precisely future ecosystem states.
This approach, related to the mathematical theory of viability
(Aubinetal.,2011), is slowly emerging in marine ecosystem model-
ling (Mullon et al., 2009; Planque et al., 2014).

For the reasons highlighted above, predictions of the state of
marine ecosystems into the distant future will likely remain highly
uncertain, but as stated by Tukey (1962) “Far better an approximate
answer to the right question, which is often vague, than an exact answer
to the wrong question, which can always be made precise”.
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