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Abstract 
A new model for early diagenetic processes has been developed through a new 

formulation explicitly accounting for a microbial population dynamics. Following a 

mechanistic approach based on enzymatic reactions, a new model has been proposed for 

oxic mineralisation and denitrification. It incorporates dynamics of bacterial 

metabolism. We find a general formulation for inhibition processes for which some of 

other mathematical relations are particular cases. 

Moreover a fast numerical algorithm has been developed. It allows us to perform 

simulations of different diagenetic models in non steady states. We use this algorithm to 

compare our model to a classical one (Soetaert et al, 1996). Dynamical evolutions since 

a perturbation of particulate organic carbon (POC) input are studied for both models.  

The results are very similar for stationary cases. But with variable inputs, the 

bacterial biomass dynamics brings about noticeable differences, which are discussed.  
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Introduction 

Different physical, chemical and biological processes modify organic matter 

deposited on the sediments. Those, which act up to thousand years, are called early 

diagenetic processes. Any estimation of the fluxes of organic matter in the ocean is 

based on the quantification of the early diagenetic processes. Indeed, when deposited on 

the sediment, the organic matter can be trapped definitely in the sediment in some cases 

and its degradation speed depends on the processes involved. 

Among the diagenetic processes, the present paper focuses mainly on the modelling 

of the microbiological ones. In the sediment column, there are some oxic microniches in 

the anoxic layer. Bacteria degrade the organic matter via different metabolisms that 

depend on the physical and chemical sediment properties. The rupture of the oxygen 

gradient has thus a direct effect on the processes used by bacteria to alter the organic 

matter, by inducing RedOx oscillations, which in turn will change the global 

degradation rate. As a consequence, the quantification of these processes and their 

interactions provides a better understanding of the different chemical compounds 

dynamics in the sediments. 

We aim to analyse the dynamics of diagenetic processes in sediment submitted to 

perturbations. These perturbations may be either natural (phytoplanktonic bloom) or the 

result of human activities (oil spill). It is the reason why we explicitly take the 

biological compartments into account since any perturbation should modify living 

communities, which in turn have different responses in their function with respect to 

their environment. In this paper: 

• we present a mechanistic diagenetic model where the formulation of biological 

processes is based on bacterial metabolisms, which involve enzymatic 
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processes; in order to keep a rather simple model at the ecosystem level, we use 

quasi-steady state assumptions on the enzymatic processes; 

• we propose an advanced numerical program (in FORTRAN 90) to perform 

simulations; this program allows us to make simulations of the diagenetic 

system of a few months in a few minutes; this implies that we can study the 

impact of different perturbations scenarios (non-steady states). 

These points provide the basis of a theoretical background for the study of 

perturbations of the benthic environment. In this paper, we only deal with two 

processes: oxic mineralisation and denitrification. This choice is based on the two 

following reasons : (i) we need at least two different electrons acceptors to analyse the 

interaction of two bacterial metabolisms, (ii) we want to work with the simplest model 

and oxic mineralisation associated with denitrification are the main processes at the 

short time scale (few months) in the first centimetres of sediment. Nitrification is a 

process associated to oxic mineralisation and consequently, an extra term is added to 

describe the effect of nitrification on the amount of nitrate. 

In the following section, we recall some generalities on usual diagenetic models in 

order to explain where our approach is different and why it can be useful. The third 

section concerns our new model description. The fourth section is devoted to the 

numerical scheme. Finally, we compare two models (with and without bacterial biomass 

dynamics) and discuss the results. 

Diagenetic models 

Early diagenetic models (Berner, 1980; Soetaert et al., 1996; Boudreau, 1996, 1997) 

provide quantification of fluxes and reaction rates based on measured profiles in 

different sediments. Usually based on the Berner's diagenetic equation (1980), they are 



 5

the most employed models for the benthic system. This equation, applying to solute as 

well as solid species, is a partial differential equation (PDE) incorporating physical 

transport processes and biogeochemical reactions. Its mathematical formulation appears 

under the following general shape: 

 
2

2

C C CD W R
t z z

∂ ∂ ∂= − − Σ
∂ ∂ ∂

 (1.1) 

Time variation = Diffusion + Advection + Reaction; 

with C the tracer concentration, D the diffusion coefficient, W the advection velocity 

and ∑R  the biogeochemical reactions rates.  

• Diffusion process allows local transport of matter from a point to another one 

with random motion (Crank, 1976). This coefficient includes biodiffusion, 

bioirrigation and molecular diffusion effects.  

• Advection is an environmental bulk transport with the velocity W; it is the 

expression of different physical processes like (i) burial linked with particles 

sedimentation at the sediment interface (W sedimentation velocity) (Goldberg 

and Koide, 1962; Guinasso and Schink, 1975; Benninger et al., 1979; Fisher et 

al., 1980; Aller and DeMaster, 1984; etc.), (ii) compaction which corresponds to 

a reduction of sediment volume under the action of overlying sedimentary 

column weights (W is then the particles or interstitial water movement resulting 

of this phenomenon) (Berner, 1980; Boudreau, 1997), (iii) advection phenomena 

linked to benthic organisms activity like the one gathered in “non-local” 

transport of “conveyor-belt” organisms (Fisher et al., 1980; Robbins, 1986; Rice 

et al., 1986; Boudreau, 1997). 
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• Reaction term describes (i) kinetics of the different compounds (organic matter, 

oxygen, nitrate, manganese, etc.) via biochemical reactions, (ii) sinks and 

sources of “non-local” transport model as sediment ingestion by conveyor-belt 

organisms or as irrigation (Boudreau, 1997). 

Berner' s equation is the basis of more complex and more realistic models. For 

instance, Soetaert (et al., 1996) proposes a model with two types of organic matter (with 

different lability) which are submitted to transport (diffusive and advective) and 

biochemical reactions (oxic mineralisation, denitrification, etc.). This model is applied 

in different types of marine sediments, such as deep and coastal environments. In this 

kind of model, attention is paid on the sequence of different biochemical reactions in the 

sediment according to a gradient of decreasing oxygen concentration with respect to 

depth. 

However, in many works, the impact of microbial organisms is not sufficiently 

taken into account. More precisely, only a few models investigate the relations between 

bacterial biomass and organic carbon in biogeochemical models (see for instance 

Boudreau, 1999 in the sediments or Anderson and Williams, 1999 in the column water). 

Generally, the models do not explicitly take into account the dynamics of bacterial 

community. The assumption of steady state for bacterial populations densities is 

implicitly made, which supposes that bacteria are always present. It leads to relative 

simple biochemical terms in the models, which is very useful according to the 

complexity induced by the large number of involved processes. 

Classically, the biochemical processes have the following form (Rabouille and 

Gaillard, 1991, Soetaert et al., 1996; Boudreau, 1996):  
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The inhibition of denitrification induced by the oxygen is described by the mean of 

a decreasing function with respect to oxygen concentration. This function is based on 

empirical arguments which formulation depends on the authors. For instance, Rabouille 

(et al., 2001) has drawn up denitrification process on the following way:  
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These examples show that the biochemical part are usually based on a Michaelis-

Menten kinetics, possibly associated to an inhibition factor in case of competition 

between different electrons acceptors. For the both denitrification process formulations, 

DenitS and DenitR, it can be noted that the inhibition term is large when oxygen 

concentration increases, keeping the denitrification rate low.  

The stationary state assumption for bacterial biomass leads to some theoretical 

limitations. Natural (phytoplanktonic bloom) or anthropic (hydrocarbon layer) 
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perturbations of the environment will cause disturbances in living communities 

governing diagenetic processes; dynamical mineralisation will be modified in return. 

Moreover, some bioturbation processes (Boudreau, 1986) lead to aerobic microniches 

creation in anaerobic sediment (Fenchel, 1996). These oxygenation modifications lead 

to a transfer between redox area, a re-oxidation process and redox oscillations increase, 

inducing a recombining of bacterial communities and thus a modification of bacterial 

metabolisms. Modelling microbial dynamics in relation with bioturbation is then 

important to understand the environment evolution. 

Microbial activities modelling 

Degradation rates 
We propose here a new mathematical model for the sedimentary diagenetic 

processes, based on Berner’s diagenetic equation (1980). Our formulation incorporates 

physical processes and biogeochemical reactions realised by bacteria. It takes explicitly 

bacterial dynamics into account. We will describe differences between a classical model 

composed of biogeochemical reactions developed by Soetaert (et al., 1996) and our new 

model. This comparison will be made in the numerical results section. 

Our interest turns on vertical distribution in the first centimetres of sediment column 

for dissolved oxygen, solid organic carbon (POC), dissolved nitrate and bacterial 

biomass. Reaction terms of our model are obtained from enzymatic mechanisms of oxic 

mineralisation and denitrification chemical reactions.  

Concerning the nitrification process, we only deal with the nitrification associated to 

oxic mineralisation, resulting from the transformation of produced ammonium to 

nitrate. For the sake of simplicity, we have decided to avoid inserting the extra variable 

corresponding to the concentration of ammonium. Indeed, it supposes a complete and 
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instantaneous transformation of ammonium produced by oxic mineralisation. Thus, in 

order to keep rather closed to the real set of processes, we have considered the 

nitrification kinetics proportional to the mineralisation one. The proportionality 

coefficient is denoted Nγ  and we will explain this part more precisely later on. 

The way we use to build the oxic mineralisation rate is a common way in 

biochemistry, but it is rarely developed in biogeochemical works. Since we use the 

same way for building the denitrification rate, we recall the method here.  

The chemical reaction associated to oxic mineralisation could be described 

schematically by: 

 2 1'Org f u Min fk kC O C C Pθ θ θ+ + → → + +  (1.5) 

Organic carbon orgC  can be split up to mineral carbon minC . Available enzymes can 

belong to two states free or used. The amounts of used and free enzymes are denoted θu 

and θf respectively. A temporary enzymatic complex uCθ  is formed during the 

reaction. P1 symbolises the reduced anoxic mineralisation products released by enzymes 

at the end of degradation sequence. k and k' are the reactivity rates. 

The oxygen kinetics, which gives the oxic mineralisation rate, is given by: 

 2
2 f

dO kO C
dt

θ= −  (1.6) 

according to the Mass Action Law. The equation of temporal evolution for θf resulting 

of (1.6) could be written as:  

 2 'f
f u

d
kO C k C

dt
θ

θ θ= − +  (1.7) 
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Let f uθ θ θ= + , (1.7) becomes:  

 ( )2 'f
f f

d
kO C k C

dt
θ

θ θ θ= − + −  (1.8) 

Considering the time scales differences between enzymatic processes and 

biogeochemical processes, the stationary hypothesis of the total enzymes number at 

short time scale could be done. It means, that at the geochemical time scales, 0=
dt

d fθ
 

(Quasi Steady State assumption), and thus: 

 
2

'
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+
 (1.9) 

Entering θf value in equation (1.6), we find:  

 22 2 2
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 (1.10) 

It is the classical form of Michaelis model of the equation (1.2) with 'MinR k θ=  and 

,
'

s M
kK
k

= . 

As for oxic mineralisation, we consider the enzymatic reaction for denitrification 

process. In this case, enzymes react preferentially with oxygen. A system of two 

reactions is needed to describe the complete enzymatic reaction of organic carbon 

degradation: 

 
1 13 2'Org f u Min fk kC NO C C Pθ θ θ+ + → → + +  (1.11) 

 
22 3 3u Min fkC O NO C Pθ θ+ → + + +  (1.12) 
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This set of reactions could be described by the following system of differential 

equations: 

 3
1 3 2 2f u

dNO k NO C k C O
dt

θ θ= − +  (1.13) 

 1 3 1 2 2'f
f u u

d
k NO C k C k C O

dt
θ

θ θ θ= − + +  (1.14) 

Assuming a constant global concentration of enzymes f uθ θ θ= + at short time scale 

(Quasi Steady State Assumption) that is the stationary state of equation (1.14):  

 1 2 2
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Entering this result in equation (1.13): 
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 (1.16) 

The inhibition role of oxygen can be seen through its denominator place. To 

compare this result to Soetaert (et al., 1996) proposal (equation (1.3)) – a classical 

michaelian form with an inhibition function - equation (1.16) can be written as: 
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KInhib is no more a constant but a linear function of NO3. 

 1 1
3

2 2
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Inhib

k kK NO
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= +  (1.18) 
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As a conclusion, we find a denitrification rate rather closed to that used by Soetaert 

(et al., 1996) in which the inhibition 'constant' is no more constant but is nitrate 

dependent. This method provides a mechanistic basis to the denitrification rate used in 

our biogeochemical model. Moreover, finding the usual model through this enzymatic 

degradation process allows showing the biological phenomena evident role in these 

diagenetic processes. 

Bacterial Biomass 
We add a variable for the bacterial biomass, which should be related to the amount 

of available enzymes θ. In the present work, for the sake of simplicity, we assume that 

the total amount of available enzymes is proportional to bacterial biomass B : 

 EBθ =  (1.19) 

This relation is assumed in the present work. Indeed a good description of the 

bacterial growth rate should use an energy budget model to get a relationship between 

metabolic activities and bacterial population growth (Kooijman, 1996). This is the topic 

of a future work. Furthermore, in this paper, to keep as simple as possible, we assume a 

logistic growth of bacterial population, with intrinsic growth rate and carrying capacity 

as functions of substrates (carbon, oxygen and nitrate). Indeed, we assume that the 

intrinsic growth rate is proportional to consumed substrates: the more bacteria are 
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active, the more they duplicate. The carrying capacity is supposed to be proportional to 

available carbon resource, qualifying substrate availability and its accessibility by the 

biomass density. A simple differential equation based on these assumptions is: 

 
( ) 1Bac

B

B B

dB BOM Denit B
dt K
K C

α

γ

  
= + −  

  
 =

 (1.20) 

The coefficient αBac traduces the bacteria population production rate according to 

the resource. When αBac = 1, this production rate is maximal and the bacteria profile 

will be almost proportional to the POC one’s (with γB as proportionality coeficient). We 

choose αBac = 0.3 (see table 1 and fig. 3) because this value seems to be more realistic 

(Goldman and Dennett, 2000). 

Complete model 
We propose a model, which extends usual ones in the sense that it described 

explicitly the bacterial biomass. Moreover, we realised the model in such way that if the 

bacterial biomass is maintained to a constant value then we get a usual formulation. In 

other words, if: 

 ( ), 1B t z =  (1.21) 

then our reaction terms are identical to Soetaert ones (et al., 1996) in the limit of the 

studied processes. 

Reaction part depends on bacteria number, so that without bacteria, organic 

components will not be degraded. Moreover, bacteria do not have their own motion; 

adsorbed to sediment particles, they will be moved with sediment. 



 14

 In our case, porosity is considered to be constant. This relation is used to rely 

dissolved and particular elements: 

 vol particle 1
vol dissolved

φ
φ
−=  (1.22) 

where φ is porosity.  

A four state variables model based on Berner's equation and describing for 

particular organic carbon (noted C), oxygen, nitrate and bacteria population dynamics is 

realised. It contains spatial variation of dynamical fields, our proposed reaction terms 

for oxic mineralisation and denitrification and a bacteria growth term. 
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 (1.23) 

where '
MinR k= , '

1DenitR k= , KInhib is a linear function of nitrogen, KB a linear function of 

POC and αBac is the transformation rate of POC in bacterial biomass (the growth 

efficiency). In this study, we consider spontaneous nitrification reaction of the 

ammonium, produced by oxic mineralisation process. The ammonium transformation 

induces a nitrate increase with the rate Nγ . 
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Numerical schemes 

In order to look for an approached solution of proposed mathematical models, we 

choose finite volume method. Each part of equations is integrated on a small volume 

CV (control volume) where computed values are supposed constant. With Ostogradsky 

theorem, volumes integrals can be changed into surfaces integrals on CV faces 

(Ferzinger et al., 1999) and equation type of the system becomes: 

 ( ) ( ) 0z
V S S V

C Cdv Cwz nds D z nds R C dv
t z

β∂ ∂ + − − = ∂ ∂ 
∑∫ ∫ ∫ ∫

r rr r  (1.24) 

where nr  is the normal vector trough-outer oriented; CVs are based on Cartesian 2D 

mesh (node centred) with irregular steps. Each CV face is labelled with its cardinal 

direction (just North and South in our 1D case). 

This efficient computation method also adds the benefit to integrate naturally the 

mass conservation equation.  

For spatial discretisation, the simplest but accurate method of midpoint rule is used 

for approximation of surface integrals. For example, the integral of the value f at a 

North cell face is: 

 n n n n nSn
F fdS f S f S= = ≈∫  (1.25) 

The same low-level approximation is used for volumes integrals and the value of the 

integral of q is Vqp where V is the CV volume and qp the value of q at the CV centre. To 

approximate values at CV faces, we use linear interpolation between the two nearest 

nodes.  
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The interpolation for diffusive flux is also based on the assumption of a linear 

profile between two consecutive CV centres and, for example, the spatial gradient of C 

at the North face is:  

 N P

n N P

C CC
z z z

−∂  ≈ ∂ − 
 (1.26) 

P points out the present node; lowercase is used for faces and uppercase for nodes.  

Boundary conditions are the particular values given to each equation of the system 

at the frontiers of modelled space. These conditions must be well defined for existence 

and uniqueness therefore for numerical simulations. If the concentration is given at the 

boundary, it’s a Dirichlet condition; if the spatial concentration gradient is given at the 

boundary, it’s a Neumann condition. To represent POC input, mostly dominated by 

bioturbation effects, a Neumann condition is used. For dissolute elements (oxygen and 

nitrogen), concentration at water-sediment interface is defined by a Dirichlet condition.  

For finite volumes method, if the boundary of simulated domain express a physical 

impermeability for an element, it’s not necessary to define a boundary condition 

(advection and diffusion fluxes are null). For bacteria population, we choose to consider 

no sink or source from surface, so no fluxes were calculated through the CV face of 

surface. 

For numerical diffusion, instability problems or computational cost, it’s sometime 

interesting to compute separately each different term of the convection-diffusion 

equation with a well appropriate temporal scheme. Douglas (1956), Peaceman and 

Rachford (1955) proposed this splitting-up idea in first. An explicit method is used for 

the non-linear reaction terms while a more accuracy implicit method is used for the 

transport equation. This splitting-up method can only be used with small disturbances 
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hypothesis, which means that dynamical fields have small local variations on time and 

space. 

For one equation:  

 
( )
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0
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z
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 (1.27) 

Consequently, we consider separately the transport terms and the reactions terms in 

the equations system. First, the time dependent equations of reaction terms are 

calculated and secondly, this partial result is applied for the transport terms to find the 

global result at the next time-step. We obtain for the explicit and implicit Euler method:  
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 (1.28) 

where we used the shorthand notation ( )1n
nC C t t+ = + ∆  and the * indicates that is not 

the final value of the solution at 1nt + . 

To dismiss stability and excessive numerical diffusion problems, we choose an 

implicit resolution method to solve the system of linear equation of transport. However, 

to realise a lot of tests, we need to use accuracy iterative methods like GMRES or bi-

CGSTAB as propose Van den Vorst (1992). We used the Fortran 90 library "smlib 

v1.1" for sparse matrix calculations created by Meese (1998), which proposes routines 

for these iterative methods. Based on these tools, which compute only non-zero 

elements, we have realised accuracy routine for products of sparse matrix, systems of 

linear equation resolution and matrix inversion in our models. 
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Simulations and Numerical results 

Steady State 
One-dimensional simulations are realised in a sedimentary column of 30 

centimetres. A 200 nodes grid with constant steps of 0.5 millimetres on the first 8 

centimetres and increasing for the rest is used.  

We consider sediment porosity (φ) and temperature (T) constant throughout 

sedimentary column (φ = 0.8, T= 15°C). Solute oxygen and nitrogen diffusion 

coefficients (respectively DO2 and DNO3) - corresponding to molecular diffusion and 

bioirrigation, depending on biodiffusion – are also constant in the surface layer of 

sedimentary column (6 first centimetres). Their values are calculated by Soetaert (et al., 

1996) from sediment temperature and porosity, coefficient for temperature dependency 

of diffusion coefficient and molecular diffusion coefficient at 0°C of these compounds. 

We assume sediment bulk constant. Particles sedimentation rate is considered constant 

during time and throughout sedimentary column (W = 1cm/10years). 

All the compounds values, their dynamical fields and associated reactions are 

resumed in the following table.  

Table 1: state variables and parameters 

Our study consists in a comparison of two models. The first one, so-called MODEL 

I, does not take explicitly into account bacterial biomass and is obtained from (1.23) 

where the bacterial biomass is maintained fixed at a unit value ( ) 1, ≡tzB . It corresponds 

to usual types of models. The second model (MODEL II) is that we developed in this 

paper and is actually given by equations (1.23). We start from a steady state 

configuration where almost compounds are degraded and simulate a perturbation. Then 

we analyse the impact of taking the bacterial biomass explicitly into account via the 
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responses of the different solutes concentrations to the perturbations. As a consequence, 

we first research a stationary state with constant input of chemical elements (POC, O2 

and NO3) at the surface. Even if only a few parts of early diagenetic processes are 

modelled here, realistic numerical values are used.  

The coefficient KB, which defines the maximum bacteria number locally present in 

the sedimentary column, depends linearly on POC concentration (equation 1.20). The 

largest the coefficient of proportionality γB, the more will grow the bacteria number in 

the environment and the more mineralisation processes are important. An analyse of the 

effect of this parameter Bγ  on the bacterial biomass at steady state and on the POC 

quantity is presented on figure 2. Bγ  value is chosen to have for the both steady state 

models the same quantity of POC in the sedimentary column.   

Figure 1: γB influence 

In order to have a reference for the comparison between MODEL I and MODEL II, 

we started with the same global mass of POC for both models at steady state, which is 

obtained by putting γB = 2.52E-04. The result is presented in figure 2.  

Figure 2: steady state profiles comparison 

Vertical profiles, at steady state, obtained with both models, are shown on figure 2. 

Starting from the water-sediment interface, POC is degraded by O2 and an exponential 

decreasing of these elements could be observed. The 3NO  concentration is increased by 

the nitrification at the surface. . Mostly important differences can be seen for oxygen 

and nitrate profiles. Model 2 use globally a less quantity of electron acceptor for 

degrading the same POC quantity.  

With defined compounds surface inputs and bacteria grow coefficients, steady 

vertical profiles, where almost elements concentration disappear, are obtained (see 
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figure 2). The differences between both models are coming from vertical repartition of 

bacteria. Assuming that model I is similar to model II if state variable B is fixed at 1, 

comparisons between models are possible. At this steady state, model II bacteria profile 

is almost proportional to POC one’s. This repartition, mostly important in the surface 

layer, activates oxic mineralisation effects. With a weak quantity of biomass, model II 

carry similar results.   

Figure 3:  Bacteria profile 

 

Perturbations 
Starting from the precedent stationary state, a perturbation in POC input is applied. 

This is a theoretical perturbation where the amount of available carbon flux at the 

water-sediment interface is doubled. We aim to understand the bacterial variable 

response to an increased input at the surface. On figure 4 are shown the profiles 

dynamics for both models simultaneously; the outline resulting from the MODEL I 

simulation are represented in solid line while that obtained with MODEL II is in dashed 

line The number of each outline corresponds to the number of evolution day starting 

from the initial perturbation. The high differences for POC concentrations are the 

consequence of the response of bacterial biomass to POC flux increase. 

Figure 4: both models profiles comparison 

The POC is half-degraded in the first centimetres upward layer. The system needs a 

long time to come back to a steady state, which is not yet reached after more than 1000 

days for the MODEL I. The oxygen concentration decreases fast and anoxic conditions 

reach the 2 centimetres layer after a month. When the new equilibrium state is 

approached, the sediment is anoxic after 1 centimetre deep. Nitrogen concentration 

starts to vanish in the both models only after few days when POC penetrate in a weakly 
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oxic layer. The nitrogen peak concentration comes near the surface to settle down at 2 

millimetres deep. 

Even if, both models have similar trends, for MODEL II, POC concentration 

burying is very limited and a new equilibrium state seems to be reach faster. 

Figure 5: bacteria evolution 

The bacterial biomass dynamics follows that of POC concentration. This increasing 

biomass has an important influence POC disappearance. These simulations show a 

problem with our mathematical model formulation since, even when there are no 

electron acceptors, bacterial biomass is still important. This artefact can be avoided by 

adding terms corresponding to biomass loss (maintenance, mortality). This will be done 

in a future work. 

Figure 6 presents the strength of the biogeochemical processes, oxic mineralisation 

and denitrification, that are taken into account in the models presented in this paper. 

Both models are presented on the same figure for comparison. Once again, we can see 

the role of the extra variable associated to bacterial biomass. Indeed, it can be seen that 

the oxic mineralisation process is exacerbated and denitrification process is reduced in 

MODEL II with respect to MODEL I. The deposition of organic matter leads to an 

intense bacterial production, which in turn is translated into these higher 

biogeochemical activities. This mineralisation activity leads to a nitrate production and 

an activity peak of denitrification at to millimetre deep. 

Figure 6: reactions intensity comparison between models 

Finally, we end this comparison with that of the matter assessment on the whole 

sediment column. This step should be important in practice since it concerns the role of 

modelling. Indeed, this type of models is often used to calculate assessment in order to 

know, for instance, if the sediment is a source or a sink of carbon, nitrogen, and so on. 
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The results are presented on figure 7. We can see that the POC quantities are very 

different for both models. However, we can also note that the significant differences for 

oxygen and nitrogen concentrations at the start of the perturbation vanish with 

compounds disappearance. The proportional increasing of bacteria biomass accorded to 

the resource guard the sediment column against POC buries. 

Figure 7: Assessment amounts comparison 

Conclusion 

We presented a diagenetic model where the bacterial biomass is explicitly taken into 

account. We built the model on a mechanism based on enzymatic processes. We then 

obtained the model at the global scale by using time scales arguments and the quasi-

steady state assumption. Dilão and Domingos (2000) suggested this method to build 

trophic chains; we show here that this approach is even more powerful and is useful to 

build general ecosystem models on mechanistic arguments. This method is a particular 

case of the aggregation of variables method described in Auger and Poggiale (1998) for 

example. 

We have shown that the model without explicit bacterial biomass gives significant 

differences in the dynamics of the profiles as in the assessments. We shall resume three 

points, which we consider as important in our approach. First of all, we note that the 

added particulate organic carbon is fast degraded in bacteria are taken into account: 

when the environment is enriched, the bacterial biomass is enhanced in the upper 

sediment layer. This phenomenon can not be simulated by model I which exhibits an 

organic matter burial in deeper layers. The second point concerns the processes 

intensities (oxic mineralisation and denitrification). Simulations show that the former is 

enhanced at the sediment surface with model II while the latter is reduced. This can be 
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the result of the strong activity due to large bacterial biomass in the oxic zone. Since the 

POC is fast consumed, the deeper layer is poorer with respect to organic matter and thus 

the denitrification intensity is smaller. In model I, since the bacterial biomass is 

constant, the added carbon is burying and transported in anoxic zone where it is 

denitrified. This remark is corroborated by the nitrate profile simulated by both models: 

model I exhibits a low nitrate concentrations profile with respect to model II. The last 

point deals with the assessments simulation: we see that the POC amount in the 

sediment is much larger in model I than in model II.  This is the result of the previous 

points. However, we must say that there is no bacterial biomass loss in our model. This 

loss should in fact be a source of POC and a more complete model should give a lower 

difference in the assessment. 

From a numerical point of view, considering diffusion and convection rates, use of 

an implicit temporal scheme was not necessary, but these simulations had allowed 

testing the computational speed and quality of results relatively to time and space steps. 

Finite volume method seems to be well appropriate for this kind of modelling. The 

program was created for simulate easily each diagenetic model based on Berner 

equation and this first use is satisfactory. The program can realise 2D simulation too, 

and simulations of dynamical evolutions around macrobenthos perturbation will be 

tested – for these cases, the efficiency of the chosen numerical discretisation could be 

tested. 
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Caption of table and figures 

Table 1: state variables and parameters - recapitulative table of notation, units, description and initial 
value of state variables and parameters used in the MODELS I and II. 

Figure 1: γB influence - analysis of the effect of proportionality coefficient γB, included in the expression 
of the carrying capacity KB (equation 1.20), on the bacterial biomass at steady state and on the POC 
quantity. 

Figure 2: steady state profiles comparison - vertical steady state profiles comparison of POC, O2 and 
NO3 between the MODEL I (in solid line) and the MODEL II (in dashed line) with the same global  mass 
of POC (γB = 0.024). 

Figure 3: Bacteria profile - vertical bacterial biomass profile with model II (dashed line) compared with 
POC profile (solid line). At steady state, both profiles are proportional. As a reference, a vertical straight 
line indicates the value of bacterial biomass assumed by model I. 

Figure 4: both models profiles comparison - profiles evolution comparison of POC, O2 and NO3 
concentrations between the both models. The outline, resulting from the model I simulation, is 
represented in solid line and in dashed line the profile evolutions of model II. The number associated to 
each outline corresponds to the number of evolution day since the initial perturbation. 

Figure 5: Bacteria profile evolution – profiles of bacteria for model II compared with POC profiles 
evolution 

Figure 6: reactions intensity comparison between models - strength comparison of the biogeochemical 
processes (oxic mineralisation and denitrification) between the MODEL I (in solid line) and the MODEL 
II (in dashed line). The number associated to each outline corresponds to the number of evolution day 
since the initial perturbation. 

Figure 7: Assessment amounts comparison - temporal evolution comparison of POC, O2 and NO3 
amounts in the whole sedimentary column between the MODEL I (in solid line) and the MODEL II (in 
dashed line). The bacterial biomass of the MODEL II has been multiplied by 4 to adjust its outline to the 
POC one's. 



 30

Table 1 

Notation Units Description value 

State Variables  

C  µmol.l-1d-1 Particulate Organic Carbon (POC) concentration 
(surface concentration for stationary state) 9000 

O2 Oxygen concentration (surface) 130 

NO3 







 µmol.l-1 
Nitrate concentration (surface) 20 

B % Bacteria number - 

Parameters  

Physical and numerical geometry  

zmax cm Maximum depth of the sedimentary column 30 

N number Grid number  300 

∆z cm space step (for first 8 cm) 0.05 

∆t d Time step 0.001 

Physical fields and constants  

W cm.d-1 Sedimentation velocity  1cm/10 yr. 

DO2 cm2.d-1 Global diffusion coefficient for oxygen (0 - 6 cm) 3.0 

DNO3 cm2.d-1 Global diffusion coefficient for nitrogen (0 - 6 cm) 2.7 

DM O2 cm2.d-1 Molecular diffusion coefficient for oxygen  1.0 

DM NO3 cm2.d-1 Molecular diffusion coefficient for nitrogen  0.9 

φ % Porosity 0.8 

Biological  

DB DC cm2.d-1 Global Biodiffusion coefficient for bacteria and POC 
(0 - 6 cm) 0.05  

αBac l.(µmol C)-1 Transformation rate of POC in bacterial biomass 0.3 

γB %.(µmol C)-1 proportionality coefficient to POC for environment 
capacity of bacteria  2.52E-04 

Biogeochemical  

RMin, 
RDénit 

d-1 Maximum degradation rate of POC in coastal area for 
oxic mineralisation and denitrification 0.04 

Ks, M µmol O2.l-1 Half-saturation constant (HSC) for O2 limitation in 
oxic mineralisation  3 

Ks, D µmol NO3.l-1 HSC for NO3 limitation in denitrification 30 

KInhib
 µmol O2.l-1 HSC for O2 inhibition in denitrification  10 

γMin mol O2.(mol C)-1 Mol O2 used per mol of POC in oxic mineralisation  1 

γD mol NO3.(mol C)-1 Mol NO3 used per mol of POC in denitrification 0.8 

γN mol NO3.(mol O2)-1 Mol NO3 create per mol of O2 in nitrification .14 
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