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A B S T R A C T  

The aim of this work is to present aggregation methods of hierarchically organized systems 
allowing one to replace the initial micro-system by a macro-system described by a few global 
variables. We also study the relations between the fast micro-dynamics and the slow macro-dynamics 
which can produce global properties. Emergence corresponds to a bottom-up coupling that is the result 
effected by a micro-level at a macro-level. As an example, we present prey-predator models with 
different time scales in an heterogeneous environment. A fast time scale is associated to the migration 
process on spatial patches and a slow time scale is associated to growth and interactions between the 
populations. Preys must go on spatial patches where resources are located and where predators can 
attack them. The efficiency of the predators to catch preys is patch dependent. Perturbation methods 
allow us to aggregate the initial system of differential equations for the patch sub-popniations into a 
macro-system of two differential equations governing the total population densities. We study the case 
of density independent and density dependent migrations. In the latter case, we show that different 
functional responses can emerge in the macro prey-predator model as a result of the coupling between 
the slow and fast systems. 

1. INTRODUCTION 

Ecologica l  systems are complicated in the sense that i f  one wants to describe them in 
details, their dynamics involve many variables and many parameters. Communit ies  are sets 
o f  several interacting species. Individuals belong to different genotypes, phenotypes and age 
classes. They also can be  grouped into different behavioral classes etc. As  a consequence,  
a detailed description of  ecological systems implies that we must deal with many variables 
and that it leads to large scale mathematical models,  i.e. for example a system of  many 
coupled Ordinary Differential  Equations (ODE's) .  It is common to make computer  
simulations of  these systems for very particular values of  the parameters and initial 
conditions. However ,  these simulations represent only a particular situation. 
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Another way is to simplify the Ecological system by considering it from a global point 
of  view. This leads to consider phenomenological macro-models involving few variables 
(for example the total density of  a prey and its predator). The analysis of these systems can 
be performed by describing fixed points, their stability, existence of periodic solutions etc. 
These models are chosen for their simplicity. They represent the Ecological system at a 
macro-level as we preconceive it. 

The approach from these two points of view differs. Ecological systems exhibits many 
facets and the mathematical models take into account particular aspects corresponding to 
a certain space and time window of observation. Our aim is to start with a detailed model 
involving many parameters and variables which describe the system at a micro-scale of 
observation. Then, we use aggregation and emergence methods to get a macro-model which 
describes the system at a macro-scale. For perfect aggregation, we refer to the works of 
Iwasa et  al. (1987, 1989). Our particular method allows to derive a macro model which is 
an approximation of the micro-system. This aggregated macro-model corresponds to one 
aspect of  the complex system. 

We do not aim to get the real and unique model of an ecological system, rather we 
study the compatibility between local and global models. A particular choice of local 
dynamics at a micro scale leads to a global model at a macro scale. E.g., considering 
specific interactions between the individuals leads to a particular global prey predator model 
(such as a system of  two ODE's  for the total prey and predator densities) (as in the case 
of aggregative or repulsive behaviours between prey and predator individuals on different 
local spatial patches). Mainly, this problem is related to a change of level of observation, 

Fig. 1o 

SYSTEM 

Sub-division of a system into sub-systems 1 of first order, themselves sub-divided into 
smaller sub-systems 2 of second order etc. Individuals belongs to the sub-systems. 
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i.e. to a change of space and time scales. Local processes take place fast and small spatial 
ranges while global processes occur over longer times and longer distances. 

The systems we consider are hierarchically organized in the sense that the system can 
be sub-divided into sub-systems. Figure 1 presents a simple representation of such a 
hierarchically organized systems whose importance has been recognized by many authors 
(Allen e t  aL,  1982; O'Neill e t  aL,  1986; Mesarovic et  aL, 1976; Pattee, 1973; Simon, 1962, 
1969; Whyte e t  aL,  1969). In our approach, the internal dynamics within each sub-systems 
takes place fast, it is the microdynamics (Auger, 1982, 1983, 1986, 1989, 1990). The 
interactions between the sub-systems which are weakly coupled correspond to the 
macrodynamics over longer times. The methods that we are going to recall briefly in the 
first section allows to aggregate the micro-system into a macro-system with few global 
variables. These methods also allow us to study the couplings between the different levels 
and, in particular, to look for emerging properties at a macro scale. 

The next sections will be devoted to applications to population dynamics. We are 
studying the relationships between the individual migration behaviours of preys and 
predators on a set of  discrete patches and between the overall growth and dynamics of their 
populations. 

2. S Y S T E M S  O F  O D E ' S  W I T H  D I F F E R E N T  T I M E  S C A L E S  

Now, we will give the main guidelines for the study of aggregation and emergence in 
dynamical systems. We present the method in the simplest way based on perturbation 
methods (Hoppensteadt, 1966; Nayfeh, 1966) and our contribution (Auger & Beno~t, 1993). 
Another approach based on the centre manifold theorem can be found in Auger and 
Roussarie (1994) in which the aggregated model is a Taylor expansion of the small 
parameter. 

2.1 T h e  M i c r o - S y s t e m  

We consider a large model which we call the micro-system. But, we assume that it is 
structured into a certain number N of sub-systems. We assume that the inter sub-systems 
interactions are weak in comparison to intra sub-systems ones. The micro-system is a set 
of weakly coupled sub-systems. In the context of population dynamics, these sub-systems 
can be different sub-populations composed of individuals going on different spatial patches. 
The micro-system is described by a set of ordinary differential equations governing many 
variables which we call the micro-variables. Let N a be the number of micro-variables 
associated to sub-system ct, ct • [1, N]. N is the number of sub-systems. The total number 
of micro-variables is N* = Y~ which is assumed to be large, N* >> 1. This means that we 

ct 
deal with a complicated model involving a lot of micro-variables and parameters. 

Let i be the index for the micro-variables belonging to sub-systems ct of first order. In 
the case of population dynamics, the micro-variables nia(t) are the numbers or densities of 
individuals of sub-population i belonging to population ct, i E [1,...,N~]. Consider the next 
system of ODE's written in the frame of singular perturbation theory, governing the 
micro-variables: 

d c t  N 
-i ff(.1,.2 . . . . .  E . . . . .  .N),(1) £ - -  

d t  f~ = a 
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with 
a ot 

. a  = ("~,"2 ..... "N°)' 
where 

f/a (nl, n2 ..... ~/)  = O(n ca) and f/o# (nl, n2 . . . .  , ~ )  = O(ffa), 

and where e is a small parameter. At this stage, the different functions .f/'~ and f/~P are 
not explicit. 

2 .2 A Q u i c k  D e r i v a t i o n  o f  the M a c r o - S y s t e m  

For each sub-system, we make the following change of variables: 

(.7,,~,.. . , . .~) a a a a a _,(~ , '~,.-. ,"~) (2) 

where n a is the total density of population ct, n a = ~ ni a that  we choose as global 
t 

variables associated to each sub-system ct. The macro-variables are assumed to be first 
integrals for the fast dynamics which is the case of the applications of the next sections. 
Thus, in (2) we keep for each sub-system Na-1  fast equations for the variables 
(n2a,...,n~ a) and the slow equation (second (3)) for the macro-variable n a. The new 
system of equations can be written in the following form: 

ct 
dn i 

--- ~ ( . 1 , . 2  .. . . .  . N )  + l~f~/13 ( . 1 , . 2  .. . . .  ?IN), i E [2,N a] 
at (3) 

N N ~ 
a~a -- E E f , ~ ( " l ,  n2 ..... nN), 
dt ~=1  i=1 

in which we omit the first N ~ equation for sub-system ct. Now, for simplicity, we assume 
that each fast system (4) obtained by neglecting the small inter sub-systems terms of (3): 

t (4) = f ~  (nl,nZ,...,n N), where x -- _ 
d'~ e 

has at least a unique globally stable equilibrium ha* = (nl a°, n2 a°, ..., nNa  °) in the 
positive orthant. Each system (4) is conservative and n a is the first integral of (4). This 
means that we assume an asymptotically stable point for each fast system. The eigenvalues 
associated to the linear parts of (4) at this equilibrium have negative real parts. In general, 
this equilibrium point is dependent on the first integrals (n 1, n 2 ..... nN). This case 
corresponds to density dependence studied in applied sections. Thus, we write the fast 
equilibrium na ' (n  1, n 2 ..... nN). After a short time, the fast part (4) almost reaches the 
equilibrium ,a°(nl ,  n2,..., n N) and the macro-variables n a are almost (with errors of order 
e) solutions of the following aggregated macro-system: 

N N a 

d"a -- E E F,~("I"( "1,"2 ..... " " )  ..... " ' ( "1 , "2 , . . . , " " ) ) .  (5) 
dt ~ffil i-_1 

It is useful to define new variables, the frequencies via(t) having a simple meaning. 
They represent the proportions of individuals in the different sub-populations i of each 
population et: 
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vT(t ) = ,.n'~{t) . (6) 

A normalization relation holds. The sum of the frequencies equals 1 for each vector ct: 

NO, 
¢~t ~ Ct Ct 

Va --- ( V l ' V 2  ..... VNa) ; E V i -- 1 (7) 
i~1 

The stable equilibrium point can be expressed in terms of equilibrium frequencies 
v a" (n l , n  2 ,..., n N) of the fast system and of the macro-variable nQ: 

n'°.*(nln2,...,~ V') = nCt.v(X*(nl n2,o..,KN"). (8) 

The fast part of the micro-system reaches an equilibrium and the macro-system is 
simply obtained by substitution of this equilibrium in the equations for the macro-variables. 
The macro-system is a first order approximation of the micro-system and is given by the 
next relation: 

N N Q 
r,~(n].vl* (.ln2 _Nx nNvN" :rtl _2 nNXl (9) a n a  -- 2E E .  , , . . . . . .  ) , . . . ,  . . . . .  :1 

d t  I~=1 i=1 

This system is the aggregated macro-model which governs the dynamics of the 
macro-variables. It is expressed in terms of the macro-variables themselves. This system 
depends only on the e-perturbation terms of the micro-system and thus it varies at a slow 
time scale. 

3. E M E R G E N C E  O F  G L O B A L  P R O P E R T I E S  A T  T H E  M A C R O - L E V E L  

Now, we are interested in the relation between the micro-model and the macro-model. 
In particular, we want to focus on the emergence of new global properties in the 
macro-model as a result of the connection between fast and slow dynamics. Indeed, the 
aggregation is not only useful because it reduces the dimension of the micro-system. The 
macro-model is not simply a copy obtained by approximation of the micro-model but, it can 
have new qualitative properties with respect to the micro-model. First, we study a case of 
a linear fast system. Then, we look at the more interesting case of a non-linear fast part. 

3.1 L i n e a r  Fas t  S y s t e m :  F o r m a l  E q u i v a l e n c e  

B e t w e e n  M i c r o  and  M a c r o - S y s t e m s  

A case of a linear fast system is found in a density independent migration described in 
section 4.2. When the functions f/a are linear, equilibrium frequencies v a* can be 
independent of  (nt ,n2, . . . ,nS).  This means that the equilibrium frequencies of the fast part of 
the micro-system are constants v a• = cons tan t .  A s  shown by the derivation method of the 
macro-model, the macro-system is simply obtained by replacing the sub-populations ni a by 
nay a° into functions f i  ~ of (9). The macro-system is then given by the following 
equations: 
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N N a 
dna --- E EJ~/~(nlvI*'""nNvN') -- gg (nl'n2'''''~N)" (10) 

d t  ~ 1  i=1 

If  the equilibrium frequencies are constant, it is obvious that the macro-system (10) is 
formally identical to the slow part of the micro-system (1). The functions go a are of the 
same form for the macro-variables n a as the functions f / ~  are for the micro-variables ni a, 

because the substitution of the sub-populations ni a by n% ,a* into functions f/al~ simply 
leads to replace the sub-populations ni a by n a at some proportional constant terms. 
Consequently, the macro-model and the slow part of the micro-model have the same form. 
If  functions f/ctl3 are linear (resp. quadratic etc.) for the micro-variables, functions go a are 
also linear (resp. quadratic etc.) for the macro-variables. No new terms occur in the 
macro-model in comparison to the perturbation terms of the micro-model (we say that there 
is no emergence). However, aggregation has been successful to reduce the dimension of the 
micro-system. 

3 .2  E m e r g e n c e  o f  G l o b a l  P r o p e r t i e s  

When the fast functions f i  a are nonlinear, then, in general the equilibrium frequencies 
v a* are functions of the slow variables (n 1 ..... nN), see section 4.2 (ii). The individual 
migration behaviour is different when there are many individuals or few individuals on each 
patch. This effect can result from aggregative or repulsive effects between individuals on 
each spatial patch. Regarding the fast migration model, it means that the migration rates are 
not constant any more but are now functions of the total populations (nl,..., n N) or even of 
the different patch sub-population densities. When the migration rates are not constant but 
depend on the macro-variables, the equilibrium frequencies are in general functions of the 
total population sizes. Thus, we must write va*(nl,...,nN). This has an important 
consequence for the macro-model. Indeed, the substitution of the sub-populations ni a by 
n %  a* (n 1 ..... n N) into functions f/~13 will now lead to a new macro-system (11): 

Na 
dn  c' (11) 

d t  -- E ~/[~(nLvi*(nl ..... n N )  ..... nNvN* ( n l  ..... n N ) )  
i--1 

This macro-system includes new and different terms with respect to the slow part of the 
micro-system. This is the result of the density dependence of the equilibrium frequencies 
leading to new terms in the macro-model. For each set of values of the slow 
macro-variables, the fast system reaches a new equilibrium. This equilibrium is different 
for each set of macro-variables. This process induces an emergence of new terms in the 
approximated macro-system. 

We say that there is emergence when the macro-model involves new and different 
formal terms with respect to the perturbation of the micro-model. The coupling between the 
fast local and the slow global dynamics leads to emergence of global properties in the 
macro-model. In this case, the macro-model is not a simple copy of the micro-model. 
Aggregation does not only reduce the dimension of a micro-system, but, it leads to a global 
model with new qualitative properties different from the perturbation properties of the micro 
system. In the next sections we shall illustrate aggregation and emergence by applying these 
general methods to population dynamics. 
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4. A T W O - P A T C H  P R E Y - P R E D A T O R  M O D E L  

In this section, we consider two populations, the prey population 1 and its predator 2. 
Both prey and predator individuals can go on spatial patches. For example, the spatial 
patches are sites on which some resources or still refuges can be found. Preys go on the 
patches to feed. Predators also go on these patches to capture them. nja(t) are the 
sub-population densities on patch j of population ct. For general prey-predator models, we 
refer to Murray (1989) and Edelstein-Keshet (1988). 

4.1 T h e  M i c r o - M o d e l  

P r e y  Equa t ion  

To simplify, we shall discuss the case of two spatial patches 1 and 2. Patch 2 is a refuge 
and patch 1 is a resource patch. We assume that predators can only capture preys on patch 
1. For predators, it is the hunting patch. Patch 1 is a common patch for preys and predators 
and patches 2 are refuges for preys and predators respectively. Now, we choose the set of 
differential equations for the prey sub-populations on the two patches: 

(12) 

is a small parameter, ki~. is the rate of patch change or migration rate from patch j 
to i for preys. The prey sub-populations grow logistically on each patch, r~ is the prey 
growth rate on patch i. One may assume that r 1 is larger than r 1 which signifies that patch 
1 is better than patch 2. Important resources necessary for the diets of preys are found on 
patch 1. Preys must go on this patch where predators can attack them. K~ is the prey 
carrying capacity on patch i. I f  the predators get extinct, preys grow logistically on each 
patch i and reach/~1. We assume a Lotka-Volterra predation term. Thus, we assume a 
quadratic predation term based on random encounters between preys and predators on 
patch 1. In this way, we consider that patch 1 is homogeneous and that the law of mass 
action holds for the prey-predator interaction, b~ 2 is the predation rate on patch 1. 

P r e d a t o r  Equa t ion  

For predators, we choose the following two differential equations for the patch 
sub-populations which also correspond to a generalization of the classical Lotka-Volterra 

, 2  2 . 2  2 . .2 21 1. 2 
-- -g21nl+tCl2n 2+¢~,-a l + c  I n l ) n  1, 

d 4  . 2  2 .2  2 ., . 2  2., 
dt -K12n2 +g21nl +~A'-aln2)" 

model with two patches: 
2 dn 1 

dt 
(13) 

Similarly, ki~ is the migration rate from patch j to i for predators, di 2 is the death rate 
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of  the predators on patch i. When predators do not capture preys, their population 
progressively gets extinct, c~ 2 is a constant and positive predation parameter on patch 1. It 
is assumed to be proportional to the previous parameter b~ 2, corresponding to a rate of 
conversion of prey into predator biomass. 

4 .2  E q u i l i b r i u m  o f  the  F a s t  S y s t e m s  

Let us consider separately the fast part which describes how individual preys and 
predators migrate. This fast part is obtained when one neglects the perturbation in (12) and 
(13): 

d n l  1 1 1 1 
d'g -- -k21nl ÷k12n2' 

dn21 . 1  1 ,1 1 
dx -- -g12n2 +K21nl' 

dn2 .2 2 . 2  2 
dz -- -K21nl  +g12n2 '  

2 
dn2 ~2 2 ,2 2 
dx = -K12n2 *r21nl" 

(14) 

This fast system describes the preys and predators patch dynamics. One can easily check 
that this fast system is conservative. The total populations n 1 and n 2 are constants of motion 
for this fast system. Migration does not vary the total population densities. 

Now, two cases can occur: 
- Density independent migration: Migration rates are constants (which is the case of a 

linear fast model). 
- Density dependent migration: Migration rates are functions of the total prey and 

predator populations and (or) of patch sub-populations, ( which is the case of a nonlinear 
fast model). In this case, individuals migrate in a different way when the size of the total 
population to which they belong is large or small. For example, individuals can have 
aggregative or repulsive behaviours. Preys can have a tendency to aggregate on rich patches. 
Predators can aggregate on a patch where preys are abundant. The two previous types of 
migrations will now be studied separately. 

i) Density Independent Migration 

This is tile simplest case, at the fast equilibrium, simple relations (15) hold: 
2 

1" kl12 1" 2* k12 2" 
n 1 -- .TT.n2 and n 1 -- ._Tn2 

k21 /¢21 

(15) 

It is useful to consider preys and predators patch frequencies or proportions of 
individuals on the patches at the fast equilibrium which are the following ones: 
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1" 1* 1 
1" n l  n l  k 1 2  

v I - ~ - ~ - 
1" 1" 1 1 ' 

n 1* n l  + n  2 k12 + k21 

1 ° 1 ° 
1 ° n 2 n 2 k~ 1 

V2 -- - -  1" 1 ° 1 1 
n 1* nl  +n  2 k21+k21 

2" 2" 2 
2" nl  nl  k12 

Vl - - -  2"  . 2 - - - " ~ '  
n2 ° n 2* +n 2 /¢12 + K21 

(16) 

2 ° 2* 
2" n2 n2 4 1  

V 2 -- ~ -- ~ - 2 2 n2" n2"+n2" k12+k21 

Consequently,  when the migrat ion rates kit are constants which corresponds to a density 
independent  migrat ion,  the equil ibrium frequencies are also constant. Then the macro-model  
is obtained by  substitution of  this fast equilibrium in the equations describing the dynamics  
of  the aggregated variables (quick derivation method). In  this density dependent  case, the 
aggregated model  is formally identical to the E-perturbation of  the micro-model  (see section 
3.3 i). 

ii) Density Dependent Migration 
The density dependent  case is much more interesting. Still, two cases can be  

dist inguished,  a total density dependent case and a sub-population density dependent  case: 
- The first s imple case occurs when the migration rates kit are only functions of  the 

total populat ions  n 1 and n 2 and not of  the sub-populations densities. 
- A second and more general case occurs when the migrat ion rates kit are also functions 

of  the sub-populat ions densities ni I and ni 2. 
The first case remains s imple because the total populations are constants of mot ion for 

the fast system (first integrals).  For  the fast system, the total populations are constants. The 
fast equi l ibr ium are parametr ized by  the constants n 1 and n 2. As  a consequence, the 
equil ibr ium frequencies are still given by equations (16) but, the k-parameters are now 
density dependent  kit (n 1, n2), i.e. functions of the total populations.  Then, the equil ibrium 

a 1 2 frequencies which are obtained by  substitution of  expressions ki~ (n , n ) in equations (16) 
a 1 2 also are density dependent,  i.e. are funchons of  the type v k ( n ,  n ). The substltUtaon of  

these density dependent  frequencies into the aggregated model  (11) does emerge a new 
aggregated model .  

The sub-populat ion density dependent case is more general and complicated.  It 
corresponds to the case when migrat ion rates are functions not only of  the total densities 
but  also of the sub-populations,  i.e. ki~ (nl  1, n21, n l  2, n22). As  a consequence, it is then 
necessary to look  for a fixed point of  the fast system which is now composed of  two 
equations (17): 
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, 1 .  1 1 2 2. 1 . 1 ~  1 1 2 2. 1 
-r21(n1,n2,nl ,n~)n 1 + K12 [nl ,n2,nl ,n2)n2 --- O, 

(17) 
. 2  ~ 1 1 2 2x 2 t 2  ~ i 1 2 2\ 2 

- / c 2 1 1 , n l , n 2 , n l , n , 2 ) n  1 + t g l 2 [ n l , n 2 , n l , r l 2 ) n  2 -- 0 .  

System (17) is reduced into system (18) of two variables only by taking into account 
that n 1 and n 2 are first integrals. Thus, (n 1 - n 1) and (n 2 - nl 2) are substituted to n 1 and 
n~ respectively: 

,1  , 1 2 1 2, 1 1 1 2 1 2 1 1 
-K21[nl ,nl ,n ,n )n l+k l2 (n l , n l , n  ,n )(n - n l )  -- 0 ,  

(18) 
2 1 2 1 2 2 2 1 2 1 2 2 2 

- k 2 1 ( ' h " h ' "  ' "  )'11 + /q2 ( ' h , ' h  ,n ,n )(,, -/11) -- O. 

In general, system (18) has several solutions, corresponding to several steady states. We 
assume at least one particular solution which corresponds to a fixed point of system (18) 
in the positive orthant for a certain range of the constants n 1 and n2: 

n '(nl, n2), 
Equilibrium patch frequencies are then obtained: 

v ~ * ( n i ,  n 2)  -_ ; v12*(n1,n 2)  -_ 

:)÷ : )  

(19) 

n21"(nl, n2) + n~*(nl, n 2) (20) 

v21*(nl, n 2) -_ 1-v~*(nl, n2); v~'(n ' ,n  2) -_ l_v~*(nl,  n2). 

It follows that the equilibrium frequencies are also functions of the total population sizes 
n 1 and n 2. Equations (20) show that equilibrium frequencies are total density dependent. 
Moreover, according to the different types of migrations rates (that is to the different types 
of functions ki~ (n 1, n~, n 2, n~)), one can obtain many different types of equilibrium 
frequencies. 

4.3.  O b t a i n i n g  the M a c r o - M o d e l  and  the Func t i ona l  R e s p o n s e  

i) Density Independent Case 

When the migration rates are constant, the aggregated system is obtained by the quick 
derivation method and is given by the following set of differential equations: 

Parameters of (21) 
frequencies: 

d n l  - - r l n  I 1 -  - a 1 2 n l n  29 

at (21) 

dn 2 -_ _d2n2 + a21nln 2. 
dt 

are given in terms of equilibrium prey and predator patch 
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\ 
1/ r l  2 11 r12/ 

r i i i" i i" r i rilvi / + r2~v2l 
- - r l v  1 +r2v 2 and ~ - -  K 1 K1 ' (22) 

d 2 - 2  2" ,2 2" 
-- a l v  1 + a 2 v  2 , 

1" 2" 1" 2" 
a 12 -- bl12Vl v 1 and a 21- -  cl21Vl Vl, 

r 1 is a global growth rate for preys. K i is the global carrying capacity of  preys, d 2 is a 
global death rate for predators, a i2 and a 21 are global prey-predator parameters which 
depend on the proportions of  preys and predators on the different patches at equilibrium. 
In the density independent case, the prey and predator equations are formally identical to 
the slow part of the micro-system (12) and (13), which is the e-perturbation. Local 
predation terms on each patch are quadratic. Global predation terms are also quadratic terms 
(i.e. products of the total prey and predator densities). The law of mass action which holds 
on each patch also holds for the total populations. The global capture term is formally 
identical to the capture term on patch 1 which is proportional to the product of the prey and 
predator densities on this patch, i.e. ni i ni  2. The functional response FR is defined as the 
number of preys eaten per predator and per unit time. In the density independent case, the 
corresponding global functional response in (22) is the Lotka-Volterra one, FR = a i2 n 1. 

The Lotka-Volterra functional response is a very simple one and can be criticized for 
several reasons. In particular, there is no saturation effect concerning the predator appetite. 
The number of  preys captured per predator and per unit time is proportional to the total 
prey density. Thus, when the prey density n 1 is large, a single predator would be able to 
eat a very large number of  preys without any saturation of its appetite, which is unrealistic. 
As a consequence, many other functional responses have been proposed. Now we shall see 
that in the density dependent case, some different FR can be reobtained when one assumes 
particular types of  density dependent migrations. 

ii) density dependent case 

In this section, we consider density dependent migration behaviours of preys and 
predators. We shall discuss the influence of the type of density dependence on the 
functional response which is obtained in the aggregated model. For example, we can assume 
repulsive or aggregative behaviours between individuals on some patches. Preys can avoid 
to aggregate on certain patch because they would be easily detected and captured by 
predators. On the contrary, preys can aggregate to form groups to be better protected against 
attacks of  predators. Predators can aggregate on rich patches where many preys are 
available. Different prey and predator density dependent migration processes can be 
considered, and as we shall see, can lead to various functional responses. 

HoUing function 
In this subsection, we shall obtain the Holling functional response (Murray, 1989). For 

this, we assume constant migration rates for preys leading to constant prey equilibrium 
frequencies. In contrast, we assume that predators have a migration behaviour which is prey 
density dependent. We  assume that predators leave patch 1 (on which preys can be 
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captured) when the prey density is large. At  large prey densities, predators easily capture 
preys and consequently do not spend a long time on this patch. Predators br ing back 
captured preys to their own refuge 2 for example to feed and to take care of the juveniles.  
One can also assume that they capture and eat preys on patch 1 and that they come back 
to the refuge when their appetite is satisfied. We make the following choice of migration 
rates of  predators depending on the prey density: 

k221 2 1 2 (23) -- a21nl and k12 = constant, 

in which a21 is a constant positive parameter, k221 is the migration rate from patch 1 to the 
refuge and is proportional to the prey sub-population on patch 1. When preys are abundant 
on the hunt ing patch, predators easily capture them. Thus, they leave this patch rapidly to 
go back to the refuge. A constant migration rate from the refuge to the hunt ing patch is also 
assumed. Under  these assumptions, the equilibrium patch frequencies are the following 

1 
1 * k12 1" k l l  

Preys:  v I = ~ = constant; v 2 = ~ = constant 

2 2 1" 1 
2" k12 2" a21v 1 n 

Predators: v 1 - ; v 2 - 
k2 2 1" 1 .2  2 1" 1 

12+a21vl n K12 +a21vl n 

ones: 

(24) 

As a consequence, we obtain total density dependent equilibrium patch frequencies of 
predators. When  n 1 is close to zero, v l  2° is nearly equal to 1, i.e. predators spend most of 
their time to find preys which are rare and need a long time for capture. When n I >> 1, 

2* v 1 tends to 0. Predators spend a short time on the hunting patch because preys are very 
2 ° many and thus easy to capture. Similarly, when n I is close to 0, v 2 is almost 0 and when 

n 1 >> 1, v 2. is close to 1. In  this particular case, the substitution of the previous density 
dependent frequencies in the aggregated model (21) with parameters (22) leads to the 
following prey equation: 

dn I = r l n l (  n I ] .12 1" k122 n l n 2  
dt ~ I - K T |  -O1 ! v l  ,_2 2 1" 1 

/ x12 + a21v 1 n (25) 

dn 1 ; r l n  I 1 - . .~T or else dt - " 

This equation exhibits a saturation effect described by Holling. The functional response 
FR is given by the next relation and the parameters of the model are given by (26): 

F R =  
D ÷ n  I 

2 h 12/r2 
k12 v1 ~12 

D -  and k -  
2 1" 2 

a21v I a21 

This functional response of  the aggregated prey equation exhibits a saturation effect and 
is formally different from the functional response on patch 1 which is a Lotka-Volterra 

(26) 
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quadratic one. The saturation effect is the result of the particular density-dependent 
migration process of  predators. Predators adapt their density on the hunting patch with 
respect to the available density of preys. The global functional response is not a 
Lotka-Volterra one but a Holling one. Relationships (26) are also of interest because they 
establish links between the individual and the population levels. 

Ratio-dependent  functional responses 

The main result of the ratio dependent theory is that functional responses not only 
depend on the prey density, but also on the predator density and their ratio (Arditi & 
Ginzburg, 1989; Arditi et aL, 1991; Hanski, 1991). This means that the functional response 
must be a function g of the general form: 

FR -- g(nl/n 2) or else FR -- g (n l / (n2) ' ) ,  (27) 

where m is a positive parameter in the interval [0,1]. When m = 1, it is a pure ratio 
dependent FR. When m = 0, the FR is not ratio-dependent. Intermediate values of m 
correspond to different degrees of ratio-dependence. Now, let us propose a density 
dependent migration model which allows a ratio dependent FR. Assume the following prey 
migration rates: 

1 
1 nl 1 1 (28) 

k12 = c t__  and k21 = ~ n l ,  i 
n 2 

et and I~ are positive parameters, kl= i is the migration rate from the refuge to the 
resource patch which depends on the ratio of prey densities at the resource patch and at the 
refuge, The interpretation can be the following, Preys have a tendency to aggregate on patch 
1 where some food source has been found by some preys, when  the proportion of preys 
on patch 1 is becoming larger, more preys get the information of available food and migrate 
to this patch. When food is available on patch 1, preys detect it and go more frequently to 
this patch to exploit it. 

k~l is the migration rate in the inverse direction assumed proportional to n 1. On the 
contrary, this is a repulsive effect between preys on the resource patch, when  the density 
of  preys is large on the vulnerable patch, more preys leave this patch and return to the 
refuge. One can assume that large densities of preys are easily detected by searching 
predators and that preys tend to decrease their density on the dangerous patch to avoid 
predators. 

A simple calculation shows that the equilibrium patch frequencies for the preys are 
density dependent and are given by the following relations: 

1" Ot 1" 1" (It 
v 1 -- and v 2 -- 1 - v  1 , n 1 > __. (29) 

~n i ~ . 

The last inequality in (29) describes that a frequency larger than I is never reached. We 
assume that n 1 is larger than this minimum density. In our model of migration, the prey 
density is maintained at a constant level nl 1' = v 1. n 1 = ~ on patch 1. Thus, this fast 

migration model corresponds to a process of regulation of the prey density on the patch 
where they can be captured. It can be regarded as a protective effect against predators 
mostly sensible to large prey densities. 
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The global functional response is given by the following expression: 

F R ( n l ,  n 2) -_ °1"12vtl °vt2"n 1 _ kv21"(nl, n2) ,  where k - -  ~-~let t12. (30) 

The global functional response FR is proportional to Vl 2°. Consequently, in order to obtain 
a ratio dependent FR, patch 1 predator frequency at equilibrium also must be ratio 
dependent such as: 

v2"(nl, n 2) -- ~/nl , where ./ is a positive constant. (31) 
(n2) " 

Relation (31) can be obtained with appropriate total density dependent migration rates 
for predators: 

2 kl 2 __ B n  1 ' /c~1 __ C(n2) 'n, (32) 

where B and C are positive constant parameters. We can give the following interpretation. 
Predators are attracted by preys and go more frequently on patch 1 when the prey density 
is large. At the same time, the migration rate from the hunting patch to the refuge is 
proportional to (n2) m. Predators leave more frequently patch 1 when their density is large. 
Predators do not aggregate on the hunting patch to avoid overcrowding by negative 
interactions between them. Under these assumptions, one gets the following equilibrium 
patch frequencies for predators: 

8 .n 1 

2" (n2) m 2" 1 (33) 
v 1 - and V 2 - , 

b .n 1 b .n 1 
i + ~  I+ (.2). (.2). 

with 8 -- B. Then, one obtains the following ratio dependent FR: 

. i  

FR -'- k" (n2)" (34) 
l 

8 .n 1 
1 ÷ ~  

( . 2 ) .  

where k' = k 8. One can summarize the whole process as follows. Preys maintain a 
constant density on patch 1. Predators go more on patch 1 when the prey density is large 
and leave it more frequently when the predator density is large. When m -- 1, one obtains 
a pure ratio dependent FR: 

,1  
¢ 1  

eR -- k' "_____L_ (3s) 
b .n 1 ' 

1÷ 
n 2 

However, we can criticize the particular choice of migration rates (32) because we have 
considered functions of  the total densities and not of the patch densities. Nevertheless, 
migration is assumed to take place fast and thus it is acceptable to imagine that preys and 
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predators which frequently change patches can make an estimate of the total densities of  
the populations. Another choice also leading to the pure ratio dependent FR can be made: 

k12 -- B , 4 1  -- c ,  (36  
/"2 ) 

In this case, predators leave the hunting patch at a constant rate. But, the proportion of 
preys per predator in the refuge determines the rate at which predators go to patch 1. 

(nn__)~) represents the number of  preys available per predator which can leave the refuge to 

patch 1. It is an estimate of the potential gain for a predator leaving its refuge to go on a 
patch to catch preys. Model (36) assumes that predators can make such an estimate. As they 
frequently move from one patch to another, they experience captures and would have the 
ability to estimate potential gains for moving. 

Thus, several choices of migration rates can lead to the same type of  FR. The choice 
of  the migration strategy in order to obtain a particular FR is not unique. However, 
aggregation determines the FR associated to a particular individual behaviour for migration 
in a unique way. 

5. C O N C L U S I O N  

The last section 3 of this article constitutes an interpretation of some functional responses 
on the basis of a scenario of fast migration of predators. A large variety of attack rates have 
been proposed in many prey-predator models. This work shows that it may be possible to 
give interpretations of this "zoology" of different models in terms of the individual 
behaviour of preys and predators. However, our method may be useful in the inverse way, 
that is assuming a particular individual migration behaviour and use the aggregation method 
to derive the global corresponding prey predator model and its associated functional 
response. 

In this contribution, we have focused our attention on the functional response. However, 
equations (21) and (22) show that emerging properties occur not only in the prey equation 
but also in the predator equation. Even more, not only the predation part but also the growth 
part of the prey equation can be changed accordingly to the different types of density 
dependent migrations. Consequently, there is no doubt that the use of realistic migration 
rules for preys and predators can lead to many different types of aggregated prey-predator 
models. Most of these models may be different from the classical phenomenological models 
that are commonly used. Thus, we can imagine that a new generation of global prey 
predator models can be developed from the study of aggregation. 

To conclude, we mention that this general method of modelling aggregation and 
emergence phenomena can be applied for several other cases of population dynamics. For 
example, it can be used in the fast game dynamics. It can also be used to study 
hierarchically organized communities. 
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