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A B S T R A C T

In this paper, we provide a brief review of the well-known methods of reducing spatially structured

population models to mean-field models. First, we discuss the terminology of mean-field approximation

which is used in the ecological modelling literature and show that the various existing interpretations of

the mean-field concept can imply different meanings. Then we classify and compare various methods of

reducing spatially explicit models to mean-field models: spatial moment approximation, aggregation

techniques and the mean-field limit of IBMs. We emphasize the importance of spatial scales in the

reduction of spatially explicit models and briefly consider the inverse problem of scaling up local

ecological interactions from microscales to macroscales. Then we discuss the current challenges and

limitations for construction of mean-field population models. We emphasize the need for developing

mixed methods based on a combination of various reduction techniques to cope with the spatio-

temporal complexity of real ecosystems including processes taking place on multiple time and space

scales. Finally, we argue that the construction of analytically tractable mean-field models is becoming a

key issue to provide an insight into the major mechanisms of ecosystem functioning. We complete this

review by introducing the contributions to the current special issue of Ecological Complexity.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Spatial heterogeneity is a crucial factor which shapes the
dynamics of a single population and allows coexistence of a large
number of species within communities and ecosystems (Kareiva,
1990; Levin, 1992; Odum and Barrett, 2004), a fact which has been
recognized both in experiments/observations (Huffaker et al.,
1963; Ellner et al., 2001; Molofsky and Ferdy, 2005) and theoretical
models (Hutchinson, 1961; Hassell and May, 1974; Durrett and
Levin, 1994a,b; Bolker and Pacala, 1997). A large number of
mathematical models of heterogeneously distributed populations
use an explicit spatial resolution i.e. consider the population
densities as functions of space, and different modelling approaches
of spatially explicit models exist in the literature – an exhaustive
classification is given in the review of Berec (2002). In particular,
the reaction-diffusion framework (Cantrell and Cosner, 2003);
models based on integral kernels (Kot et al., 1996); cellular
automata (Ermentrout and Edelstein-Keshet, 1993; Pascual et al.,
2002) coupled map lattices models based on difference equations
(Hassell et al., 1991); and individual based modelling (Grimm and
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Railsback, 2005; Railsback, 2006) are all quite prominent. The main
goal of all these approaches is to take into account the fact that a
given individual can interact only with a limited number of
neighbouring individuals and the local fitness for such individual
can vary across the habitat.

Considering detailed spatial structuring in ecological models
can have serious drawbacks as well. The first problem comes from
trying to localize animals in space in our models, since the spatial
position of a single individual, a group of individuals or the entire
population of non-sessile species can change across the environ-
ment significantly on rather short time scales (compared to the
characteristic reproduction time). A classic example is the vertical
migration of zooplankton in the water column, taking place on a
timescale of several hours (the characteristic reproduction time
varies from several months up to a few years) but ranging the
entire habitat. As a result, the vertical distribution of animals can
change hundreds of times between generations (Bollens and Frost,
1989; Ohman, 1990). There are many other ecological examples,
where small-sized animals can travel several hundred meters
across a lake in a day, for instance, the horizontal daily migration of
certain jellyfish species (Hamner and Hauri, 1981). In such cases, a
detailed description of the instantaneous location of animals
provides too much information, and thus is simply not necessary.
For this reason, constructing a spatial model often implies

http://dx.doi.org/10.1016/j.ecocom.2012.04.001
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averaging the instantaneous distributions of individuals over
certain time period and over some characteristic area.

Second, in spatially structured models the degree of freedom
(the number of state variables which uniquely characterizes the
system) substantially increases, in particular, the degree of
freedom can be infinitely large, as in models with continuous
space. Evidently, this reduces the tractability of the models, in
particular, analytical treatment of spatial models becomes
seriously impeded and in many cases it can be impossible.
Interestingly enough, including spatial aspects such as explicit
species spatial distributions or/and complex patterns movement
behavior in ecological models is often required to correctly predict
only some average characteristics of as the total population sizes of
species as the outputs of our models (Odum and Barrett, 2004;
Auger et al., 2000).

Third, implementation of complex spatial models normally
implies the use of a large number of additional parameters and
functions which are often unknown or poorly understood (Raick
et al., 2006). This makes analysis of sensitivity of the model to
variation of parameters or functions substantially more compli-
cated compared to the non-spatial cases (Batchelder et al., 2002).
This implies both a large increase of computational time and a
tremendous enhancing of complexity of parameter space: even
after a large number of time expensive simulations we may still
poorly understand what patterns of dynamics we should expect to
find in the given system and how they depend on model
parameters. In the absence of solid empirical evidence, patterns
of animal movement and behavioural aspects are often included in
spatial models based on rough estimates or simply using common
sense (e.g. Leising, 2001).

Finally, in a large number of cases we want to reveal generic
mechanisms through which an ecosystem or a community
functions (Petrovskii and Petrovskaya, 2012), and for this reason
we only need a qualitative description of the system. The main
questions include the possibility of persistence and coexistence of
species as well as the eventual types of patterns of dynamics:
stationary, oscillatory, chaotic, multistable, etc. From this point of
view we only need to include the spatial heterogeneity in the case
where the same model without space would provide qualitatively
different patterns; it is also natural to do so in a way where adding
spatial dimension results in a minimal increase of model
complexity. This can be done by either constructing spatially
implicit models, such as the famous extinction-colonization model
of R. Levins (Levins, 1969, 1970) or, alternatively, by reducing
complex spatially explicit models. The latter is the key topic of the
current review and the current special issue of Ecological
Complexity.

The main drawback of spatially explicit models lies in their
complexity. However, sometimes it can be possible to simplify
those models and describe the population dynamics in terms of
some integral characteristics averaged over a large part of the
habitat or even over the entire habitat (e.g. the population sizes). In
theoretical ecology, such reduced models are known as mean-field
models – the terminology of mean-field approximation is
addressed more precisely in Section 2. In particular, this includes
the replacement of IBMs (individual based models) by density-
dependent Fokker–Planck-type models. The important advantage
of mean-field models is that their behaviour can be better
understood and thus we can have a better insight into generic
mechanisms of ecosystem functioning without losing, if possible,
an adequate quantitative description.

The aim of the current review is to briefly consider different
approaches of reducing of spatially explicit ecological models to
simpler mean-field models. The paper is organized as follows: in
Section 2, we discuss different definitions of mean-field dynamics
and mean-field approximation which are used in the ecological
literature; in Section 3, we consider various methods of reducing
complex models to mean-field analogues which are widely used in
the literature; in Section 4, we emphasize the importance of spatial
scales in the construction of mean-field models; in Section 5, we
consider some important future challenges in the reduction of
spatially structured models, and finally, Section 6 introduces the
contributions to the current special issue of Ecological Complexity.

2. Terminological aspects of mean-field modelling

When talking about mean-field ecological models, one needs to
be precise in the definition of the description of ‘mean-field’. In
fact, in the current literature there exist several ‘mean-field’
concepts, and some of them have rather different meanings. In this
section, we discuss those various definitions and meanings and
explain what we shall understand by ‘mean-field’ dynamics in this
special issue.

In a large number of population models, the mean-field model
(mean-field scenario) is defined as the one where the individuals in
the habitat are well mixed and the probability of interaction of a
randomly taken individual with any other individual from this
population (or with an individual from another population) does
not depend on the individual chosen. Also, the environment is
considered to be homogeneous (e.g. no sharp gradients of resource
distribution). Some classic examples are: the famous Lotka–
Volterra predator–prey model (Lotka, 1925; Volterra, 1926); the
seminal epidemiological model (Kermack and McKendrick, 1927)
or the well-known model of cyclic competition of species (May and
Leonard, 1975). The meaning of mean-field in those models is
conceptually similar to that of ‘small world’ models where
individuals have equal chance to interact with any other
individuals regardless of the distance separating them (e.g. Durrett
and Levin, 1998; Frean and Abraham, 2001).

A slightly different meaning of mean-field models is given in
some theoretical works, where the authors either construct a
spatially explicit model by adding dispersal terms into an initial
model without space, or modify the existing terms to implicitly
include the effects of heterogeneity. In this case the initial local
interaction terms are often referred to as the mean-field dynamics
(Pascual et al., 2001). Similarly, a mean-field approximation of an
explicit spatial model is often understood as trying to predict the
global model dynamics (e.g. in terms of population sizes) by
neglecting the migration or dispersal terms and simply extrapo-
lating the local interactions to the scale of the entire habitat
(Bergström et al., 2006 and the references therein). Not surpris-
ingly, such approximation often gives poor results (Bergström
et al., 2006; Wallhead et al., 2008); this is often interpreted as a
failure of mean-field descriptions of ecosystems.

In a number of publications, a mean-field model is understood
as a simplified/reduced version of a spatially explicit model where
dynamics is described in terms of integral characteristics such as
the population size (or the biomass) of the species. In this case, the
model equations for the population sizes can be substantially
different from those which hold for local interaction: we do not
assume well mixing in these system, but implicitly include the
effects of heterogeneity of species distribution as well as those of
the environment into models (Gubbins and Gilligan, 1997; Auger
et al., 2000; Pagel et al., 2008; Pascual et al., 2011).

Often a complex spatially explicit model cannot be simplified to
a system of equations in terms of only the total species biomasses
or population sizes, but it is still possible to reduce the initial model
to a certain closed system where some extra integral variables are
also state variables, for instance including spatial moments of
species densities (e.g. spatial variance, covariance, etc.). In this
case, we can consider such simplified models as mean-field
approximation as well (Matsusa et al., 1992; Bolker and Pacala,
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1997; Dieckmann and Law, 2000; Chesson et al., 2005; Wallhead
et al., 2008).

Finally, a different meaning of mean-field approximation comes
from the implementation of individual based modelling (IBM). In
such models each individual (or a homogeneous group of
individuals or super-individual) is explicitly modelled as a discrete
entity (Scheffer et al., 1995; Grimm, 1999; Railsback, 2006), and
the movement of an individual is given by a set of prescribed rules.
In the case, where the number of individuals is large, it becomes
convenient to describe the system in terms of population densities
and the master equations are, actually, the Fokker–Planck-type
equations. Such replacement of a system of discrete particles with
a continuous model is known as mean-field approximation (also
called mean-field limit): in this case the mean-field model can be
still spatially explicit (e.g. based on integro-differential equations)
but its properties can be easily understood (Peruani et al., 2008;
Carrillo et al., 2010; Bolley et al., 2011; Gómez-Mourelo, 2005;
Faugeras and Maury, 2007). This seminal idea comes from
theoretical physics, where the term ‘mean-field approximation’
had been coined under a different meaning. It is well known that
the complex problem of a large number interacting bodies/
particles is extremely difficult to solve, but the initial many-body
problem can be replaced with an equivalent problem of a single
body/particle moving in the external field created by the other
particles (Chaikin and Lubensky, 2007).

In this paper, we shall understand the concept of mean-field
dynamics and mean-field approximation in a rather broad sense:
in the case that a complex model considering spatially structured
populations can be simplified to a system of closed equations for
the integral characteristics, we shall refer to this model as a mean-
field approximation. We shall also use mean-field approximation
(mean-field limit) to refer to the reduction of IBM to density-
dependent spatially explicit models.

3. Methods of reduction of spatially explicit model

There are a few major ideas behind the reduction of spatially
explicit models to mean-field dynamics. Firstly, we suggest that
the model trajectories, which can be considered in general to
evolve in a high dimensional space (for instance, with infinite
number of dimensions), are situated on a low dimensional
subspace (or a manifold) S, since only in this case can we proceed
to constructing a mean-field model. Usually trajectories achieve
this low dimensional space/manifold from the initial conditions
after some transient time period during which the model reduction
is impossible: we can only use the complete model by running
numerical simulations. The low dimensional set S may be the final
attractor of the model or it can be an intermediate attractor in the
sense that the trajectory will still be evolving on S towards its final
attractor S0 with dim (S0) < dim (S). The implication is that even
rather complex spatial models with an infinitely large number of
dimensions can be described based on simple models with a low
number of dimensions (e.g. Hyman and Nicolaenko, 1986). For
instance, in deterministic models the attractor of dimension m can
be embedded into a Euclidian space of dimension 2m + 1 (Takens,
1981) and thus the dynamics of the initial complex spatial system
can be described based on a low dimensional model. The second
major idea is that describing the evolution of trajectories on S can
be done based only of some integral (macro) characteristics of the
system such as the total population sizes of species, few spatial
moments, etc. Finally, the total number of those integral
characteristics (which can be understood as the degrees of
freedom) should not largely exceed the number of species N in
the system. Ideally, it should be exactly N. As such, we shall not
consider as mean-field models those ones in which some species
are described using their population size P, but modelling of the
others would require the spatial distributions of their density
p(x,y,z).

There exist a large number of different approaches/techniques
for reducing of spatially explicit to mean-field models (in a various
sense of ‘mean-field’ approximation, see Section 2 for details). We
can roughly classify those approaches into three main families: (i)
methods using moment approximation (i.e. considering first,
second, etc. spatial moments); (ii) aggregation methods using the
fact that the local densities can be expressed as functions of some
global characteristics (e.g. population sizes); (iii) approaches of
reduction of IBM to continuous (density dependent) models, i.e.
considering the mean-field limit of IBMs. Below, we shall briefly
characterize those families.

3.1. Spatial moments methods

Spatial moment methods are used to take into account
interactions and movements of organisms in small neighborhoods
compared to the total size of the habitat (Bolker and Pacala, 1997);
they are widely used in stochastic population models, but can also
be applied to deterministic models (Wallhead et al., 2008). In
particular, the spatial moments for continuously spatially distribut-

ed models are defined as

pi ¼
1

S

Z
Pið~xÞd~x; ci jð~yÞ ¼ 1

S

Z
Pið~xÞP jð~x þ~yÞd~x;

Ti jkð~y;~zÞ ¼ 1

S

Z
Pið~xÞP jð~x þ~yÞPkð~x þ~zÞd~x

(1)

where Pið~xÞ is the spatial density of species i at location x (for a
given moment of time), S is the area of the habitat and ~y and~z are
locations in the habitat. The first moments pi are simply the
average population densities. The quantities ci jð~yÞ are called the
pair correlations densities (the second-order spatial moments).
Finally, the quantities Ti jkð~y;~zÞ are the correlation densities of
triplets. In a similar way, one can define higher order spatial
moments. Note that in stochastic models we need to average the
spatial moments (1) over all possible realizations of distributions
Pið~xÞ (Keeling et al., 2002; Law and Dieckmann, 2000).

The main idea of the method is to write a system of integro-
differential (or simply differential) equations for the spatial
moments (Bolker and Pacala, 1997, 1999; Murrell et al., 2004).
As a result, by solving the system for spatial moments one can
potentially follow the dynamics of the first moments, i.e. the
average population sizes of species pi. The major difficulty in this
approach is that the constructed system is actually an infinite set of
equations: each equation for the spatial moment of order n

contains moments of order n + 1, etc. Thus, we need to close the
model which is typically done at the level of second order moments
(pair correlations), by expressing triplets as functions of the second
moments (Rand, 1999; Dieckmann and Law, 2000; Keeling et al.,
2002), the rationale behind this being a fast relaxation of high
order correlations compared to low-order correlations. The
moments methods based on the second order correlations have
become rather popular in both stochastic and deterministic
ecological models (Bolker and Pacala, 1997, 1999; Keeling et al.,
2002; Wallhead et al., 2008).

Pairwise approximation is the name given to a variety of moment
approximation methods which are used for the reduction of
stochastic cellular automata models with a discrete space
(Matsusa et al., 1992; Rand, 1999). The idea is to construct a
system of ODEs describing the frequency of each type of
neighboring site pairs, for instance, the fraction of neighboring
sites which are both occupied. In order to have the system closed,
higher-order frequencies are approximated by pair frequencies
starting from triplets (Matsusa et al., 1992). A drawback of this
approach is that it only considers interactions between individuals
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on a local spatial scale, i.e. in the interacting neighborhood.
Pairwise approximation was extended in the paper by Ellner
(2001) by considering multiple characteristic sizes for the local
interactions depending on the type of interaction (competition,
disease transmission, predation, etc.). This method has been
extended in Webb et al. (2007) by considering a weighted mixture
of local and global multiscale pair approximation.

Finally, another particular case of the moment approximation is
the so-called modified mean-field approach. The reasoning behind
this approach is that sometimes the second and higher spatial
moments can be expressed as functions of the first moments, i.e.
the mean population densities (Pascual et al., 2002, 2011) – for
instance, the dynamics of a spatially heterogeneous predator–prey
lattice model can be successfully described based on the classical
Lotka–Volterra model where the bilinear predation terms are
replaced by a product of power functions of densities of prey and
predator (Pascual et al., 2011). In other words, the initial mean-
field equations considering well-mixed interactions can be
somehow modified to take into account spatial aggregations
(clusters). The same holds true for some epidemiological models
with spatial aggregation: the overall transmission rate of a disease
becomes a product of power functions of the densities of
susceptible and infected individuals (e.g. Gubbins and Gilligan,
1997). However, the implementation of the modified mean-field
approach is restricted to a certain parameter range since, for
example, in a predator–prey lattice model it requires a power law
of the size distribution of connected clusters of prey (Pascual et al.,
2011).

3.2. Aggregation methods

The fundamental ideas of aggregation of variables and
reduction of complex models were first introduced in ecology in
a general context in the seminal papers of Iwasa and colleagues
(1987, 1989). Some recent works use this approach to simplify
complex ecological models and suggest statistical methods of
parameterization of simplified models (Raick et al., 2006 and the
references therein). In spatially structured population models, the
distribution of species at different locations can be approximately
described as functions of certain global or macro variables (e.g. the
total population sizes). For instance, in the case of a habitat
consisting of a collection of patches, the relative proportion of
species j in patch i can be explicitly expressed as

pi j ¼ FðP1; P2; . . . ; PmÞ; (2)

where Pj, are the total sizes of species j. By summing up the
equations for pij over the patches, we can obtain the equations in
terms of total population sizes Pj, i.e. construct a mean-field model.
By implementing such aggregation of variables we implicitly admit
a certain pattern of species dispersal in the ecosystem. Overall, the
idea that the distribution of species between patches can be
expressed as a function of their total population sizes as well as
that of other species was suggested in the seminal papers by
Hassell and May (1973, 1974) considering host–parasitoid
interaction. In those papers, the relative proportion of parasitoids
was assumed to follow that of hosts. Also we can simply postulate
the distribution (2) based on some empirical evidence. An
important ecological example is the ideal free distribution of
zooplankton grazers in the water column (Lampert, 2005; Morozov
et al., 2011), and similarly, some spiders, birds and fish species can
show fast migration resulting in the ideal free distribution over the
environment (Godin and Keenleyside, 1984; Bernstein et al., 1988;
Kacelnik et al., 1992; Milinski, 1994; Pulido and Dı́az, 1997), so we
can easily estimate relative proportion of species across the
environment.
Interestingly, the shape of the instantaneous distribution of
species (2) can be derived entirely from the initial explicit spatial
model (Bernstein et al., 1999). This is the case, for example, in
models where the dispersal of all species is a fast process compared
to the demographic rates, i.e. the population dynamics. By formally
neglecting the demographic terms on short time scales, we can
derive the expressions for the relative proportion of species across
the patches. Further, using the obtained distribution (2) we can
analyze the population dynamics on large time scales (e.g. on
demographic scales) and can follow changes in the population
sizes of species. An important condition of implementation of this
aggregation method is that on a short time scale the instantaneous
distribution (2) should be an attractor for model trajectories (Auger
et al., 2000; Poggiale et al., 2009). It can occur that the distribution
of species is density-dependent: it turns out that the proportion of
each species in the different locations may be a function of the total
densities (El Abdllaoui et al., 2007). In this case, the description of
processes at the global scale can be expressed from their local
formulation and from the proportion of species in each location,
providing thus different formal description of processes at large
scale than local ones (see Poggiale, 1998, for instance). The
discussed aggregation method is rather simple to use and it has
engendered a large number of ecological applications (see Auger
et al., 2012 for a review and a discussion on the more complex
situations). The aggregation method can additionally be used for
discrete and continuous space models such as PDE models
(Sanchez et al., 2011; Auger et al., 2012).

Note that aggregation methods would also allow us to take into
account several spatial scales in the case of networks of patches.
Such a network can consists of groups of groups of patches,
considering groups of neighboring patches with very fast intra-
patches dispersal, fast intra-groups dispersal and, finally, slow
demographic processes (for details see Auger et al., 2012).
However, construction of efficient methods of reduction of
complex ecological models with multi time and space scales
(n � 3) still remains a challenge for aggregation framework.

Implementation of the aggregation technique has an advantage
over the spatial moments reduction methods when we consider an
environment with a pronounced heterogeneity of physical
properties. Consider, for instance, the environment where the
number of patches is small and the species fitness substantially
varies across patches – the spatial moment approximation fails to
qualitatively represent dynamics of the whole model, whereas
aggregation methods give satisfactory results (Cordoleani, 2011).
On the other hand, the implementation of the aggregation
technique may be non-applicable in the case where dispersal
rates of species are of the same order of magnitude as demographic
processes.

Methods of reduction of spatially explicit systems as aggrega-
tion of variables and transition scale theory allow us to compare
mathematical formulation of model equations for local processes
(on microscopic level) with the resultant global model (on
macroscopic level). Interestingly, the functional dependences
(i.e. growth rate, predation terms, mortality, etc.) used in the
equations describing the global model are usually different from
those that we have in the model describing local interactions. As a
result, new properties of the system emerge on a macroscopic level
which is not observed on a microscopic level. Two types of
emergence have been defined in the literature (Auger and Poggiale,
1998 and the references therein). The first type is the dynamical
emergence corresponding to the situation, where the global
dynamics is qualitatively different from the isolated local dynamics.
The second type of emergence is called the functional emergence
and refers to alteration in the mathematical formulation of
functions obtained at the global level with respect to local
mathematical functions, and does not require a qualitative
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differences between the global and local dynamics. Note that the
functional emergence (that we often observe in ecological mean-
field models) does not necessarily signify the dynamical emer-
gence since different formulations of models functions can result
in a qualitatively same patterns of dynamics (Auger and Poggiale,
1998).

3.3. Mean-field limit of individual based models

Often we need to describe complex patterns of movement of
individuals in space on temporal scales which are shorter than the
lifespan of species, i.e. we consider kinetic equations of animal
movement. An important example is modelling the collective
motion of a large number of organisms: fish schools, bird flocks,
swarming of social insects, etc., when the collective motion in the
group emerges as result of large number of interactions on the level
of individuals. On the other hand, spatial movement of an
individual is largely affected by the decision making of the whole
population (Okubo, 1986; Czirok and Vicsek, 2000; Couzin et al.,
2005). The natural framework of modeling collective motion is the
Lagrangian (IBM) framework, where the position and velocity of
each individual is modeled separately. The resultant model
consists of a large number of such stochastic kinetic equations
so direct numeric integration of such a system is rather expensive
in terms of computational time. Another major drawback is that
numerical simulations do not provide us with an insight into the
generic dynamical behaviour of the system. An alternative is the
use of the Eulerian framework to represent the dynamics based on
the densities of species: the evolution of the system for large N is
described based on a density function gð~r;~v; tÞ giving the number
dN ¼ gð~x;~v; tÞd~rd~v of individuals located in the spatial region ½~x;~x þ
d~x� having velocities from ~v to ~v þ d~v. The species density can be
computed by integrating the density function

rð~r; tÞ ¼
Z

gð~r;~v; tÞd~v (3)

As a result, in the mean-field limit, the initial IBM can be
replaced with a kinetic Fokker–Planck equation for the macro-
scopic density rð~r; tÞ (Neunzert, 1984; Carrillo et al., 2010), it often
takes the form of a reaction–diffusion–advection equation
(Petrovskii et al., 2012). The resultant density model is easier to
investigate analytically (e.g. consider the stationary states) and
simulate numerically. The question of the possibility of construct-
ing of density-dependent models (i.e. the convergence to the
mean-field limit) has been rigorously proven for a number of
models (Braun and Hepp, 1977; Visser, 2008; Degond and Motsch,
2008; Carrillo et al., 2010; Bolley et al., 2011); however, it still
remains an open problem, especially in the presence of noise. A
review of methods of constructing of density-dependent models of
motion is a separate issue and should be done elsewhere.

Note that the reduction of IBMs of kinetic equations of animal
movement is not only important for better understanding various
patterns of collective motion: it is also important for modelling
patterns of non-synchronized motion of animals such as zoo-
plankton grazers (Leising, 2001; Cottier et al., 2006; Morozov and
Arashkevich, 2010) or insects (Firle et al., 1998; Petrovskii et al.,
2012). Finally, complex patterns of active seed dispersal of plants,
which are usually modelled based on IBMs, can be also described
via simpler continuous framework using integral kernels (Powell
and Zimmermann, 2004; Strigul et al., 2008).

4. Importance of spatial scales

When constructing a mean-field ecological model the charac-
teristic size of the habitat (i.e. the spatial scale) plays an important
role. In particular, the use of mean-field models can be possible
only on intermediate scales (Pascual et al., 2001) – indeed, at small
spatial scales the dynamics are often stochastic, exhibiting
pronounced spatial and temporal variations in the number of
individuals (Keeling et al., 1997). Another important issue is the
influence of neighbouring patches: the influx and outflux of
organisms from the surrounding habitats can predetermine the
variation in the number of individuals in the given patch. In such a
situation, it is hardly possible to build a mean-field self-contained
model (either stochastic or deterministic) predicting the local
dynamics based only on the current number of individuals in the
patch. On the other hand, averaging the population dynamics over
large spatial scales can result in oversimplification. Indeed,
consider a system containing a large number of patches: if the
characteristic spatial scale L1 of species interactions is much
smaller than the size L of the considered environment, we can
describe the system as an ensemble of a large number m = L/L1 of
statistically independent subsystems (note that even in the case
that the system is purely deterministic, unsynchronized local
oscillations can result in the emergence of such an ensemble of
independent spatial clusters (Medvinsky et al., 2002)). The average
over the habitat population density is given by P = N/M, where N is
the total population size, and M is the total number of patches in
the system (M � 1). On the given spatial scale the time variance of
P = N/M will be given by

varðPðtÞÞ ¼ 1

M2
varðNðtÞÞ: (4)

For the total population size we have N = N1 + N2 +� � �+ Nm,
where Ni are the population sizes in the independent subsystems.
Let var(Ni) be the variance of each subsystem (we suggest that
these variances are the same), we can re-write the variation of the
mean density P as

varðPðtÞÞ ¼ 1

M2

X
i

varðNiÞ ¼ m

M2
varðN1Þ: (5)

Thus, for large-size ecosystems the variance (5) tends to zero
and P is rather close to its mean value. This holds true even in the
case of large amplitude oscillatory dynamics in local patches.
Obviously, the only possible ‘mean-field’ model P = const is trivial
and can be rather misleading.

Interestingly, on intermediate spatial scales, patterns of mean-
field dynamics can also largely depend on the size of the habitat
(Rand and Wilson, 1995; Keeling et al., 1997; Donalson and Nisbet,
1999; Pascual et al., 2001). For instance, on the intermediate spatial
scales an increase of the window size of averaging (i.e. the spatial
resolution) can result in non-monotonic effects of spatial
aggregation on the mean-field description of the system (Keeling
et al., 1997). Note that the importance of scale on the simplification
of spatial model also follows from a number of empirical works
revealing that measurement of aggregation patterns of animals can
depend on the scale of observation (Boulinier et al., 1996; Roland
and Taylor, 1997; Wu and Qi, 2000; Bommarco and Banks, 2003).
Another important example includes modelling active dispersal of
seeds by animals. It is known that animals can burry seeds in
particular sites (cache sites) and the spatial distribution of those
sites on small scales can be rather complex, in particular they can
be highly aggregated (Powell and Zimmermann, 2004; Lischke
et al., 2007). However, on larger spatial and time scales we can
describe the active dispersal of seeds based on smooth continuous
dispersal kernels (Kot et al., 1996). Finally, the importance of
spatial scale on model reduction can be related to the phenomenon
of synchronization by external noise, which is known as the Moran
effect (Royama, 1982; Ranta et al., 1997). A spatially correlated
noise applied to an extended system of local oscillators of species
densities may result in oscillations synchronization, i.e. the whole
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population sizes will show synchronous oscillations. The Moran
effect holds for both of spatially discrete (Ranta et al., 1997) and
continuous systems (Petrovskii et al., 2010). Obviously, the
dynamics of such metapopulations can be described based on
mean-field equations, and the correlation length of the external
synchronizing noise will provide a characteristic spatial scale
where we can implement the mean-field approximation.

Note that reduction of explicit spatial models is intimately
connected with an inverse problem, which is scaling up local
ecological interactions (microscale dynamics) to macroscales.
Usually, we are able to reproduce the local interactions of species
both experimentally and theoretically (Luckinbill, 1974; Costan-
tino et al., 1997; Fussmann et al., 2000 and many other examples)
and to reveal and parameterize the functions that we need to use in
our models. The major difficulty arises when we wish to describe
population dynamics on large scales (community or ecosystem
levels) based on the obtained local model. Due to the non-linear
nature of local interactions we cannot implement the microscale
models by replacing the local densities with population sizes: we
need to incorporate effects of species aggregation into initial
models operating on a microscale (Levin, 1992; Chesson, 2009).
Scale transition theory is an efficient tool which can explain how the
effects of the spatial aggregation of species would modify the
behaviour of microscale models and provide the correct global
dynamics operating on macroscales (Chesson, 1998; Melbourne
and Chesson, 2005; Englund and Leonardsson, 2008). This
technique is actually based on the spatial moment approximation
(more precisely, on non-linear averaging) but differs from it in
several major aspects (Chesson, 2012).

The scale transition methods use the Taylor expansion around
the mean values (e.g. the mean population densities) with a further
averaging. The resulting equation contains the terms with average
species densities as well as expressions for statistical moments
around the mean: variance, covariance, skewness, kurtosis, etc.
Often we can cut the Taylor expansion at the level of second
moments. For instance, averaging a non-linear function of two
variables g(X,Y) gives (Chesson et al., 2005; Bergström et al., 2006)

hgðX; YÞi � gðhXi; hYiÞ þ 1

2

@2

@X2
gðhXi; hYiÞs2

X

þ @2

@Y@X
gðhXi; hYiÞsX;Y þ

1

2

@2

@Y2
gðhXi; hYiÞs2

Y ; (6)

where hXi, hYi denote the mean values; s2
X and s2

Y are the spatial
variances of X and Y and sX,Y is the covariance. We neglect the high
order terms in approximation (6).

As an illustrative example we can apply (6) to a standard local
Rosenzweig–MacArthur predator–prey model. This gives the
following scaling of the local species interactions (Bergström
et al., 2006)

dhPi
dt
¼ RðhPiÞ þ 1

2

d2RðhPiÞ
dP2

s2
P � hZi f ðPÞ � hZi1

2

d2 f ðhPiÞ
dP2

s2
P

� d f ðhPiÞ
dP

sP;Z ; (7)

dhZi
dt
¼ khZi f ðPÞ � khZi1

2

d2 f ðhPiÞ
dP2

s2
P � k

d f ðhPiÞ
dP

sP;Z � dhZi; (8)

where P and Z are the local densities of prey and predator, hPi and
hZi are the densities of species averaged over space; f(P) is the local
functional response, R(P) is the local prey growth rate, and d is the
mortality of predator. By computing the derivatives of f(P) and R(P)
one can estimate the influence of spatial heterogeneity on the
predator–prey dynamics over a global scale. A particular obstacle
to investigation of the properties of the scaled model (7) and (8) is
that such model is not closed: we still need the values of s2

P and
sP,Z. One can use some observational data to estimate the second
spatial moments and use the linear autoregression methods (e.g.
Jones et al., 1993; Bergström et al., 2006; Englund and
Leonardsson, 2008). Another way is to construct a closed model
based on moment approximations by adding the equations for s2

P

and sP,Z (Wallhead et al., 2008). Finally, we can create a spatially
explicit model with the given local interactions and by directly
simulating this model we can estimate the effects of spatial
aggregation over macroscales.

However, we should emphasize that the main aim of scale
transition theory does not consist in providing a precise quantita-
tive description of complex spatial systems (this can be done
directly based on numerical solutions), rather, it is to provide a
simple and efficient framework for understanding the numerical
simulations of complex spatially explicit models as well as the field
observations obtained on macroscale levels. In particular, the
theory allows us to make important predictions regarding the
coexistence and persistence of species and explain how spatial
structuring can stabilize/destabilize the dynamics within a
community, etc. Interestingly, understanding the key properties
of ecosystem functioning can be done in a relatively simply way, by
using both empirical and semiempirical methods to estimate the
spatial variances and covariances (Taylor et al., 1980; Jones et al.,
1993). In particular, based on empirical estimation of s2

P and sP,Z in
a predator–prey model similar to (7) and (8), it has been shown
that destabilization in a benthic crustacean community can be
explained due to predator–prey covariance (Bergström et al.,
2006). Thus, the scale transition theory provides a biological sense
to the formal mathematical tools of the spatial moment
approximation framework.

5. Future directions and challenges

Significant progress has been made in simplifying complex
spatially explicit models and providing mean-field descriptions.
There exists a tremendous amount of recent publications on the
reduction of spatially structured model based on moment
approximation and various aggregation methods. This is recogni-
tion of the fact that we need not only to quantitatively mimic
complex patterns observed in nature, but we also need to reveal
generic mechanisms of the underlying processes (Petrovskii and
Petrovskaya, 2012). Very often, mean-field approximation allows
us to achieve such understanding of the key ecological processes,
but there still exist several important gaps in mean-field
approximation which remain unaddressed or only partially
addressed, and in this section we shall briefly discuss some of
them.

First, an important issue is the development and implementa-
tion of techniques which would allow us to reduce individual
based models (Lagrangian modelling framework) to density
dependent models (Eulerian framework) in the case where
organisms exhibit complex individual movement. The central
question concerns the possibility of a mean-field limit of IBMs and
the rate of convergence to this limit when the number of
individuals N ! 1. Important progress has been achieved, for
instance, in modelling the collective motion of large number of
individuals where the density-dependent asymptotic for N ! 1
has been proven in a rigorous manner (Grünbaum, 1994; Degond
and Motsch, 2008; Carrillo et al., 2010; Bolley et al., 2011).
However, in reality the movement of animals is substantially more
complicated than was assumed in the cited models. A notable
example is the movement of zooplankton in the water column,
which takes place on several time and spaces scales (Leising, 2001;
Morozov and Arashkevich, 2010). Such motion involves a large
number of individuals and combines synchronized and unsyn-
chronized patterns of movements; there is also a large deviation in
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individual characteristics (growth and consumption rates, swim-
ming ability, preferential grazing depths, etc.) as well as the
adaptive behaviour of individuals. Traditionally, the IBM frame-
work is used to cope with such complexity and there is a wide-
spread opinion that a density-dependent framework cannot
describe the dynamics of these systems. This conclusion is
partially based on some comparisons of IBMs with their densi-
ty-dependent ‘analogues’, showing that the two approaches give
different patterns of dynamics (e.g. Woods et al., 2005). Note that
such a comparison is already a separate problem (Raick et al.,
2006), since it is unclear if the considered density-dependent
models are the true mean-field asymptotic of the given IBMs. As
such, there is an urgent need for development of the techniques of
reducing spatial IBMs with complex species behaviour and a
pronounced individual variation. This should include: (i) proving
asymptotic convergence for N ! 1 to density-dependent models
and (ii) providing algorithms for constructing – density dependent
– (master) equations. Advances in these directions could both
facilitate the computation of equations and help understand the
generic properties of the system.

Second, we often need a combination of various reduction
methods to obtain a suitable mean-field approximation to model
the dynamics of a given ecosystem. This is especially true for
ecological models operating on multiple temporal and spatial
scales, for instance, on a local spatial scale the movement of species
can be often considered as a fast process compared to the
demographical processes and we can apply aggregation methods
to obtain the instantaneous repartition of species across patches
(2). We can further follow the population dynamics in a collection
of several patches based on mean-field equations, but we need to
take into account the effects of the surrounding parts of the habitat
where the population density can oscillate in a different phase (and
the approximation (2) ceases to work for those patches). The
influence of a large number of neighbourhood habitats can be
included based on some moment approximation technique.
Finally, on a larger spatial and time scale we often need to take
into account seasonal migration of species which are often crucial
for species survival and persistence (Dingle, 1996). These processes
can hardly be described via a standard moment approximation
scheme and again require some sort of aggregation methods, since
the intensity of migration and the impact of migrating animals on
the ecosystems is predetermined by the total population size. An
example of such a system is the migration of large herbivorous
mammals in the plains and open woodlands of Africa (Linda, 1975;
Ottichilo et al., 2001). Simplification of such complex spatially
structured model would definitely require a new approach,
involving interplay between various reduction techniques.

Third, a pronounced heterogeneity of the environment can be a
major obstacle in simplifying spatially explicit models, since
approximation based on spatial moments is derived based on the
assumption of statistical homogeneity of the environment (Bolker
and Pacala, 1997, 1999; Dieckmann and Law, 2000; Ellner, 2001).
In the case of a pronounced spatial gradient of species fitness due
to some abiotic factors, we need to introduce separate spatial
moments for different parts of the environment, which would
make the simplified system virtually intractable, since, for
instance, the average species densities may differ by several
orders of magnitude along the gradient of resource distribution
(Micheli, 1999; Odum and Barrett, 2004). In such a situation,
implementation of aggregation methods of reduction can make
sense, for instance, by considering the species to be distributed
across the environment according to a certain law (2). On the other
hand, aggregation methods (e.g. considering fast movement of
individuals) can also fail in a large-sized ecosystem, for instance,
we cannot assume that animals move fast enough to be able to
travel across the whole habitat. In such situation only partial
reduction of the spatial model may be possible. Note that even in
the case where a rigorous construction of a mean-field model, with
trajectories close to the original spatial model, is not possible, a
qualitatively similar behaviour may still be obtained using a
certain mean-field model. This optimistic assumption is based on
the theorem of Takens (1981) of embedding of complex system
evolving on its attractor into a low dimensional space. The major
problem consists in constructing the explicit model equations
(master equations) in the low dimensional space. However, we can
implement some time series analysis methods such as the
principal component analysis (PCA) (Kendall, 1980) or other more
sophisticated techniques based on various statistical approaches
(Gorban et al., 2007). On the other hand, construction of the master
equations can often be based on semi-empirical methods with
further numerical testing against the original spatial model (Pagel
et al., 2008).

Often we use mathematical modelling with the main objective
of explaining the key-mechanisms underlying in the observed
ecological patterns and the fact that mean-field models are
particularly useful in this respect is one of the motivations for the
reduction of spatially explicit models. In this case, we only require
a qualitative similarity between spatially structured and mean-
field models, revealing generic properties of ecosystem dynamics:
stability (instability) of ecological equilibria, possibility of sus-
tained oscillations, coexistence of species, etc. Construction of such
‘minimal’ models can be often done based on local interactions by
modifying the growth rates, predation terms, etc. to implicitly
incorporate effects of space. This is often done using a number of
semi-empirical methods, (e.g. Raick et al., 2006), and a large
amount of literature exists on this topic. The difference between
this approach and a more rigorous modified mean-field approach
(Pascual et al., 2002, 2011) is that the former approach allows a
large deviation in the quantitative predictions and is entirely
focused on revealing the key ecological processes/mechanisms
resulting in the observed type of patterns.

The previous idea can be illustrated based on the following
ecological example. It is well known that in eutrophic environ-
ment the crucial issue for stabilization of predator–prey inter-
actions becomes the shape of the functional response of predators
(Oaten and Murdoch, 1975). In particular, a Holling type III
response (which is concave downward at small and intermediate
food densities) can guarantee successful top-down control in
eutrophic plankton communities. Feeding experiments in labo-
ratories, however, reveal that zooplankton grazers normally show
a concave upward response (Holling type II) which is destabilizing
(DeMott, 1982; Hirst and Bunker, 2003; Jeschke et al., 2004). Field
observations make the things even more complicated: it was
reported that often there is no local functional response of
zooplankton grazers, i.e. no functional relation between the local
ingestion rate and the ambient food was observed (Boyd et al.,
1980; Dagg and Wyman, 1983; Morozov and Arashkevich, 2010).
A typical example of the local feeding of zooplankton herbivores
can be seen in Fig. 1A, where the local ingestion rates of the
dominant copepod species in the Central Barents Sea (Calanus

finmarchicus) are plotted versus the ambient concentration of Chl
A in the water. The data were collected at several stations and the
details on collecting the samples can be found in Morozov et al.
(2008). The reason for the non-existence of any local functional
response is due to the complex patterns in the individual
behaviour of grazers, which involves fast active displacement
in the water column (Dagg and Wyman, 1983; Ohman, 1990;
Morozov and Arashkevich, 2010). A detailed description of those
patterns would imply the use of complex spatially explicit models
(e.g. IBMs) (Leising, 2001; Batchelder et al., 2002). However, we
can easily obtain an insight to stability properties of plankton
system without using complex IBMs.
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Fig. 1. Functional responses of herbivorous zooplankton (Calanus Finmarchicus,

Central Barents Sea, 2003–2005) measured in situ. (A) Local functional response

showing the ingestion rates (measured in mg Chl a/(mg Carbon�1 day1)) of grazers

plotted against the ambient food density (measured in mg Chl a mg/m3) at different

depths in the water column. One can see the absence of clear dependence between

the local food density and the ingestion rates due to the complexity of the feeding

behaviour of individual grazers (see Morozov and Arashkevich, 2010 for detail). (B)

Overall functional response (the mean-field response) for the whole population of

zooplankton, defined as the average consumption rate per biomass of grazers in the

column which is plotted against the average chlorophyll concentration <P> (the

number of points corresponds to the number of observational stations). The fitted

function is given by the power function F = ahPig. This fitting presents the first term

of expansion of the sigmoid response given by F ¼ ahPig= bhPig þ 1
� �

, which is well

adapted in the literature (see Gentleman et al., 2003). The nonlinear regression

fitting gives a = 0.51; g = 1.67, R2 = 0.94. The comparison of (A) and (B) shows the

existence of the mean-field functional response in a clear absence of a local

functional response.
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In Fig. 1B, we show the overall (or mean-field) functional
response of zooplankton in the water column, constructed as a
function of average food density in the column, i.e. the consump-
tion rate per-unit biomass of grazers. One can easily see that now
the overall response can be approximately considered as a function
of the average density of phytoplankton over the column. More
interestingly, at low and intermediate densities we can fit the data
with a concave downward function, thus revealing a Holling type
III overall functional response. The emergence of such mean-field
Hollying type III response can provide an extra mechanism of
stabilization (Oaten and Murdoch, 1975), thus providing a generic
explanation for the efficiency of grazing control in eutrophic
waters. It is well known that in a large number of cases the overall
functional response of zooplankton cannot be strictly expressed as
a function of the average concentration of chlorophyll alone:
different vertical profiles of phytoplankton can have the same
average (Ryabov et al., 2010 and the references therein). However,
we can still use a mean-field functional response similar to the one
shown in Fig. 1B in generic models of plankton blooms, ignoring
explicit vertical resolution (Truscott and Brindley, 1994), to explain
the mechanism through which blooms are triggered. Indeed, the
increase in total phytoplankton in the column takes place
according to a typical scenario, where the increase of algal density
occurs mostly in surface layers (Raymont, 1980; Morozov, 2010),
i.e. the mean-field approach of modelling grazing is applicable.

6. Introducing the special issue ‘From spatially explicit
population models to mean-field dynamics’

The current special issue of Ecological complexity brings
together a series of articles considering various approaches to
the reduction of complex models with explicit spatial resolution to
simpler mean-field models. In particular, three important meth-
odological frameworks are represented (see Section 3): (i)
aggregation methods, (ii) scale transition theory (which is based
on spatial moment approximation philosophy) and (iii) methods of
reducing spatial IBM models to the mean-field limit.

The paper of Auger and colleagues is a detailed review of the
aggregation approach in the reduction of time continuous spatial
models based on using fast-slow manifolds (considering the
migration and dispersal to be a fast process compared to
demographic processes). The papers by Nguyen-Ngoc et al.
(2012), Marvá et al. (2012) and Mose et al. (2012) present
interesting illustrations of how the aggregation approach can be
implemented in concrete ecological problems. In particular, V.
Mose and colleagues (2012) consider the ecosystem of the
Amboseli National Park in Kenya: the reduction of the initial
complex model containing a large number of patches allows the
authors to make an important conclusion about the need for
keeping migration corridors connecting the park with the
surrounding ecosystems. The paper of Nguyen-Ngoc and collea-
gues (2012) emphasizes the importance of density-dependent
dispersal for the outcome of competition in a patchy environment.
Implementation of the aggregation method allows them to
analytically show the possibility of coexistence between species
which locally show pre-emptive competition. Finally, the work of
Marva and co-authors (2012) shows an interesting example of
application of spatial aggregation to epidemiology – considering
different time scales for migration and epidemic processes makes
it possible to compute the reproduction number R0 of an infectious
disease, and to show that fast migration can sometimes result in
eradication of the epidemic on a network of connected patches.

In the review by Chesson (2009) the general idea of scaling

transition theory is discussed, explaining the main aim of the
method: providing a qualitative understanding of the functioning
of communities based on our knowledge of local non-linear
population dynamics and spatial heterogeneity. Interestingly
enough, such an understanding can be obtained in a relatively
simple way, without explicitly solving the underlying spatial
model. The author shows that the effects of spatial variation on the
community can be represented in terms of Laplace transforms and
cumulant generating functions for the species fitness. As relevant
ecological examples, the dynamics of insect communities is
considered, and the key role of space in the coexistence of
competitors is demonstrated.

The work by Romanczuk and Schimansky-Geier (2012)
introduces a novel approach in reducing complex IBM models to
models which use macroscopic density and velocity fields (mean-

field description or mean-field limit). They consider the collective
motion of animals in swarms with velocity alignment, and show
the importance of individual behavior for the onset of collective
motion. They also discuss potential difficulties in deducing the
individual behavior from the mean-field measurements. Petrovskii
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and colleagues (2012) use a semi-analytical approach in replacing
individual based models of stochastic Brownian motion with a
diffusion equation. The authors consider the motion of insects on a
field with absorbing traps, and provide an efficient analytical
expression to estimate the total population size of the insects,
which is a vital issue for ecological monitoring. Finally, Scarsoglio
and colleagues (2012) consider a stochastic differential equation
for the vegetation distribution under periodical forcing, and
implement a mean field analysis of the model to obtain the
steady-state probability distribution (the probability density
function). The use of mean field analysis on the stochastic model
allows the authors to analytically demonstrate the emergence of
spatial patterns due to a spatio-temporal stochastic resonance,
which can potentially explain the observed spatial clusters in
riparian and wetland vegetation.
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