

Modelling phytoplankton community transitions in the oligotrophic ocean A Mediterranean Sea case study

L. Oms, M. Messié, JC. Poggiale, G. Grégori, A. Doglioli

Contact: laurina.oms@mio.osupytheas.fr

February 19th - Ocean Science Meeting

Pivotal role of **fine-scale dynamics** in shaping the seascape and consequently the phytoplankton communities

Oligotrophic regions are set to expand with future warming (Polovina et al., 2008)

Mediterranean Sea

- * Oligotrophic sea
- * Moderate energy
- * A small-scale model of the global ocean

Phytoplankton Community Transitions (PCTs): spatial or temporal transitions from one community to another

Links between seascape and PCTs?

PROTEVSMED-SWOT CRUISE (DOI: 10.17183/protevsmed_swot_2018_leg1)

Constrasted abundances and biomasses of phytoplankton (Tzortzis et al, 2021)

PROTEVSMED-SWOT CRUISE (DOI: 10.17183/protevsmed swot 2018 leg1)

The constrasted abundances can be linked to constrasted growth and loss rates and not only advection by currents (Tzortzis et al, 2021)

2 hypotheses affecting loss and growth rates:

i) Differential nutrient fluxes through physical processes (bottom-up)

ii) Biotic interactions, including zooplankton grazing (top-down)

(Lévy et al, 2018)

Chl [ugC L]

NP2Z model: developed for the oligotrophic Mediterranean Sea. It tests the bottom-up effect with **1 nutrient**, observes transitions with **2 phytoplankton** and the top-down effect with **1 zooplankton**

Assumptions:

- 1. Phosphate limits growth (Moutin & Raimbault, 2002)
- 2. Phyto1 excels in low-nutrient uptake, Phyto2 in predator defense (Thingstad & Rassoulzadegan, 1999; Bohannan & Lenski, 2000)

* 2 study cases:

1/ Homogeneous environment (constant forcing)2/ variable environment (pulsed forcing)

Latitude

1/ Homogeneous environment (constant forcing)

* Steady-state solutions of 100 simulations

PCTs depend on the Psupply value

1/ Homogeneous environment (constant forcing)

1/ Homogeneous environment (constant forcing)

In a homogeneous environment the interplay of bottom-up and top-down controls determines spatial PCTs

2/ Variable environment (pulsed forcing)

Frontal area

Step function

$$P_{\text{supply}}(t) = b \cdot (U(t - t_1) - U(t - t_2)) + P_{\text{supply},0}$$
$$U(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{if } x \ge 0 \end{cases}$$

* Dynamical-state solutions of 100 simulations for 1, 2 and 3 pulses

$$0 \le R = \frac{P_1}{P_1 + P_2} \le 1$$

How does zooplankton contribute to the dynamics of PCTs?

In a variable environment the interplay of bottom-up and top-down controls determines temporal PCTs as a function of pulse characteristics Fine-scale dynamics shapes the nutrient seascape and creates PCTs via cascading effects of nutrient transfer through the plankton food chain

* PCTs occur at the scale of **water masses**, where constant Psupply conditions lead to spatial PCTs * PCTs occur at the scale of **fronts**, where variable Psupply conditions lead to temporal PCTs * PCTs are controlled by the synergy of bottom-up and top-down controls

Thank you for listening !!

Andrea Doglioli Gérald Grégori Monique Messié Jean-Christophe Poggiale

Contact: laurina.oms@mio.osupytheas.fr

February 19th - Ocean Science Meeting

Monod curves

Bifurcation diagrams

Sensitivity analysis

Grazing tests

* Without grazing (Z=0)

$$\frac{dPO_4}{dt} = P_{supply} + \epsilon_e (1 - \gamma) Z \sum g_i + \sum m_{P,i} P_i + \epsilon_n m_n Z - \sum \mu_i P_i$$
$$\frac{dP_i}{dt} = \mu_i P_i - g_i Z - m_{P,i} P_i$$
$$\frac{dZ}{dt} = Z \gamma \sum g_i - m_q Z^2 - m_n Z$$

Symbol	Definition	Unit	Value	Reference
$\mu_{max,1}$	P_1 maximum growth rate	d^{-1}	1.9872	Baklouti et al. (2021)
$\mu_{max,2}$	P_2 maximum growth rate	d^{-1}	2.7648	Baklouti et al. (2021)
$g_{max,1}$	Z maximum grazing rate on P_1	d^{-1}	3.89	Auger et al. (2011)
$g_{max,2}$	Z maximum grazing rate on P_2	d^{-1}	0.43	Auger et al. (2011)
$K_{P,1}$	P_1 half-saturation constant	$mmolCm^{-3}$	1	This article
$K_{P,1,litt}$	Half-saturation constant of Synecho. and small phyto resp.	$mmolCm^{-3}$	1.82, 6.5	Timmermans et al. (2005), Munkes et al. (2021)
$K_{P,2}$	P_2 half-saturation constant	$mmolCm^{-3}$	3	This article
$K_{P,2,litt}$	Half-saturation constant of A. formosa and diatoms resp.	$mmolCm^{-3}$	2.6, 13	Grant (2014), Munkes et al. (2021)
$K_{Z,1}$	Z half-saturation constant for P_1	$mmol \ Cm^{-3}$	5	Auger et al. (2011)
$K_{Z,2}$	Z half-saturation constant for P_2	$mmolCm^{-3}$	20	Auger et al. (2011)
$m_{P,1}$	P_1 mortality rate	d^{-1}	0.10	This article
$m_{P,1,litt}$	Mortality rate of P_1 in litterature	d^{-1}	0.07, 0.16	Baklouti et al. (2021), Auger et al. (2011)
$m_{P,2}$	P_2 mortality rate	d^{-1}	0.2	This article
$m_{P,2,litt}$	Mortality rate of P_2 in litterature	d^{-1}	0.1, 0.10	Baklouti et al. (2021), Auger et al. (2011)
m_n	Z natural mortality rate	d^{-1}	0.10	Auger et al. (2011)
m_q	Z quadratic mortality rate	$m^3(mmol \ Cd)^{-1}$	0.061	Auger et al. (2011)
γ	Conversion coefficient from P to Z	-	0.6	Auger et al. (2011)
ϵ_n	PO4 Z natural mortality recycling coefficient	-	0.3	This article
ϵ_e	$PO4 \ Z \ excretion \ recycling \ coefficient$	-	0.7	Baklouti et al. (2021)
P_{supply}	Phosphate supply	$mmolCm^{-3}d^{-1}$	/	7

$\mathrm{BioV} = \mathrm{FWS}^{\beta_1} \cdot e^{-\beta_0}$	
$Q_c = \alpha_0 \cdot \operatorname{BioV}^{\alpha_1}$	PI N
$BioM = abundance \cdot \bar{Q_c}$	M

	Menden-Deuer and Lessard (2000)	α_0	α_1
PICO	Protist plankton [*] (line 1)	0.210	0.939
NANO	Protist plankton (line 2)	0.260	0.860
MICRO	Diatoms (line 3)	0.287	0.811

Automated Flow Cytometry

107

10²