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We study a general predator-prey system in a spatially heterogeneous environment. 
The predation process, which occurs on a behavioural time-scale, is much faster than 
the other processes (reproduction, natural mortality and migrations) occurring on the 
population dynamics time-scale. We show that, taking account of this difference in 
time-scales, and assuming that the prey have a refuge, the dynamics of the system on 
a slow time-scale become donor-controlled. Even though predators may control the 
prey density locally and on a behavioural fast time-scale, nevertheless, both globally 
and on a slow time-scale, the prey dynamics are independent of predator density: 
the presence of predators generates a constant prey mortality. In other words, in 
heterogeneous environments, the prey population dynamics depend in a switch-like 
manner on the presence or absence of predators, not on their actual density. 
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1. INTRODUCTION 

The majority of predator-prey dynamic models considered in the ecological lit- 
erature have the following general form: 

dN 
- = f (N)N - g(N, P)P, dT 

dP 
-=eg(N,p)p-/JP, dt 

(la) 

(lb) 

where N and P are, respectively, the densities of prey and predators, F(N) is the 
prey growth rate in the absence of predation and EA. is the food-independent predator 
mortality rate, which is assumed to be a constant. The trophic function g(N, P) 
(also called the functional response) is the amount of prey eaten per predator in a unit 
of time. In the predator equation (lb), sg(N, P) describes the per capita predator 
production (the numerical response), where e is the trophic efficiency. The form of 
(1) assumes that the growth rate of predators is proportional to the predators’ impact 
on the prey growth rate. Although not all models make this hypothesis (e.g., Getzf 
199 1: Berryman4et al., 4 1995: see also Michalski’& aZ.f71997),’ we wilI consider a 
model of type (1). 

In most predator-prey models the functional response is assumed to be a function 
of the prey density only (prey-dependent predation): g(N, P) = g(N). This re- 
flects the assumption that the predator density does not have any direct effect on the 
instantaneous individual feeding rate. One of the consequences of this assumption 
is that the equilibrium prey density [determined directly from the equilibrium so- 
lution of the predator equation (lb)] does not depend on the prey growth function, 
f(N). In particular, changes in the prey-carrying capacity do not affect the prey 
equilibrium density-they are only followed by changes in the predator equilib- 
rium density. Thus, in such systems, the predators control the prey density and 
the dynamics of the lower trophic level depend entirely on trophic activities of the 
higher trophic level. A well-known predator-prey model of this kind is that with the 
Holling type II functional response. Models with prey-dependent trophic function 
g(N), generalized to trophic chains of several trophic levels, demonstrate top-down 
trophic cascades: the top predator trophic level can directly depress the level below 
it; such depression then cascades indirectly as the lower trophic level is released 
from consumptive pressure and increases in biomass. The trophic cascades lie at 
the foundations of the ‘green world’ hypothesis (Hairstonget aZ.B 19603 and it has 
been suggested that they occurred in several aquatic systems [see Strong’(?l992)%r 
review]. However, top-down trophic cascades are not common in nature: the large 
majority of them have algae at the base, and most are in isolated, discrete freshwater 
habitats, streams and mesotrophic lakes (Strong:?99238 

The alternative to top-down control is bottom-up (or donor) control. The term 
‘donor control’ was first used by Pimme 982)% relation to predator-prey systems 



Emergence of Donor Control 1151 

in which the donor (prey) controls the density of the recipient population (predator) 
but not the reverse. Mathematically, this means that the prey equation does not 
depend explicitly on predator density. In such systems, equilibrium prey density di- 
rectly follows changes in the prey-carrying capacity, which is in contrast to systems 
dominated by top-down control, such as models with prey-dependent predation. A 
classical example of donor control is a predator-prey system in which the predators 
kill mainly prey individuals likely to die because of other reasons, including old 
age and starvation (Pimm?q982j? 

In the ecological literature, the term donor control has been extended to a very 
wide meaning. In general, donor control refers to direct or indirect dependence 
of community structure (abundance, distribution, diversity) on factors producing 
variation at lower trophic levels (Menge:3992?! In this paper, however, we restrict 
ourselves to the following mathematical definition of donor control: a predator- 
prey system is donor-controlled if the prey equation does not depend explicitly on 
the predator density. 

Arditi and Ginzburgy1989)fargued that the trophic function should be calculated 
on the slow time-scale of the population dynamics at which predator-prey models 
of type (1) operate-not on the fast behavioural time-scale. The trophic function 
on the slow time-scale may be completely different from the behavioural response 
on the fast time-scale (Hanskitq991j!’ In this paper, we demonstrate rigorously 
how, on the slow time-scale, apparent donor control emerges from a detailed model 
with spatial heterogeneity and two time-scales. In particular, we show that, when 
predators are very effective and the prey can take refuge, the global predator-prey 
system on the slow time-scale exhibits donor-controlled dynamics. Then, the pres- 
ence of the predators has a dramatic depressing effect on the prey abundance but 
the prey dynamics are apparently independent of the predator dynamics. In hetero- 
geneous environments, the slow time-scale prey dynamics strongly depend only on 
the presence or absence of very effective predators, not on their actual density. 

In the next section, we present the biological rationale that underlies the as- 
sumptions of our model. Then in Section 3, we propose a model that fulfils these 
assumptions. The model contains large and small terms in order to take into account 
the different time-scales on which different processes take place. The feeding rate 
on the fast behavioural time-scale is assumed to depend on the local prey density 
alone. In Section 4 we use perturbation theory to demonstrate that, on the slow 
time-scale, the dynamics of predators depend on that of the prey and that the prey 
dynamics become apparently independent of predator dynamics. In Section 5 we 
show by example how an increase in predation strength can change the behaviour 
of the predator-prey dynamics from those determined by top-down effects to those 
controlled from the bottom. In Section 6 we generalize our results of Section 4 by 
showing that, under a weak condition on the behavioural feeding rate, prey refuges 
and strong predation always lead to apparent donor control on the slow time-scale. 
Section 7 is devoted to a comparison between donor control and ratio-dependence 
in the context of this paper. We discuss our results in the final section. 
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2. BIOLOGICALRATIONALEOFTHEMODEL 

In previous papers (Auger and Poggiale? 19968 Michalski’k aZ?T 1997j7we pre- 
sented a method of obtaining population-level dynamic models from models at a 
detailed, behavioural level of description. In Michalskig. al. ‘(‘I 997):?ve considered 
a multi-patch predator-prey model, the dynamics of which contained two time- 
scales: a fast one, associated with migrations between patches, and a slow one, on 
which interactions, reproduction and mortality occur. The methods of perturbation 
theory enabled us to show how the details of individual behaviour on the fast time- 
scale determine the population dynamics on the slow time-scale. We showed how 
the aggregated functional response on the slow time-scale emerged from the more 
detailed description on the fast time-scale. In the present paper, we use the same 
methods, but we consider a different hypothesis concerning the time-scales: the 
fast process is assumed to be predation rather than migration. Indeed, empirical 
studies on fragmented populations demonstrate that within-patch processes often 
occur faster than inter-patch dispersal. 

Nature is not homogeneous. Abiotic and biotic factors form complex structures 
that modify in a non-uniform way the space in which species live. Spatial het- 
erogeneity in predator-prey systems means that predation pressure varies from on 
place to another. There are places where predation is strong, places where it is 
weaker, and places where it is practically non-existent. Therefore we will study 
a predator-prey system in a multi-patch environment in which each patch is sup- 
posed to be homogeneous. Arditi and SaYah? 1992)%lemonstrated experimentally 
that in spatially homogeneous systems, one might expect prey-dependent predation. 
Therefore, we assume that the feeding rate within a given patch depends only on 
the local prey density. 

Commonly, when predators are placed together with their prey species in a ho- 
mogeneous space, their dynamics bring the prey density to a very low value. As a 
result, the prey becomes extinct, followed closely by the predator. Such dynamics 
have been frequently observed in laboratory experiments with a homogeneous envi- 
ronment (Gausell9347 Huffakerfg 958~%uckinbill~f 973:%974)? When a predator 
species causes the extinction of its prey in a homogeneous environment, the preda- 
tion must be very intense. Therefore, we will consider that predation within a given 
patch is very strong and much more important than all other processes. A refuge 
patch, where the prey are free from predation, will allow the coexistence of the two 
species. 

3. THEMODEL 

We study a predator-prey system in a multi-patch environment. For the sake of 
simplicity we consider two patches only: one accessible to both prey and predators 
(patch 1) and the other one being a refuge for the prey (patch 2). Each patch is 
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supposed to be homogeneous. We assume that the feeding rate in patch 1 depends 
only on the local prey abundance. We assume that predation in patch 1 is stronger 
than all other processes. Consequently, in this patch, the prey abundance quickly 
tends towards zero. This does not mean that all the prey disappear---only those 
accessible to predators. The prey refuge (patch 2) constitutes a reservoir of prey. 
We suppose that the prey migrate between the two patches randomly. The growth 
of prey in each patch in the absence of predators is assumed to be logistic. The 
numerical response is taken to be proportional to the feeding rate. 

All these assumptions can be summarized in five points: 

(1) There are two patches, one refuge patch for prey and one patch for hot :h 
predators and prey, the prey can migrate between these patches. 

(2) Predation is the strongest process. 
(3) In the predation patch, the feeding rate is prey-dependent. 
(4) In each patch the growth of prey is logistic in the absence of predators. 
(5) The numerical response of predators is proportional to the feeding rate. 

The following model fulfils all these assumptions: 

dP 
P 

eANl 
- = 
dz l+CNr --EILL ’ (2c) 

where Ni is the prey abundance on patch i, P is the predator abundance, mij is 
the migration rate from patch j to patch i, e is the conversion efficiency, p is the 
predator mortality rate, and t is the time. The local feeding rate in patch 1 is given 
by Holling’s ‘disc equation’ (Holling:q 959$? 

s(Nl) = 
ANI 

1 + CNr’ (3) 

and depends only on the local prey abundance. In (2), all parameters (except r) 
are of the order of 1. E << 1 is a small dimensionless parameter and its presence 
in (2) shows explicitly that predation is much stronger than other processes. Note 
that the mortality rate of the predators is assumed to be a slow process. Otherwise, 
as the abundance of accessible prey quickly reached a small value, a mortality 
rate of the order of 1 would be too strong and would lead to the extinction of the 
predators. As we will show later, the system (2) can have positive equilibria for 
both prey and predator densities. Note that in (2) the conversion efficiency is of 
the order of 1; however, it should not exceed 1 in order to assure the conservation 
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of mass. Nevertheless, it can be much smaller than 1 and, in that case, this would 
be technically equivalent to putting E in front of the r.h.s. of (2~). In that case 
the predator dynamics would rapidly become slower than the prey dynamics, but 
our results concerning the overall dynamics on the slow time-scale would remain 
unchanged. 

One may raise an objection concerning equation (2a): if the predator abundance, 
P, is very small, then the predation term in (2a) can be smaller than other terms 
and thus the assumption 2) would not be fulfilled. Indeed, in our model we require 
that A P/( 1 + CNi) be of the order of 1. This means that, if ZVi remains in a given 
closed interval (which can be large if E is small), then the predator abundance must 
be of order of l/A. The results presented in the next section remain valid as long as 
this condition is satisfied. This is not a very restrictive condition. Indeed, we will 
see that the system (2) has a positive attractive equilibrium and it suffices that the 
predator equilibrium abundance is at least of the order of 1 /A and that assumption 2 
is fulfilled. 

4. FROMTOP-DOWNTOBOTTOM-UP 

In patch 1, predation is very strong [see equation (2a)]. As a result, the prey 
abundance in patch 1 rapidly reaches a small value and ceases to be an independent 
variable. It becomes a function of the other two independent variables: ZVr = 
Nr (Nz, P), which can be described in terms of the asymptotic expansion by (see 
Appendix for a more formal derivation of the results of this section): 

Nl = GWl(N2, P) + O(F2). (4) 

One can neglect the rapidly disappearing transient dynamics that occur for large 
Nr, by substituting (4) into (2) to obtain 

dN1 - = 
dt 

e(--Am1 P + m1zNz) + U(E*), 

dP 
- = .cP(eAwl - ,u) + O(E*). 
dt 

From (4), (5b) and (5~) we have 

dN1 t3N1 dP aN1 dN2 -=-- --= 
dt ZIP dt 

+ 
aN2 dz 

O(E2). (6) 

Comparing the terms of order of E in (5a) and (6) we obtain 

(7) 
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Substituting (7) into (5) and summing up the two prey equations we obtain the 
aggregated model that describes the dynamics of the system (2) on the slow time- 
scale: 

dP 
- = em12N - pP + O(E), 
dt 

where N = N1 + N2 is the total prey abundance and t = ET defines the new slow 
time-scale, and 0 (E) denotes terms of order of E. 

The system (8) is structurally stable for E = 0, i.e., its dynamic behaviour does 
not change qualitatively if the system is slightly perturbed. Therefore, in (8) we can 
neglect the terms of order of E and the qualitative behaviour of the system remains 
unchanged. The resulting model is: 

dP 
- = eml2N - pp. 
dt 

The solutions of the initial model (2) are rapidly close (with errors of order of E) 
to the solutions of (9) (see Appendix). This means that, on the slow time-scale, 
the dynamics of system (9) approximate that of the full initial system (2). Indeed, 
Fig. 1 shows that if E is small enough, the trajectories of the full system converge 
rapidly towards those of the aggregated systems. 

From (9a) we see that the prey dynamics are independent from predator abun- 
dance. The dynamics of predators depend, however, on prey abundance. This is 
a characteristic feature of donor control: the predators have no effect on the prey, 
whereas they themselves depend on prey availability. On the detailed level of de- 
scription, the behavioural, fast time-scale feeding rate (3) was prey-dependent and 
thus predators controlled locally the prey abundance (top-clown control). When we 
look, however, at the slow time-scale dynamics on the population level, bottom-up 
control appears. Thus, when we pass from local to global and from short time-scale 
to long time-scale, we pass from top-down to bottom-up control. 

However, the donor control in the system considered here is only apparent: if the 
predators are reduced, by external factors, to a very small abundance or removed, the 
assumption of strong predation is no longer valid. In this case, the prey population 
will increase to a value determined by the carrying capacities of both patches, K1 
and K2, and may be much higher than in the presence of predators. Thus, an 
efficient predator species can suppress the abundance of its prey by confining them 
to refuges but, as less and less prey are available outside the refuges, predators have 
an ever-decreasing effect on the prey population. Donor control dynamics described 
by (9) rapidly beings to dominate. 
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Figure 1. Phase portraits of the complete system (2) (dashed lines) and corresponding 
ones of the aggregated system (9) (solid lines). The values of the parameters are: r = 2, 
K~=5,K~=12,m~~=m~~=1,A=1,C=1.~=0.7.(a)s=0.05,(b)~=0.1, 
(c) E = 0.3, (d) E = 0.5. One sees that, (a) if E is small the trajectories of the complete 
system are rapidly very close to trajectories of the aggregated system, i.e., the approximation 
is good after a very short transient phase. When E = 0.5 (d) the approximation is very bad. 
(b) and (c) show phase portraits for intermediate values of E. 

The system (9) has a stable equilibrium given by: 

This equilibrium is positive if the prey initial growth rate Y is larger than the migration 
rate to patch 1. If the equilibrium value of the predator abundance is at least of the 
order of l/A then, for sufficiently high initial predator abundance, this abundance 
remains in the application domain of our method. If, however, the equilibrium 
predator abundance (lob) is much smaller than 1 /A, then the assumption of strong 
predation in patch 1 is not fulfilled and the system (2) cannot be aggregated to give 
the donor-controlled system (9). 

Note that, even if the local behavioural feeding rate (3) saturated for high local 
prey densities N 1, the system (9) does not contain any saturation term for predators. 
This is due to the fact that, since predation in patch 1 is very strong, the predators 
rapidly deplete their available resources. The remaining prey, while being able to 
support (via slow migrations) a non-zero abundance of predators, do not suffice to 
saturate them. The behavioural feeding rate (3) saturates for high N1 but due to 
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the strong predation on patch 1, Nr rapidly decreases to a very small value and the 
saturation term, CNt in the r.h.s. of (3), can be neglected. 

Note also that non parameter of the behavioural feeding rate (3) enters explicitly 
into the aggregated system (9). This suggests that the details of predation on the 
fast time-scale are unimportant for dynamics on the slow time-scale. We explore 
this suggestion in Section 4, after an example illustrating the theoretical results of 
this section. 

5. EXAMPLE 

In order to illustrate the theoretical results of Section 4, we consider a predator- 
prey system described by (Z), where we abandon the parameter E and attribute 
numerical values to the remaining parameters: 

dN1 - = AN1P +rNl (1 - 2) +m12N2 -m21N1, 

g =~~~?- 2) +rnz~Nl --ml2N2, 

dP eANl 
- = 
dt 

P 
l+CN1-P 

(1 lb) 

(1 lc) 

with A = 0.25, C = 0.05, e = 0.25, p = 0.1, r = 1 and ml2 = rn21 = 0.1. 
Suppose now that patch 1 occupies 90% of the total space, the remaining 10% 
being the prey refuge (patch 2). This can be represented in our model by the 
carrying capacity of patch 1 being equal to 90% of the total carrying capacity: 
Kr = 0.9K, K2 = O.lK, where K is the carrying capacity of the total space. 

Figure 2 shows an example of the predator-prey dynamics in a system in which 
the carrying capacity changes periodically and abruptly between K = 5 and K = 4. 
In the absence of predators, the prey abundance would simply vary between 5 and 
4. If predators are present and predation is weak (A = 0.25) then the mean prey 
abundance and the predator abundance follow a pattern characteristic of top-down 
controlled systems: the prey abundance remains almost constant (apart from short 
transients) and the variations of the primary productivity are followed by the predator 
abundance only (Fig. 2a). If predation is strong (A = 1, equivalent to decreasing E 
four times), the same predator-prey system shows dynamics which can be clearly 
identified as donor-controlled: the variations of the predator abundance follow those 
of the prey (Fig. 2b). 

The reason for this behaviour is clear: on one hand, when predation is weak, then 
the prey are everywhere and the total prey abundance is determined mainly by that 
in patch 1 (because it occupies 90% of the total space), where they are controlled 
by the predators. Therefore, the overall dynamics are similar to those regulated by 
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Figure 2. The densities of the prey (solid line) and the predator (dashed line) of the system 
described by (11). The primary productivity (K) jumps abruptly every 500 time units 
between K = 5 and K = 4. (a) A = 0.25 (weak predation). The pattern is characteristic of 
a system with top-down effects: the prey density remains almost constant and the variations 
of the primary productivity are followed by the predator density only. (b) A = 1 (strong 
predation). The pattern is characteristic of a donor-controlled system: the variations of the 
predator density follow those of the prey. 

top-down effects. On the other hand, when predation is strong, there are almost no 
prey in patch 1 and the total prey abundance is determined mainly by that in patch 2, 
where predators have no effect. Thus, in this case, the prey abundance is apparently 
not affected by the predators; the latter, however, depend on the slow migration rate 
of the prey out of patch 2, controlled by the prey density in that patch. Therefore, 
strong predation results in overall dynamics which are apparently donor-controlled. 

6. GENERALIZATION 

In this section we relax the assumptions 3-5 from Section 3 and show that the 
space heterogeneity and strong predation are sufficient conditions for donor control 
to occur. As before, we consider a system on two patches. 
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Let the behavioural feeding rate on patch 1 (the predation patch) by any function 
of Nt and P that monotonically increases with the prey density and satisfies 

g(O, P) = 0, (12a) 

ag(Nl, P) 

aN1 
= O(l), 

Nl=O 
(12b) 

i.e., the feeding rate g (Nt , P) is very sensitive to changes in the prey density when 
prey are rare. In the previous sections we assumed that the numerical response 
of predators was proportional to the feeding rate; now it may be any increasing 
function of it, 

ff(N, PI = fCg(N, P)), (13) 

that satisfies H(0) = 0. The prey growth rate in the absence of predators may be 
of any form. The only condition is that it should be self-limiting in order to avoid 
an explosion of the prey population which may invalidate the assumptions of the 
model: if the prey density becomes too high, then the migration terms may become 
larger than the predation term. 

As before, we summarize these conditions in five points, the first two of which 
remain unchanged: 

(1’) There are two patches, one refuge patch for prey and one patch for both 
predators and prey, the prey can migrate between these patches. 

(2’) Predation is the strongest process. 
(3’) In the predation patch, the feeding rate g (Nt , P) is zero for Nr = 0 and is 

very sensitive to changes in the prey density when the prey are rare. 
(4’) In each patch the growth of prey is self-limiting. 
(5’) The numerical response of predators is an arbitrary function of the feeding 

rate satisfying H(0) = 0. 

The following model satisfies these conditions: 

dN1 
- = -g(Nl, PIP + ~(fl(Nl)Nl + ml2N2 - rnzlNl), dt 

dN2 
- = ~(.f2(NdN2 + m2lNl - ml2Nd, dt 

dP 
- = P(fJ(g(Nl, f’>) - &wL). 
dt 

Due to strong predation, the prey density in patch 1 rapidly decreases to a small 
value given by 

NI = ECL+ + O(.s2), (1% 



1160 J. Ch. Poggiale et al. 

Linear ratio-dependence 
(donor control) 

__c- -- ___-__----- __-c-- 

Ratio-dependence 
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Figure 3. Comparison of the donor control functional response (solid line) (2 1) with a more 
general saturating ratio-dependent functional response (dashed line) (Arditi and Ginzburg! 
1989j. 

with s 

m12N2 

w1 = A(P)P’ 

where A(P) is a function of predator density and is defined by 

A(P) = 
ag(N17 PI 

aN 
1 NI =0 

(16) 

(17) 

Substituting (15) into (14) is equivalent to neglecting the fast transient dynamics 
and retaining only terms that are important for the population dynamics on the slow 
time-scale. Proceeding in a similar way as in Section 4, we obtain the following 
predator-prey model on the slow time-scale: 

dN 
- = fit(N)N - ml2N + O(E), dt WW 

dP 
- = eml2N - puP + O(E), dt (18b) 

where 
aff 

"=ag ' g=o 
(19) 

fz(N)N is the prey growth rate in patch 2, and t = ET defines the slow time-scale. 
Note that the model (18) obtained with assumptions 1’-5’ has the same form as 

the model (8) obtained with the more restricting conditions l-5. This confirms 
the hypothesis formulated at the end of Section 4 that the detailed form of the 
behavioural feeding rate on the fast time-scale is not important for the population 
dynamics on the slow time-scale. 
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7. DONORCONTROLANDRATIO-DEPENDENCE 

There is a link between donor control, as described in the previous sections, and 
the ratio-dependent functional response in the sense of Arditi and Ginzburgy 1989). 
In order to identify the functional response, the aggregated, slow predator-prey 
model given by (9) [or more generally by (1 S)] must be brought to the form of 
equation (1). This shows that the functional response is 

This function is ratio-dependent, i.e., it depends on the ratio of prey to predators: 
g = g(N/P). Indeed, Fig. 3 h s ows that as long as saturation effects do not operate 
(as in this paper), any ratio-dependent functional response can be approximated by 

g ($) e a;, (for g small) (21) 

where a is the slope at the origin. If the ratio N/ P is high, then the theorem used in 
this paper does not apply and donor control cannot be predicted. One may expect 
that, in such a case, predators are saturated and predation cannot be ‘strong’ (i.e., 
much more important than other processes). Combining the two compIementary 
cases of low N/ P and high N/P, the full picture of a type II ratio-dependent 
functional response emerges (Fig. 3). 

8. DISCUSSION 

The behavioural feeding rate is an individual-level process, while predator-prey 
models are concerned with population-level processes. The two kinds of processes 
may occur at different spatial and temporal scales. The time-scale of population 
dynamics may not be comparable to the time-scale of the behaviour of individuals. 
In this paper, we have studied a detailed predator-prey system with processes occur- 
ring on two different time-scales in a patchy environment. Predation took place on 
the fast (behavioural) time-scale; other processes (predator mortality, prey growth, 
migrations) were assumed to be slow. We used perturbation theory to show that, 
on the slow time-scale, a model with donor control describes the population-level 
dynamics of the predator-prey system. Donor control emerged from a mechanism 
that combined spatial heterogeneity (prey refuges) and strong predation. 

Strong predation is defined as occurring when predators deplete rapidly (almost) 
all available resources. In a homogeneous environment, strong predation either 
drives the prey to extinction (deterministically) or leads to large oscillations of the 
prey and predator populations (limit cycle) that will also result in (stochastic) ex- 
tinction of the prey. In a heterogeneous environment, however, if the prey can find 
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refuges, the same strong predation leads to donor control. This suggests immedi- 
ately where to look for donor control. If predators and their prey exhibit unstable 
dynamics after spatial heterogeneity has been removed (e.g., in laboratory micro- or 
mesocosms or in field manipulations), this is evidence for strong predation. Then, 
according to our theoretical results, one may expect that, in the natural environment 
where they coexist, donor control might predominate. Thus, strong predation to- 
gether with slow migrations may be considered as a sufficient condition for donor 
control to occur. 

Efficient predators control the abundance of their prey by eating almost all of 
the prey outside the refuges. However, as available prey quickly become depleted, 
predator dynamics become dependent on the slow flow of prey from refuges. Thus, 
when a very efficient predator species is added to a system where its prey has 
refuges, the prey abundance will decline very quickly, as almost no prey that are 
not hidden can survive. Then, predators no longer have any impact on the prey 
density but their own population becomes limited by prey availability. It is clear 
that if a very efficient predator, which confines the prey to its refuge, disappears for 
some reason, a dramatic increase of the prey density would occur (in the system 
from the example of Section 5, almost five-fold): the prey would be abundant in 
the whole available space. Conversely, the arrival of a very efficient predator can 
result in a dramatic decrease of prey density, but, after a short transient period, the 
dynamics of the predator-prey system will be as if donor control is the prevailing 
force in the system. This is quite a different idea of donor control from that of 
predators eating prey that are bound to die anyway. Our model shows that there is 
no contradiction between the ability of predators (or parasitoids, used in biological 
control) to depress strongly prey density and donor control. Indeed, food webs 
that contain parasitoids (which are very different in killing their hosts) are under a 
large degree of donor control (Hawkinsf!l992f! When predators are very efficient, 
top-down effects can be observed on a short time-scale. On a long time-scale (if 
they prey and the predators are still there), bottom-up effects predominate. 
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APPENDIX 

Here we use the Centre Manifold Theorem (Fenichel? 1971: Chow? 19947 to find 
a model for the aggregated variables, N = Nt + Nz and P, the dynamics of which 
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approximate that of the system (2) on the slow time-scale. The full system we study 
here is 

ANI 
l+CNi --ECL > ’ 

d& 
-= 
dt 

0, 

6-41~) 

(AId) 

where we added the trivial equation (Ald) for the small constant E in order to apply 
the Centre Manifold Theorem directly. 

Note that x = eNi + P is a slowly changing variable since its time derivative is 
of the order of E. The system (Al) in the new variables, (N1 , NT, X, E), becomes: 

dN1 AiVl(x - eN1) -=- +~(~N1(l-~)tmlzNz--mzlNI),(A2a) 

(A2b) 

(A2c) 

dr 

dt= 
0. (A2d) 

Clearly, for each value of N2 and x, the vector (Ni , N2, x , E) = (0, N2, x , 0) is 
an equilibrium solution of the system (A2). The linearization of (A2) near this 
equilibrium is given by the following Jacobian: 

(A3) 

where the asterisks stand for non-zero terms whose exact form is not important for 
the subsequent analysis. 

The Jacobian (A3) has two eigenvalues: the first one, -Ax, is associated with 
the space of Ni; the second eigenvalue is zero with multiplicity 3. If Ni remains 
in a given closed and bounded interval 1 then, according to the Centre Manifold 
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Theorem, for sufficiently small E, there exists a manifold W (called the centre 
manifold), which is the graph of a map: 

(N2, x, E) -+ Nt(N2, x, E) E 1, C44) 

such that: 

(i) (Nz, X, 0) -+ 0, for each x and N2; 
(ii) W is invariant under the flow defined by (A2) and is attractive; 

(iii) W is tangent to the eigenspace associated with the zero eigenvalue. 

This means that the dynamics defined by (A2) are rapidly close to its restriction 
on W, which is obtained by replacing the variable N1 by a function Nt (N2, x, E). 
The conclusion (iii) allows us to compute the asymptotic expansion of Nt (Nz, X, E) 
for small E: 

Nt (N2, x, F) = &WI (N2, x> + O(E*>. 

Substituting (A5) into (A2a) we obtain 

(A3 

dN1 
dt 

= EC--AXWI(NL x> + ml2N2) + O(E~). 

On the other hand, from (A5a), (A2b) and (A2c) we have 

dN1 dN1 dN2 aN1 dx -=-- + -- = 
dt aNz dt ax dz 

O(E2)* 

Identifying in (A6) and (A7) the terms of the same order in E, we obtain: 

WI = 01 (N2, x) = 
m12N2 

Ax - 

The restriction of (A2) on W can now be described by: 

~=rNz(l--$)-m~2N2+~(~), WW 

m&b 
-P + O(E), x > 

(A9b) 

(A71 

(A@ 

where t = et defines the time on the slow time-scale. 
Note that Nt , the density of accessible prey in patch 1, is quickly close to zero. 

Hence the variable x is quickly close to P: 

x = P + eN1 = P + O(E). (AlO) 
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Consequently, one obtains 

m12N2 
01 = AP + O(&), 

and the equation (A9b) becomes: 

m12N2 

P 

(All) 

(A121 

Since dN1 /dr is of order of E [see equation (A@], the dynamics of the total prey 
density, N = Nr + N2, is described by: 

dN dN1 dN2 
dt = dt + dt 

- --=rN2(l-~)-mlZN2+O(~). (A13) 

Substituting iV2 = N - (EWE + 0 (E)) into (A12) and (A13) we obtain the predator- 
prey model on the slow time-scaIe: 

dP 
- = eml2N - ,xP + O(F). 
dt 

(Al4a) 

(A14b) 

Small perturbations of a structurally stable system do not change the qualitative 
behaviour of its dynamics. The system (A14) is structurally stable for E = 0, 
therefore one can neglect the small perturbation terms 0 (E), resulting in an error 
of the order E. 
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