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A B S T R A C T

This article is a review of spatial aggregation of variables for time continuous models. Two cases are

considered. The first case corresponds to a discrete space, i.e. a set of discrete patches connected by

migrations, which are assumed to be fast with respect to local interactions. The mathematical model is a

set of coupled ordinary differential equations (O.D.E.). The spatial aggregation allows one to derive a

global model governing the time variation of the total numbers of individuals of all patches in the long

term. The second case considers a continuous space and is a set of partial differential equations (P.D.E.).

In that case, we also assume that diffusion is fast in comparison with local interactions. The spatial

aggregation allows us again to obtain an O.D.E. governing the total population density, which is obtained

by integration all over the spatial domain, at the slow time scale. These aggregations of variables are

based on time scales separation methods which have been presented largely elsewhere and we recall the

main results. We illustrate the methods by examples in population dynamics and prey–predator models.

� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In ecology, several levels of organization are often considered,
the individual, the population and the community levels. In order
to keep realistic, most models in ecology and in population
dynamics must take into account those levels of organization
leading to mathematical models involving more and more
variables. Therefore, the mathematical models are sets of many
coupled nonlinear equations. Those models are complex, because
there are in general difficulties in handling the equations and in
obtaining analytical results such as existence of positive equilibria
and stability properties, existence of periodic solutions, or else
asymptotic behavior. As a consequence, there was interest in
developing methods that allow a reduction of the complexity of
dynamical systems involving many state variables. For example, an
important question is how to build macro models governing a few
global variables.

Early works proposed some methods to reduce complexity for a
class of particular systems, which are hierarchically organized
including different levels of organization (Auger, 1980, 1983, 1989).
In this generic approach, one considered a system which is organized
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in a hierarchical manner in the sense that processes involved in the
dynamics of the complete system could be ordered into several
classes of interactions, intra-group and inter-group interactions for a
system with two levels of organization. Furthermore, intra-group
interactions were assumed to be strong (or fast) in comparison of
inter-group (or slow) interactions. An important problem is to define
some global or else macro variables associated with each group and
that can characterize each group as a whole. In this hierarchical

approach, it was assumed that the intra-group dynamics was
conservative and therefore, global variables were defined as first
integrals of the intra-group dynamics for each group. On the one
hand, conservative intra-group dynamics is an extra assumption
that may not be verified for any system but, on the other hand, when
this assumption is true, each group can be characterized by some
global variables that are constants of motion for the intra-group
dynamics and as a consequence keep constant at the fast time scale.
However, those macro-variables are no more constant when one
takes into account the inter-group dynamics. Such first integrals of
the intra-group dynamics are of course very good candidates to
characterize the dynamics of the complete system in the long term
because they do not vary at the short time scale but vary slowly as a
result of the inter-group dynamics. In the final step of the procedure
of reduction, it was possible to derive a macro-model governing
those global variables associated with each group and varying at a
slow time scale. This method of reduction of the dimension could be

http://dx.doi.org/10.1016/j.ecocom.2011.09.001
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extended to a hierarchically organized system involving any number
of organization levels.

At the same period, some authors extended methods of
aggregation of variables which are also methods for deriving a
macro model from a complete detailed model. Aggregation of
variables is coming from economy and has been introduced in
ecology by Iwasa et al. (1987). Two types of aggregation of variables
have been studied, perfect aggregation and approximate aggrega-
tion of variables. In perfect aggregation, one considers a complex
dynamical model with many coupled variables, the micro-variables.

x0iðtÞ ¼ f iðx1ðtÞ; . . . ; xnðtÞÞ

where 0 denotes the time derivative with respect to t (0 = d/dt), xi(t)
are micro-variables and i 2 {1, . . . , n}, n being the total number of
micro-variables assumed large, n � 1. In the next step, one looks
for existence of some global or macro-variables which are defined
by some functions of the micro-variables:

G j ¼ g jðx1; . . . ; xnÞ

where Gj are macro-variables and j 2 {1, . . . , N}, N being the total
number of macro-variables assumed, N is assumed to be small with
respect to n. Perfect aggregation is realized when the mathematical
equations of the dynamics of the global variables can finally be
expressed exactly (without any approximation) in terms of those
global variables.

G0jðtÞ ¼
Xn

i¼1

@g j

@xi
x0iðtÞ ¼

Xn

i¼1

@g j

@xi
f iðx1ðtÞ; . . . ; xnðtÞÞ ¼ F jðG1; . . . ; GNÞ

In general, such a perfect aggregation is not possible unless
parameters take very particular values that allow the global
variables to appear in the right hand side of the previous equations.
Perfect aggregation is a very particular situation which is rarely
possible since it requires drastic conditions. Consequently,
methods for approximate aggregation have been developed by
Iwasa et al. (1989). Approximate aggregation deals with methods
of reduction where the consistency between the dynamics of the
global variables in the complete system and the aggregated system
is only approximate. In this frame, the previous method of
reduction of hierarchically organized systems mentioned above
(Auger, 1980, 1983, 1989) fell into this scope.

Methods of aggregation of variables were presented in a
rigorous mathematical form for O.D.E. in Auger and Roussarie
(1994), Auger and Poggiale (1996) and Poggiale and Auger (1996),
extended to discrete models in Sánchez et al. (1995) and Bravo de
la Parra et al. (1997), to P.D.E. in Arino et al. (1999) and to D.D.E. in
Sánchez et al. (2006). For aggregation methods in time discrete
models we refer to Auger et al. (2008a,b) and to Nguyen Huu et al.
(2006) for spatial aggregation in this context.

This article is a short review on spatial aggregation of variables
for time continuous models. We focus on spatial aggregation even
if the principle of aggregation can be applied in other contexts i.e.
when aggregation is based on other criteria rather than space. For
example, we mention aggregation when individual behavior is
taken into account in population and community models (Auger
et al., 2002, 2006; Dubreuil et al., 2006). Aggregation was also
useful to model the dynamics of a virus epidemics, Poggiale et al.
(2009), and in eco-epidemiology to study the effects of an
epidemics on the dynamics of a prey–predator system (Auger
et al., 2009). A first extension of the method to non autonomous
systems of ordinary differential equations has been proposed with
applications to epidemiological models in patchy-environment
(see Marva et al., 2012). We also refer to applications of
aggregation in fishery modeling (Auger et al., 2010a,b).
Two cases are considered in this paper. The first case deals with
a discrete space which is a set of patches connected by migration
events. In the second case, space is assumed to be continuous. In
both cases, migration (case 1) or diffusion (case 2) is assumed to be
rapid in comparison with local interactions. This last assumption
allows us to proceed to a spatial aggregation that is to derive a
global model governing the total density of individuals, obtained
either by summation of the local patch densities or by integration
over the spatial domain of the local density.

The article is organized as follows: in Section 2 we present
methods of spatial aggregation in the case of continuous time and
discrete space with fast migration (O.D.E.). Section 3 studies spatial
aggregation in the case of continuous time and space with fast
diffusion (P.D.E.). The paper ends with a section of conclusions.

2. Aggregation in a patchy environment

A lot of models of biotic interactions have been proposed in
ecology to understand the population dynamics by means of their
interactions with other populations (see Murray, 1989 or Edelstein-
Keshet, 2005 for instance). Moreover, the role of space (dispersal,
spatial variability, etc.) has also been investigated to show how it can
modify the properties of the biotic interaction models: stabilitiza-
tion/destabilization effects, synchronization/desynchronization,
spatial patterns formations, permanence properties and so on, have
been discussed under the light of spatially extended models (see
Murray, 1989 or Malchow et al., 2008 for instance). It is often the case
that mathematical analysis is difficult, even impossible, when
dealing with communities in patchy-environments and in such
situations, results are obtained with numerical simulations.
However, it is interesting when possible to get rather simple rules
which integrate the local interactions and the spatial variability on
the whole spatial domain and explain how these characteristics are
combined to lead the whole population dynamics. Scale Transition
Theory Chesson (1998) have been proposed for such an objective.
Spatial aggregation method is another approach which also permits
detailed models at local scale to be defined and simplify them to get a
model at the global scale as well as relationships between these local
and global scales. The Scale Transition Theory allows the relation-
ship between the spatial distribution of the populations to be
synthesized in an elegant manner, via their mean and spatial
variance, and the local nonlinear dynamics under which they are
submitted. This is very useful for understanding the link between
local processes and global dynamics. However, it is based on a
truncated Taylor expansion which may not always be sufficient.
Moreover, even if the above truncation is valid, it is necessary to
simulate the complete model to get the spatial variance and be able
to simulate the total population dynamics. In the aggregation
method, the simulation of the reduced model does not need the
simulation of the complete one. The methods presented in this paper
need that processes take place at different time scales, for instance
that migration are fast with respect to local interactions.

The family of models used in this context is now introduced more
precisely and the assumptions used for the methods are listed. We
consider a community with A populations leaving in a patchy
environment constituted by N patches. We denote by xa

i the density
of sub-population a located on patch i, where a 2 {1, . . . , A} and
i 2 {1, . . . , N}. We assume that the displacements take place on a
short time scale in comparison to the demographic processes (birth,
death, etc.). The general form of the models considered here is:

xa0
i ðtÞ ¼ 1

e Fa
i ðXðtÞÞ þ f a

i ðXðtÞÞ (1)

where 0 denotes the time derivative with respect to t (0 = d/dt),
XaðtÞ ¼ ðxa

1 ðtÞ; . . . ; xa
NðtÞÞ and X = (X1(t), . . . , XA(t)), Fa

i represents the
displacements of individuals of population a related to patch i and
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f a
i describes the demographic processes as well as the biotic

interaction effects. Finally, the parameter e is a small dimension-
less parameter (called scale parameter), which is assumed to be
small and characterizes the difference of time scales: e � 1. The
maps Fa

i and f a
i are assumed to be Cr with r � 1.

The function Fa
i is often a function of the vector X

a
. It allows the

changes of patches to be represented. When density-dependent
effects like effects of predator densities on prey movements for
instance are taken into account, the function Fa

i is thus a function of
the vector X.

Since the displacement of individuals is a conservative process,
the total density of each population xa ¼

PN
i¼1 xa

i is not modified by
the migrations and thus:

XN

i¼1

Fa
i ðXÞ ¼ 0

In the first sub-section, a brief summary of the reduction
method is provided. In the second sub-section, some recent
extensions and new perspectives are presented. The third and
fourth sub-sections propose two examples which illustrate
different aspects of the method. This method is discussed in the
context of ecological complexity in the last sub-section.

2.1. General principle of the reduction method

Let us define the frequency of population a on patch i by
na

i ¼ xa
i =xa, it follows that

PN
i¼1 na

i ¼ 1. We perform the change of
variables xa

i ! ðna
i ; xaÞ, with a 2 {1, . . . , A} and i 2 {1, . . . , N}. System

(1) becomes:

ṅa
i ðtÞ ¼ 1

xaðtÞ ½F
a
i ðXðtÞÞ � ena

i ðtÞ f aðXðtÞÞ� (2a)

ẋaðtÞ ¼ e f aðXðtÞÞ (2b)

where t = t/e, ẋ denotes the time derivative of x with respect to t
(ẋ ¼ dx=dtÞ, a 2 {1, . . . , A} and i 2 {1, . . . , N � 1}, f aðXÞ ¼PN

i¼1 f a
i ðXÞ. Under this form, it is clear that the frequencies of

population on the different patches have a fast dynamics with
respect to the total population densities, for which the time
derivatives are very small. The new system is called a slow–fast
system.

Slow–fast systems have been analyzed for a few decades, in the
framework of singular perturbations theory (Hoppensteadt, 1966).
A geometrical point of view is adopted here, based on the Fenichel
theorem (see Fenichel, 1971 or Wiggins, 1994 for instance). This
theorem provides the conditions under which we can assume that
the fast variables can be replaced by asymptotic values in the
equations of the slow variables, leading in this way to a lower
dimension system. Let us apply the Fenichel theorem in the case of
system (2.1): we first add the equation de/dt = 0 and consider the
case e = 0. It follows that x

a
are constant and the fast variables are

governed by the system:

ṅa
i ðtÞ ¼ 1

xa Fa
i ðXðtÞÞ

for i 2 {1, . . . , N � 1} and a 2 {1, . . . , A}. We assume that this system
has a globally asymptotically stable equilibrium and we denote by
na�

i the frequency equilibrium values. If the Jacobian matrix of this
system at the equilibrium has only eigenvalues with strictly
negative eigenvalues, then the equilibrium is called hyperbolic. In
this case, the set

M0 ¼ fðn�; xa; 0Þg � RAðN�1Þ 	 RA 	 R
is called normally hyperbolic for the system (2.1). In this case, for
all compact sets in RAðN�1Þ 	 RA 	 R, there exists e0 such that for all
e < e0, the set M0 persists, that is there exists a set Me close and
diffeomorphic to M0, invariant under the flow generated by
system (2.1), on which the full dynamics can be reduced. The
reduced dynamics governs the total densities variables x

a
and an

approximation of Me by M0 leads to the reduced system:

xa0ðtÞ ¼ f̃
a
ðx1ðtÞ; . . . ; xaðtÞÞ (3)

where

f̃
a
ðx1;. . .; xaÞ¼ f aðn1�

1 x1;. . .;n1�
N x1; n2�

1 x2;. . .; n2�
N x2;. . .;nA�

1 xA;. . .;nA�
N xAÞ:

Geometrical singular perturbation theory allows us to conclude
that the trajectories of the complete system (2.1) are rapidly close
to the trajectories of the reduced system (3) and that, under the
conditions that the trajectories remain in the compact set
mentioned above, the asymptotic behavior of the complete model
solutions is provided by the study of the reduced one.

2.2. Cautions, limits and extensions

Many papers deal with time separation techniques and do not
refer to any mathematical result to apply these techniques. For
instance, the so-called quasi-steady assumption is used in chemistry
and biochemistry in order to simplify models in which two time
scales are present. The fast variables are replaced by their
equilibrium values in the equations governing the slow variables,
exactly as the mathematical theory says. We call this the quick

derivation method (QDM). Indeed, it is a rather intuitive idea and
we could argue that it is not necessary to use the formal theorems
to apply these techniques. However, there are some cases where
the reduced system obtained by this way does not have a similar
dynamics to the complete one. For instance, if the reduced system
obtained with the QDM is not structurally stable, it must be
highlighted that the mathematical theory claims that the QDM is a
first approximation of the actual reduced system and even
provides the tool to get a better approximation. If the actual
reduced system obtained by the Fenichel theorem is approximated
by the reduced QDM model and if this QDM model is not
structurally stable, it is necessary to get a better approximation of
the actual reduced system. Such an example is given in Poggiale
and Auger (2004) where, using suitable the Fenichel theorem, it is
shown that in a predator–prey system in a patchy environment,
with a refuge for the prey, dispersal has a stabilizing effect. In
another example where this refinement is needed, Poggiale et al.
(1998) show that a ratio-dependent functional response may
emerge from a local prey-dependent response and dispersal in a
patchy-environment with a refuge for the prey.

Another situation where the mathematical framework is useful,
concerns the bifurcation analysis of the reduced model. The
Fenichel theorem allows us to guarantee that the bifurcations
obtained with the reduced QDM model are the same as the
bifurcations got in the analysis of the complete model. An example
for which this mathematical sophistication is needed is presented
in Mchich et al. (2007), where a predator–prey model in a patchy-
environment, with density-dependent dispersal rates, is analyzed
to understand how this density-dependence of individuals
movement affects the predator–prey system stability. In this
example, a non-generic Hopf bifurcation occurs.

The mathematical theorems give the formal assumptions under
which the reduction is efficient. In Poggiale et al. (2009), we give
examples where the fast equilibrium is always stable but the
reduced model provides the correct dynamics of the complete model
only during a finite time. In these examples, the invariant manifold is
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normally hyperbolic except on the boundary of the biologically
relevant domain. However, the trajectories periodically visit the
vicinity of this region where the normal hyperbolicity is lost.
Recently, some mathematical extensions in the geometrical singular
perturbation theory framework have been published to get a very
good description of the trajectories in this case (see Dumortier and
Roussarie, 1996 or Dumortier and Roussarie, 2000 for instance).

2.3. Example 1: emergence of cycles from behavior in displacements

The model presented here, in some sense, can be related to one
of the models developed in Auger et al. (2000). We aim to consider
here a simple model which contains sufficient richness to illustrate
various interesting properties of the method. Thus, it can be argued
that some biological assumptions should not be very realistic and
at least not supported by empirical evidence. Actually, the same
kind of dynamics and results could be illustrated with a more
realistic model, but certainly more complex and more difficult to
describe in this review.

2.3.1. Assumptions, model equations and the associated slow–fast

system

We consider a single population on two patches. Patch 1 is
assumed to be a sink and patch 2 is assumed to be a source. We use
the same notations as above but since there is only one population
(A = 1), we omit the superscript a. The local densities on each patch
are x1(t) and x2(t). The model reads:

x01ðtÞ ¼ 1

e ðm2x2ðtÞ � m1x1ðtÞÞ � d1x1ðtÞ (4a)

x02ðtÞ ¼ 1

e ðm1x1ðtÞ � m2x2ðtÞÞ þ r2x2ðtÞ (4b)

where m1 (resp. m2) is the displacement rate from patch 1 to patch
2 (resp. from patch 2 to patch 1), d1 is the death rate on the sink
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Fig. 1. Equilibria of Eq. (5a) for e = 0 in the generic situations: these equilibria are obtained

line) and right-hand side (non monotone curve) of Eq. (6). On the left panel (a), the total de

proportion of the population on patch 1. On the central panel (b), there are three equilibria

initial condition n1(0). On the right panel (c), there is again only one equilibrium n�13, wh
patch and r2 is the growth rate on the source patch. We
furthermore assume a particular behavior in the displacement:
we assume that the displacement rate m2 is a constant while the
displacement rate m1 (from the sink to the source) is a decreasing
function of the local density x1, corresponding to an aggregating
behavior on this patch. This example does not aim to be very close
to an actual example but it has the advantage of being rather
simple and of containing the different aspects discussed in the
previous sub-sections. For the sake of simplicity, let m1ðx1Þ ¼
a=ð1 þ bx2

1Þ. Let us introduce the aggregated variable
x(t) = x1(t) + x2(t), which is the total population density.

The frequencies on the different patches are n1 = x1/x and
n2 = 1 � n1. The previous differential system can be written as
follows:

ṅ1ðtÞ ¼ m2 � ðm1 þ m2Þn1ðtÞ � en1ðtÞð1 � n1ðtÞÞðd1 þ r2Þ (5a)

ẋðtÞ ¼ eðr2 � ðd1 þ r2Þn1ðtÞÞxðtÞ (5b)

ėðtÞ ¼ 0 (5c)

where t = t/e.

2.3.2. First step: fast dynamics and quick derivation method

The aggregation method consists first of considering the case
e = 0 and determining the fast dynamics attractors (i.e. looking for the
invariant manifold M0). It follows that the total density x is a
constant and in our example, only one differential equation is fast,
thus n1(t) is going toward an limit when t goes to infinity. The
equilibria of this fast equation are obtained by solving the equation:

m2ð1 � n1Þ ¼ an1

1 þ bx2n2
1

(6)

with respect to the frequency n1, where we replaced n2 by 1 � n1.
The left-hand side is a decreasing linear function of n1 and the
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 by the intersection of the two curves which corresponds to the left-hand side (straight

nsity is low. It follows that there is only one equilibrium n�11 corresponding to a small

: n�11 and n�13 are stable while n�12 is unstable. n1(t) tends to n�11 or n�13, according to the

ich is stable and corresponds to a high proportion of the population on patch 1.
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right-hand side is a non monotone function, which can cross the
linear function one, two (not generic case) or three times,
depending on the value of the total density x. Fig. 1 illustrates
the two generic situations: 1 or 3 fast equilibria. If initially, the total
population density is low, the fast dynamics leads to an
equilibrium n�11 which is small, that is most of the population is
located on patch 2 (see Fig. 1a). If initially, the total population
density is high, the fast dynamics leads to an equilibrium n�13 which
is large: most of the population is on patch 1 (see Fig. 1c). In the
intermediate situation, there are three equilibria n�11, n�12 and n�13,
n�11 and n�13 are stable and n�12 is unstable. The initial condition n1(0)
determines which stable equilibrium the fast variable is going to.
Since there are potentially two stable equilibria for the fast part, it
follows that there are two aggregated models:

x0ðtÞ ¼ ðr2 � ðd1 þ r2Þn�1;1ðxðtÞÞÞxðtÞ (7)

and

x0ðtÞ ¼ ðr2 � ðd1 þ r2Þn�1;3ðxðtÞÞÞxðtÞ (8)

It is rather common analysis to show that each of these models
leads to the same qualitative dynamics, which is a logistic-like one.
Since n�11ðxÞ < n�13ðxÞ, it follows that the equilibrium x1� of the total
density with model (7) is higher than the total density equilibrium
x2� obtained with the model (8): x1� > x2�.

2.3.3. Global dynamics: a heuristic explanation

Let us consider an initial condition for the complete model
(n1(0), x(0)) with a very low total population density x(0) � 1. Very
rapidly, the frequency n1(t) is close to n11. Thus x(t) increases
slowly and will tend to x1�. If this apparent carrying capacity x1� is
larger than the threshold which makes the fast equilibrium n�11

disappear (saddle-node bifurcation when n�11ðxÞ encounters
n�12ðxÞ), then the above reduced model is no longer valid. It follows
that n1 will suddenly jump to n�13. When n1 becomes large, the
individuals are mainly on the sink patch and the population
density decreases: x(t) is now decreasing to x2�. The fast
equilibrium n�11 then appears again. The fast variable n1 will not
necessarily jump to that equilibrium because it may still be in the
basin of attraction of n�13. In other words, it may be necessary to
wait for some time until x(t) decreases enough, which is possible if
x2� is lower than the threshold which makes the fast equilibrium
n�13 disappear (saddle-node bifurcation when n�13ðxÞ encounters
0 0.5 1 
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x 2

Fig. 2. A limit cycle (solide line) in the phase space of model (1). The dashed curve corresp

ṅ1 ¼ 0. The parameters value used for this simulation are: a = 10 ; b = 10 ; m2 = 0.5 ; d1
n�12ðxÞ). In this case, n�13 disappears and then n1 jumps fast to n�11.
This mechanism provokes oscillations of the total density and it is
also true for the local densities, by the way (see Fig. 2). This
heuristic explanation is quite simple and provides the qualitative
behavior of the solutions of the complete model. However, a more
precise description would need more complex tools which are
given by the geometrical singular perturbation theory (GSPT) as
explained at the end of Section 2.4, for instance for determining
exactly when one of the aggregated model is no longer valid and
when should we consider the second one.

Geometrical singular perturbation theory provides a set of tools
which helps to understand exactly what is going on for this kind of
situation: it allows namely the precise description of the fate of the
trajectories when they leave the invariant manifold used to get the
aggregated model, which occurs when the fast equilibria are
becoming unstable (or at least not hyperbolically stable).

2.4. Example 2: a predator–prey model in a patchy environment with

a refuge for the prey

Methods of aggregation of variables are useful in order to
reduce the complexity of mathematical models. This occurs when
one can reduce the dimension of a mathematical model involving
many variables and parameters. We illustrate this in the next
example: we consider a predator–prey model in a patchy-
environment. We assume that the prey has a refuge. We aim to
determine the minimal number of patches where predator–prey
interaction takes place to allow the predator to invade. We
illustrate on this example that aggregation method provides
analytical results on the complete system and allow to determine
this threshold value on the number of patches. This is a theoretical
example just presented as an illustration of the method, it is a
simplified version of the model studied in Auger et al. (2010b).
However, it could get different kind of applications (Marine
Protected Area, Biological control of pests, and so on).

We consider prey and predator populations interacting on a
linear chain of N patches connected by dispersal. We assume that
the prey population has a refuge from which it can reach any of the
interaction patches. It is assumed that the prey cannot survive in
the refuge where no resource are available and that they die at a
rate mR. Consequently, prey leave frequently the refuge at a rate k

to reach a patch i where food is available. On these patches, the
prey population grow logistically with growth rate ri and carrying
capacity Ki. Let nR(t) be the density of prey in the refuge at time t,
1.5 2 2.5
x

1

onds to the set in the phase space where the fast variable time derivative vanishes:

= 2 ; r2 = 1 ; e = 0.04.
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ni(t) is the prey density on patch i at time t and pi(t) is the predator
density on patch i at time t. Prey return from patch i to their refuge
at a rate kRi = a/Ki, which means that prey are more likely to remain
on a patch i when its carrying capacity is large. For predators, we
assume that individuals can move to the two neighbouring patches
i of the chain and that the dispersal rates are correlated to the
distance between patches thus the migration rate from patch j to
patch i mi,j is equal to the migration rate from patch i to patch j mj,i.
mi is the mortality rate for predators on patch i, ai and bi are
classical predation parameters that are assumed to be patch
dependent. Finally, we assume that dispersal rates of prey and
predators are high with respect to demographic rates (populations
growth and mortality rates, predation rates). According to these
assumptions, species densities vary according to the classical prey
predator model as follows:

n0RðtÞ ¼ 1

e
XN

i¼1

kRiniðtÞ � NknRðtÞ
  !

� mRnRðtÞ (9a)

n0iðtÞ ¼ 1

e ðknRðtÞ � kRiniðtÞÞ þ riniðtÞ 1 � niðtÞ
Ki

� �
� ainiðtÞ piðtÞ (9b)

p0iðtÞ ¼ 1

e ðmi;i�1 pi�1ðtÞ þ mi;iþ1 piþ1ðtÞ � ðmi�1;i þ miþ1;iÞ piðtÞÞ

þ ðbiniðtÞ � miÞ piðtÞ (9c)

p01ðtÞ ¼ 1

e ðm1;2 p2ðtÞ � m2;1 p1ðtÞÞ þ ðb1n1ðtÞ � m1Þ p1ðtÞ (9d)

p0NðtÞ ¼ 1

e ðmN;N�1 pN�1ðtÞ � mN�1;N pNðtÞÞ þ ðbNnNðtÞ

� mNÞ pNðtÞ (9e)

where i 2 {2, . . . , N � 1}, e is a small positive dimensionless
parameter which traduces the time scale separation between
dispersal and demography. This model, which we will call the
complete model, deals with 2N + 1 equations, that is a high number
of equations when N is large. It is then difficult to handle with and
to get analytical results about its asymptotic behavior. Therefore,
the aggregation method will be useful to reduce the number of
equation, to build an aggregated model for which analytical results
are obtained. Since the dispersal process is fast, prey and predator
densities reach a fast stable equilibrium, obtained by vanishing the
differential equations with e = 0. We get:

n�i ¼ n�i n and n�R ¼ n�Rn

where the total prey density n ¼
PN

i¼ ni þ nR is a constant when
e = 0, n�i ¼ kKi=ða þ k

PN
i¼ KiÞ and n�R ¼ a=ða þ k

PN
i¼ KiÞ. Further-

more, the predator densities at fast equilibrium are:

p�i ¼
p

N

where p ¼
PN

i¼1 pi is the total predator density. The previous
equation means that the predator population is homogeneously
distributed on the spatial domain. We now derive the correspond-
ing aggregated model by computing the time derivative of n(t) and
p(t) in which ni(t), nR(t) and pi(t) are replaced by the above
mentioned equilibrium values. It reads:

n0ðtÞ ¼ RnðtÞ 1 � nðtÞ
K

� �
� AnðtÞ pðtÞ þ OðeÞ (10a)

p0ðtÞ ¼ BnðtÞ pðtÞ � m pðtÞ þ OðeÞ (10b)

where R ¼
PN

i¼1 n�i ri � n�RmR. We assume that this quantity is
nonnegative otherwise the prey population would die out and the
system would not be interesting. The total prey carrying capacity is
K ¼ R=ð
PN

i¼1ðriðn�i Þ
2=KiÞÞ, the total predator population death rate

is m ¼
PN

i¼1 n�i mi and the total predation parameters are A ¼
ð1=NÞ

PN
i¼1 ain�i and B ¼ ð1=NÞ

PN
i¼1 bin�i . This system admits a

positive equilibrium provided that:

K >
m
B

(11)

When this equilibrium exists, it is globally asymptotically stable
for all initial conditions in the nonnegative domain. The condition
(11) can be written as follows:

k
XN

i¼1

riKi

  ! XN

i¼1

ðbiKi � miÞ
  !

> amR

XN

i¼1

biKi (12)

If we now assume for instance that the patches are rather similar,
such that ri = r, Ki ¼ K̃, bi = b and mi = m for all i 2 {1, . . . , N}, then the
existence condition (12) depends explicitly on N, we get a
condition on N for which the predator population can survive.
In this case, condition (12) reads:

N >
amRb

krðbK̃ � mÞ
(13)

where K̃ is assumed to be larger than m/b in order to allow
the predator to survive on each patch separately. This is a
necessary condition, but as shown in Eq. (13), it is not sufficient.
Indeed, there is a minimal number of patches given by Eq. (13)
under which the predator is excluded, even if on each patch
separately it could invade. In this example, the threshold value
for the minimal number of patches allowing predator invasion
depends on the prey displacement rates a and k, on the
mortality rate of the prey in they refuge mR, on the local predator
response to predation b, on the local carrying capacity of each
patch K̃ and on the local (and global) mortality rate of the
predator m.

2.5. Ecological complexity

Since ecosystems can be seen as a large number of entities,
interacting in a non linear way, in varying environments, two
different extreme approaches may be opposed (see Jorgensen,
2002 for instance for more details). The holistic approach tries to
define global descriptors of ecosystems properties, omitting the
details. On the contrary, the reductionist approach aims to
understand the ecosystem properties on the basis of mechanisms
and therefore tries to describe the processes at a detailed level and
to find how they interact to get the whole dynamics. One might ask
if it is really necessary to insert details in model of ecosystems and
which details are important or not, the problem is still opened (see
for instance Raick et al., 2006 and Poggiale et al., 2010).Of course,
many approaches provide a trade off between these extremes.

In the context of this article, the complexity also occurs from the
spatial description of population or communities dynamics. Space
is, in this section, represented by an arbitrary large number of
patches on which population are distributed. In each patch,
populations grow and interact with each other in the community.
Our aim is to develop a method to reduce the resulting complexity
of such systems governed by a large number of variables. Two
points are important in our approach. Firstly, we use a hierarchical
point of view for defining different time scales: individuals are
moving at a short time scale while population dynamics take place
on a longer time scale. Secondly, we use a reduction method to
simplify the models at long time and large space scales. Thirdly, we
use this method to keep a link between the different involved
organization levels. The reduction of complexity allows to
determine some general rules at the global scale on the basis of
detailed description, as in example 2 above. The relationships
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between local and global levels allow to keep the dynamics of the
complete model while dealing with the simplified ones. The
emergent properties at the global spatial level, obtained by
bottom-up effects, can thus be explained from local interactions,
displacement behaviors and spatial variability. Furthermore, the
global dynamics can lead the aggregated variables to threshold
values which, in turn, lead to drastic changes at the local level, a
top-down response of the complex system, as in example 1.

More precisely, example 1 has been chosen to show that the
method permits to reduce the complete model to simpler ones but
that different simplified (aggregated) models can result from the
complete one. In the example, two aggregated models can be
derived but we can easily imagine that in more complex systems,
more than two aggregated models would be derived to be able to
represent the dynamics of the complete model. In order to know
which aggregated model should be used when several models are
derived from the complete one, we need first to know the initial
conditions but it is also useful to use the geometrical singular
perturbation theory (GSPT) to detect the regions in the phase space
where the trajectories of the complete model jump from one
aggregated representation to another one. These regions are
characterized by a loss of normal hyperbolicity of the perturbed
invariant manifold Me given by Fenichel’s theorem. Blowing up
techniques allow us to deal with this situation ((Dumortier and
Roussarie, 1996, 2000)).

As said previously, the aggregation method bridges local
nonlinear interactions to global population or community
dynamics, this has been illustrated in the previous sub-sections.
Dispersal of individuals in a patchy-environment can be random
or driven by individuals density-dependent behaviors. The
method can for instance be used to parameterize a model at a
large scale on the basis of formulations obtained at small scales,
like in laboratory experiments. For instance, in Michalski et al.
(1997), we show that predator–prey models at a global scale can
be parameterized from simple laws, like Mass Action law,
associated to behavioral rules for individuals (displacement
behavior for instance). General ecological rules can thus be
derived on different community properties (predation, see
Poggiale et al., 1998; Poggiale, 1998a, stability, see Poggiale
and Auger, 2004, coexistence, see Poggiale, 1998b, etc.). Further-
more, the method provides some general rules to control complex
systems like in Auger et al. (2010b) for instance.
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Fig. 3. Dynamics of the local densities simulated with the model (4). The parameters v
There was a lot of interest to study the dynamics of prey and
predators, competitors in an heterogeneous environment with
many patches connected by dispersal, see for example Amarase-
kare (1998) and Amarasekare and Nisbet (2001). In the most
general case, the complexity of such spatial models is becoming
very important and only very simplified versions can be studied,
either with simple density independent dispersal rules and/or with
same local interactions in any patch. Spatial aggregation methods
provide an important step to solve this complexity. Indeed, when
one can assume that dispersal is fast with respect to local
interactions, spatial aggregation allows one to derive simplified
models for which analytical results may be obtained. However,
even those reduced models remain often so complex that they are
difficult to analyze. As a consequence, either authors concentrated
in systems with 2 or few patches (Elabdlaoui et al., 2007; Nguyen
Ngoc et al., 2010) or studied multi-patch systems with similar local
interactions (Nguyen Huu et al., 2008; Auger et al., 2010b) for
which some results could be obtained. Spatial aggregation
methods may also be helpful to study real cases, such as multi-
site fisheries with density dependent fleet movements (Moussaoui
et al., 2011) as well as sardine fishery in Morocco where two fish
stocks can be considered in two regions, (Charouki et al., 2011).

To conclude this section, we point out that, according to the
above described mechanism, the method presented here provides
a tool to analyze models of spatial self-organization. Indeed, as
illustrated in Fig. 3 obtained for example 1 presented in Section 2.3,
sub-populations density oscillates periodically. Under the time
scale assumption, this spatial pattern can be well understood by
decomposing the time in periods during which the aggregated
model alternates.

3. Aggregation for continuous space models: a semigroup
approach

There are several ways to introduce space in mathematical
models of population dynamics. A first approach has been
described in the previous section: it consists of considering the
environment as a set of discrete patches connected by migration,
the evolution processes being described by a set of O.D.E. taking
into account local interactions on each patch (birth, death, trophic
interactions). This section deals with another way to introduce the
spatial structure in mathematical modeling that consists of
50 60 70 80 90 100
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alue used for this simulation are: a = 10 ; b = 10 ; m2 = 0.5 ; d1 = 2 ; r2 = 1 ; e = 0.04.
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considering a continuous space, which usually leads to reaction-
diffusion models, formulated as a set of partial differential
equations (P.D.E.). Our aim is to extend aggregation methods to
this setting. In particular, we will consider continuously spatially
distributed populations in which the diffusion takes place at a
faster time scale than local growth. Choosing the total population
as a new variable, we can reduce the model to a set of O.D.E.
governing the dynamics without losing the individual features. In
fact, we will show that the C0-semigroup theory provides a unified
approach to the treatment of a wide class of slow–fast models, that
includes both discrete and continuous spatial structures.

3.1. Aggregation of variables in an abstract two-time semilinear

evolution differential equation.

To simplify the reading, we reduce the description to a scalar
setting, but the reader can find a general formulation as well as a
detailed description of technical details in Sánchez et al. (2011).

Let us consider the following Cauchy problem for an abstract
semilinear parabolic differential equation defined on a Banach
lattice (X, || 
 ||X):

ðCPÞe
n0eðtÞ ¼ 1

e AneðtÞ þ FðneðtÞÞ; t > 0

neð0Þ ¼ n0

(

where e > 0 is a small parameter and we assume that operators A

and F satisfy the following hypotheses:

Hypothesis 1. The operator A : D(A) � X ! X is the infinitesimal
generator of a C0-semigroup {T0(t)}t�0 defined on X, which is
eventually compact, positive and irreducible.

Moreover, the spectral bound of A, s(A) : = sup {Rel, l 2 s(A)},
satisfies that s(A) = 0. As usual, s(A) stands for the spectrum of
operator A.

Hypothesis 2. The nonlinear operator F : X ! X is locally Lipschitz
continuous. That is, for each g > 0 there exists a constant Lg > 0
such that for each wi 2 X with ||wi||X � g, i = 1, 2, the following
holds:

kF ð’1Þ � Fð’2ÞkX � Lgk’1 � ’2kX :

With the help of the variation of constants formula, the
differential problem (CP)e can be transformed into the integral
equation

neðtÞ ¼ TeðtÞn0 þ
Z t

0
Teðt � sÞðFðneðsÞÞÞ ds; t � 0 (14)

where we have introduced the rescaled semigroup Te(t) : = T0((1/
e)t), which takes into account the factor 1/e of the model.

As usual, the notation C([0, T] ; X) (T > 0) represents the Banach
space of continuous functions n : [0, T] ! X, endowed with the
norm ||n||C : = sup t2[0,T]||n(t)||X. Then, a classical solution to (CP)e is
a function ne 2 C([0, T] ; X) for some T > 0 such that ne is
continuously differentiable on (0, T), ne(t) 2 D(A) for t > 0, and
satisfies (CP)e. A function ne 2 C([0, T] ; X) which satisfies (14) for
t 2 [0, T] is called a mild solution to (CP)e.

The standard theory on abstract semilinear parabolic differen-
tial equations assures that, under Hypotheses 1 and 2, for each
initial data n0 2 X there exists a unique ne mild solution to (CP)e
defined on a maximal interval [0, Tmax), Tmax > 0. Moreover, if
Tmax< + 1, then limt ! Tmax�kneðtÞkX ¼ þ1. If F is continuously
Fréchet-differentiable and the initial data n0 2 D(A), then ne is the
classical solution to (CP)e.
Under Hypothesis 1, the Perron-Frobenius theory on positive
C0-semigroups can be applied, so that the following holds:

(i) There exists a
�
> 0 such that s(A) = {0} [ L, with L � {z 2 C

Re z < � a
�
}.

(ii) dim ker A = 1 and there exist m 2 ker A, m > 0 and a strictly
positive functional m

� 2 ker A
�
such that hm�

, m i = 1, where A
�
is

the adjoint operator of A and h
 , 
 i stands for the duality (X
�
, X).

(iii) There exists a direct sum decomposition

X ¼ ker A�S; S :¼ Im A (15)

which reduces A and the semigroup {T0(t)}t�0. That is, ker A

and S are closed invariant subspaces under A and T0(t), t � 0.

Moreover, s(AS) = L and kTSðtÞk � MSe�a�t , t > 0, where AS

and TS(t) represent respectively the restriction of A and T0(t) to S.
(iv) In the direct sum decomposition (15) we have

Im A ¼ f’ 2 X; hm�; ’i ¼ 0g

and the associated projection onto ker A is given by:

8 c 2 X; PAc :¼ hm�; ci:

The underlying idea in the construction of an aggregated model
consists of projecting the dynamics of (CP)e onto ker A. To this end,
we choose the so-called global variable defined by:

NeðtÞ :¼ hm�; neðtÞi ) N0eðtÞ ¼ hm�; F ðneðtÞÞi

Notice that the right-hand side of this equation depends on
ne(t). To avoid this difficulty, we substitute it with its projection
onto ker A, ne(t)  N(t)m, so that we approximate the initial
perturbed model, which is a functional differential equation
defined on a Banach lattice, by the aggregated model which is a
nonlinear ordinary differential equation:

N0ðtÞ ¼ hm�; FðNðtÞmÞi; Nð0Þ ¼ hm�; n0i: (16)

Once an aggregated model has been constructed, it is necessary
to establish approximation results between the solutions to both
problems, so that conclusions on the behavior of the perturbed
model (CP)e can be deduced from an analysis of the reduced model.

To this end, let us introduce some notation. According to (15),
each n0 2 X can be written as:

n0 ¼ N0m þ r0; N0 :¼ hm�; n0i hm�; r0i ¼ 0

and then, for each WðAÞ neighbourhood of the set A in R and for
each d > 0, we can define a neighbourhood of Am in X by:

N ðWðAÞ; dÞ :¼ fNm þ r; N 2 WðAÞ; r 2 S; krkX < dg:

The main comparison result between the solutions to (CP)e and
(16) is established in the following theorem, whose proof can be
found in Sánchez et al. (2011):

Theorem 1. Under Hypotheses 1 and 2 and, assume that there exists

a local compact attractor A for the aggregated model (16). Then, fixing

any neighbourhood WðAÞ and d > 0, there exist a neighbourhood

W�ðAÞ � WðAÞ, d
� 2 (0, d) and e� > 0 such that for all e 2 (0, e�) and

n0 ¼ N0m þ r0 2 N ðW�ðAÞ; d�Þ, the solution to (CP)ene(t) : =
Ne(t)m + re(t) such that ne(0) = n0 is defined for all t � 0 and satisfies

the following:

(i) neðtÞ 2 N ðW�ðAÞ; dÞ.
(ii) ||re(t)||X � C1e�

bt/e||r0||E + C2e
for some positive constants C1, C2 > 0 (non dependent on WðAÞ, d) and

any b 2 (0, a
�
).
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Roughly speaking, this theorem means that if the aggregated
model has a local compact attractor A (e.g. a locally asymptotically
stable equilibrium or a stable limit cycle) then for e > 0 small
enough, the solutions to (CP)e that start close to Am remain close to
Am for all t � 0.

As a consequence, under additional smoothness conditions for
the operator A, it can be shown that, for each e > 0 small enough,
there exists a local compact attractor Ae of the perturbed problem
which is close to Am. This can be done by proving that there exists a
set N� of initial conditions whose omega-limit set is a compact
attractor for (CP)e.

Recall that a local compact attractor A is an invariant compact
set for which there exists a neighbourhood U such that the omega-
limit set of U is A.

Recall also (see Hale, 1988, Lemma 3.1.2) that if B � X is such that
the set of positive orbits g+(B) is precompact, then the omega-limit
set of B, v(B), is nonempty, compact, invariant and v(B) attracts B.

If n0 2 X is an initial condition such that the corresponding
solution to (CP)e ne(t ; n0) exists for all t � 0, the positive orbit is
defined as the set gðeÞþ ðn0Þ :¼ fneðt; n0Þ; t � 0g and also, for a set
B � X of such initial conditions, gðeÞþ ðBÞ :¼ [ n0 2 Bg

ðeÞ
þ ðn0Þ.

A standard way to prove the precompactness of a subset M of a
Banach space X consists of showing that M is a bounded subset of
some Banach space F such that F � X and the embedding is
compact. In our setting we will proceed by imposing supplemen-
tary smoothness conditions to the semigroup {T0(t)}t�0, so that the
general theory on sectorial operators could be applied. To be
precise, we assume the following:

Hypothesis 3. The semigroup {T0(t)}t�0 is an analytic semigroup
on X. Moreover, the infinitesimal generator A has compact
resolvent.

Then, the direct sum decomposition (15) allows us to assure
that for each b � 0, the fractional power operator (� AS)

b
can be

defined on a domain Xb
S � X which is a Banach space with respect to

the norm ||wS||b : = ||(� AS)
bw||X. Moreover, for b 2 (0, 1), the

embedding Xb
S � S is compact and therefore it can be shown that for

e 2 (0, e�), gðeÞþ ðN
�Þ is a precompact set, where

N� :¼ fn0 ¼ N0m þ r0; N0 2 W�ðAÞ; r0 2 Xb
S ;

jjr0jjb< d�g � N ðW�ðAÞ; d�Þ:

The above considerations provide an outline of the proof of the
following result, which improves the comparison result estab-
lished in Theorem 1.

Theorem 2. Under Hypotheses 1–3, assume that there exists a com-

pact attractor A for the aggregated model (16). Then, there exists

e�0 > 0 such that 8 e 2 ð0; e�0Þ, there exists a compact attractor Ae for the

perturbed model (CP)e. Moreover we have Ae� N ðWðAÞ; dÞ for each

neighbourhood of Am in X and e > 0 small enough. Also

diam ðS \ AeÞ ! 0(e ! 0+).

In the particular case in which ker A is invariant under operator
F , we have the following:

Corollary 1. Under the hypotheses of Theorem 2, let us assume that

F ðker AÞ � ker A. Then, for all e 2 ð0; e�0Þ, Am is a compact attractor for

the perturbed model (CP)e.

Another kind of approximation results consists of comparing
directly the solutions to (CP)e and (16).This can be done by
establishing previously some global existence and boundedness
results for the solutions to both models, like the following:

� There exist a subset D � X and e0 > 0 such that for each initial
data n0 2 D and for all e 2 (0, e0), the following holds:
(i) The corresponding solution to (CP)e ne(t) : = Ne(t)m + re(t), is
defined on [0, + 1).

(ii) There exists a constant K(n0) > 0 such that
sup t�0||ne(t)||X � K(n0), 8e 2 (0, e0).

� The solutions to the aggregated model (16) satisfy the following:
(i) For each initial data N0 such that n0 ¼ N0m þ r0 2 D, the

corresponding solution N(t) is defined on [0, + 1).
(ii) There exists a constant K

�
(N0) > 0 such that

sup t�0|N(t)| � K
�
(N0).

Then, ye(t) : = Ne(t) � N(t) satisfies for t � 0:

y0eðtÞ ¼ hm�; F ðNeðtÞm þ reðtÞÞ � FðNðtÞmÞi; yeð0Þ ¼ 0

from which, bearing in mind the global boundedness of solutions
and the local Lipschitz continuity of operator F , we deduce:

jyeðtÞj � C1

Z t

0
jyeðsÞj ds þ C2ekr0kXð1 þ tÞ

and applying the Gronwall inequality:

jyeðtÞj � C1ekr0kXð1 þ tÞeC2t � C1ekr0kXea�t ; a� > 0:

Summing up, we have the following approximation result for
the solutions to the perturbed and the aggregated models:

Proposition 1. For each initial data n0 :¼ N0m þ r0 2 D and e 2 (0,
e0), the corresponding solution to (CP)e can be written as:

neðtÞ ¼ NðtÞm þ QeðtÞ; t � 0

where N(t) is the solution to the aggregated model (16) corresponding

to the initial data N(0) = N0.

Moreover, there exist three constants M1 > 0, M2 > 0, a
�
> 0 such

that, for all e 2 (0, e0):

8 t � 0; kQeðtÞkX � ½M1eea�t þ M2e�a�t=e�kr0kX :

We point out that the above formula shows that
lime ! 0þkneðtÞ � NðtÞmkX ¼ 0 for each t > 0. This convergence is
not uniform on [0, + 1), but it is on each compact interval [t0, T]
with 0< t0 < T < + 1.

The same underlying ideas for the reduction of two-time
abstract semilinear evolution equations defined on Banach
spaces have been developed in Ei and Mimura (1984), where
an aggregated model is constructed and analyzed without using
the general tools provided by the Perron-Frobenius theory
of positive C0-semigroups. Assuming that the aggregated model
has a hyperbolic locally asymptotically stable equilibrium,
similar results to ours in Theorems 1, 2 and Corollary 1 are
established.

3.2. Two time scales in reaction-diffusion models of population

dynamics

We are illustrating the general aggregation of variables
method described in the previous section by applying it to a
reaction-diffusion system which represents the dynamics of
several continuously spatially distributed populations whose
evolution processes occur at two different time scales: a slow one
for the demography and a fast one for migrations. A general
introduction to reaction-diffusion models in population dynamics
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can be found in Murray (2002, 2003) and in Cantrell and Cosner
(2003).

Let us consider q (q � 1) populations living in a spatial region
V � Rp, (p � 1), where V is a non-empty bounded, open and
connected set with smooth boundary @V 2 Ck, k � 1. Let ni(x, t)
i = 1, . . . , q be their spatially structured population densities i.e.,R

V0
niðx; tÞ dx represents the number of individuals of population i

that at time t are occupying the region V0 � V and set n(x,
t) : = (n1(x, t), . . . , nq(x, t))T.

We assume that the demography is given by a nonlinear
reaction term f(x, n) that satisfies the following regularity
conditions:

Hypothesis 4. The function f : V 	 Rq! Rq, f : = (f1, . . . , fq), is
continuous and there exists a real-valued continuous positive
function h defined on V 	 Rq 	 Rq such that 8 x 2 V and 8 u; v 2 Rq:

j f ðx; uÞ � f ðx; vÞj � hðx; u; vÞju � vj:

We also assume a linear diffusion process in V for each
population, with coefficient Di 2 C2ðVÞ, DiðxÞ � d�i > 0, i = 1, . . . , q,
that occurs at a fast time scale determined by a parameter e > 0
small enough. A standard application of the balance law leads to
the following two-time reaction-diffusion system for the popula-
tion densities, where the Neumann boundary conditions indicate
that the spatial domain is isolated from the external environment,
and i = 1, . . . , q:

@ni

@t
ðx; tÞ ¼ 1

e divðDiðxÞgrad niðx; tÞÞ þ f iðx; nðx; tÞÞ; x 2 V; t > 0

@ni

@n
ðx; tÞ ¼ 0; x 2 @V; t > 0

nðx; 0Þ ¼ n0ðxÞ; x 2 V; n0ðxÞ :¼ ðn0
1ðxÞ; . . . ; n0

qðxÞÞ
T :

8>>>><
>>>>:

(17)

Rescaling the time as t = et in Eq. (17) and making e ! 0+, we
obtain the dynamics at a fast time scale:

@ni

@t
ðx; tÞ ¼ divðDiðxÞgrad niðx; tÞÞ; i ¼ 1; . . . ; q

At this fast time scale the total population Ni(t) : =
R

Vni(x, t) dx

satisfies that

N0iðtÞ ¼
Z

V
div ðDiðxÞgrad niðx; tÞÞ dx ¼

Z
@V

DiðxÞ
@ni

@n
ðx; tÞ ds ¼ 0

which reflects the obvious result that the total population is
conserved under the migration process, without taking into
account the demographic evolution. This simple idea suggests
constructing a reduced model to approximate the model (17),
taking as global variables the total populations:

NiðtÞ :¼
Z

V
niðx; tÞ dx; NðtÞ :¼ ðN1ðtÞ; . . . ; NqðtÞÞT :

Integrating with respect to the space variable x on both sides of
Eq. (17), applying the Gauss Theorem and bearing in mind the
Neumann boundary conditions, we have:

N0iðtÞ ¼
Z

V
f iðx; nðx; tÞÞ dx; i ¼ 1; . . . ; q: (18)

Notice that the right-hand side of Eq. (18) is expressed in terms
of the density n(x, t). To avoid this difficulty, we will look for an
approximation of n(x, t) in terms of the total populations. To this
end, we assume that the fast dynamics reach an equilibrium. Recall
that the only equilibria of the fast dynamics are the constants and
since the total population is conserved under the fast dynamics,
the initial conditions in (17) fix the values of the stationary states
for the fast dynamics:

Z
V

n0
i ðxÞ dx ¼ n�i volðVÞ ) n�i ¼

1

vol ðVÞ

Z
V

n0
i ðxÞ dx; i ¼ 1; . . . ; q

where vol (V) is the Lebesgue measure of the domain V. That is, in

absence of demography, the stationary state of the population is a
homogeneous distribution on the spatial region.

Then, coming back to the construction of an approximated
model for the dynamics of the total population, the above
considerations suggest the following approximation:

niðx; tÞ  NiðtÞ
vol ðVÞ

; i ¼ 1; . . . ; q

which yields the aggregated model of (17):

N0ðtÞ ¼ FðNðtÞÞ; Nð0Þ ¼ N0 :¼
Z

V
n0ðxÞ dx (19)

where F : Rq! Rq F : = (F1, . . . , Fq) is the function defined by:

8 u 2 Rq; FðuÞ :¼
Z

V
f x;

u

volðVÞ

� �
dx:

The comparison between the solutions to both models can
be made by applying the general theory described in the
previous section. To this end we choose as state space
X :¼ ½CðVÞ�q, where CðVÞ is the Banach space of continuous
real-valued functions defined on V, endowed with the sup
norm. Making the usual identification ne(t)(
) : = ne(
 , t), we can
formulate (17) as an abstract evolution equation on X, the main
point consisting of proving that the linear diffusion operator
together with Neumann boundary conditions is the infinitesimal
generator of a C0-semigroup on X which satisfies Hypotheses 1
and 3. It is so when the diffusion is defined by a strongly elliptic
operator, and the technical details can be found in Sánchez et al.
(2011).

Therefore Theorem 2 applies, allowing us to conclude that if the
aggregated model (19) has a compact attractor A � Rq, then the
model (17) has, for e > 0 smamll enough a compact attractor Ae
close to A.

The particular case where the reaction term does not depend on
the space variable corresponds with the situation F ðker AÞ � ker A

and recovers the formulation given in Conway et al. (1978) and
Hale (1986) for reaction-diffusion equations with large diffusivity.
These authors show that the solutions to a semilinear parabolic
system including a big enough diffusion term can be approximated
by the solutions to an O.D.E. determined by the reaction term,
which coincides with our aggregated model. A more general
situation can be found in Hale and Sakamoto (1989), where the
dynamics of a class of reaction-diffusion models with large
diffusivity is described by a so-called shadow system, whose
underlying ideas are close to the construction of an aggregated
model.

As a simple illustration, we apply the above ideas to a spatial
interspecific competition model with fast constant diffusion and
population growth given by a logistic law. To be precise, we are
considering the model, for x 2 V, t > 0:
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@n1

@t
ðx; tÞ ¼ D1

e Dn1ðx; tÞ þ r1ðxÞn1ðx; tÞ 1 � n1ðx; tÞ
K1ðxÞ

� a1ðxÞ
K1ðxÞ

n2ðx; tÞ
� �

@n2

@t
ðx; tÞ ¼ D2

e Dn2ðx; tÞ þ r2ðxÞn2ðx; tÞ 1 � n2ðx; tÞ
K2ðxÞ

� a2ðxÞ
K2ðxÞ

n1ðx; tÞ
� �

@ni

@n
ðx; tÞ ¼ 0; x 2 @V; t > 0; i ¼ 1; 2

niðx; 0Þ ¼ n0
i ðxÞ; x 2 V; i ¼ 1; 2

8>>>>>>>>>><
>>>>>>>>>>:

(20)

where ni(x, t) i = 1, 2 are the population densities of the two
competing species and Di > 0 i = 1, 2 are the respective constant
diffusion coefficients.

The global variables are the total populations of both competing
species:

NiðtÞ :¼
Z

V
niðx; tÞ dx; i ¼ 1; 2

Integrating on V on both sides of system (20) and making the
approximation:

niðx; tÞ  NiðtÞ
vol ðVÞ

; i ¼ 1; 2

we arrive to the aggregated model:

N01ðtÞ ¼ r�1N1ðtÞ 1 � N1ðtÞ
K�1
�a�1N2ðtÞ

� �

N02ðtÞ ¼ r�2N2ðtÞ 1 � N2ðtÞ
K�2
�a�2N1ðtÞ

� �
8>><
>>:
where, for i = 1, 2:

r�i :¼ 1

vol ðVÞ

Z
V

riðxÞ dx; K�i :¼
vol ðVÞ

R
V riðxÞ dxR

VðriðxÞ=KiðxÞÞ dx

a�i :¼ 1

vol ðVÞ

R
VðaiðxÞriðxÞ=KiðxÞÞ dxR

V riðxÞ dx
:

This aggregated model is a classical competition model with
logistic growth for both species, in which the spatial structure has
been taken into account in the parameters.

Regarding the asymptotic behavior of this model, we know that
if a�2K�1 < 1 and a�1K�2 < 1, the two species coexist at some positive
equilibrium which is globally asymptotically stable. According to
Theorem 2, coexistence of both species in model (20) also holds for
e > 0 small enough. For the rest of the values of the parameters
a�i K�j h1 and a�jK

�
i i1, i, j = 1, 2, i 6¼ j, one of the two species in the

aggregated model goes to extinction while the other goes to its
carrying capacity. In these cases, Theorem 2 assures that the
solutions to model (20) are asymptotically close to the solutions to
the aggregated model, so that for e > 0 small enough, one of the
two species is close to extinction while the other survives. See Ei
and Mimura (1984) for a detailed analysis of conditions for
extinction in the perturbed model.

Similar approximation results for two-time reaction-diffusion
models have been established by applying the so-called two-
timing method, as introduced by Shigesada (1984) in spatially
structured population dynamics models. See Ei (1988) for
an interesting development of these methods applied to
slow–fast population dynamics in heterogeneous environments.
For related work see also Ei (1987), Fang (1990) and Ni et al.
(2001).

The general aggregation method described in this section has
been illustrated by an application to reaction-diffusion models
with large diffusivity, which leads to reduced models corre-
sponding to populations spatially homogeneously distributed.
Nevertheless, the abstract formulation can also be applied to
spatially heterogeneous distributions of species. This setting
introduces additional mathematical difficulties, since the exis-
tence of spatial patterns i.e., spatially heterogeneous stable
steady-states must be analyzed, and constitutes for us a
perspective of future work. An interesting overview can
be found in Cantrell and Cosner (2003). A seminal paper on
spatial pattern formation for reaction-diffusion two species
competition models is Matano and Mimura (1983), and further
analysis can be found in Mimura et al. (1991) and Ikeda and
Mimura (1993).

3.3. An approximation result for nonnegative solutions to two-time

reaction-diffusion models

In this section we proceed to apply the approximation
result established in Proposition 1, that is, we will compare
the solutions to (17) with the solutions to the aggregated model
(19) when e ! 0+, without assuming the existence of equilibria
for the aggregated model. The analysis is restricted to the
comparison of positive solutions, but the global existence of
these solutions as well as the existence of suitable bounds
needs some additional smoothness assumption on the reaction
term. To simplify, we consider a scalar setting; then, a sufficient
standard condition to eliminate blow-up of nonnegative solu-
tions can be:

Hypothesis 5. The function f : V 	 R ! R satisfies the following:

(i) f(x, 0) = 0, 8 x 2 V.
(ii) There exists a constant C > 0 such that 8 x 2 V and 8u 2 R with

|u| � C, we have f(x, u) � 0.

Existence and boundedness of global positive solutions to both
problems can be proved (see Sánchez et al. (2011) for the technical
details), so that the following approximation result is a direct
consequence of Proposition 1:

Proposition 2. For each nonnegative initial data n0 2 CðVÞ, the two

time scales reaction-diffusion model (17) has a unique classical

nonnegative global solution ne(x, t) which can be written as:

8 x 2 V; 8 t > 0; neðx; tÞ ¼ 1

vol ðVÞ
NðtÞ þ reðx; tÞ

where N(t) is the solution to the aggregated model (19) corresponding

to the initial data N(0) =
R

Vn0(x) dx and

sup
x 2 V

jreðx; tÞj � a�1eea�
2

t þ a�3e�ða
�=eÞt; t > 0; e > 0

where a�i , i = 1, 2, 3 are positive constants depending on the initial

value n0.

Notice that this approximation result means that ne(x, t) tends
when e ! 0+ and t > 0 fixed, to an homogeneous spatial distribu-
tion given by the solution to the aggregated model. Moreover, this
convergence is uniform with respect to x in V and with respect to t

on each compact interval [t0, T] with 0< t0 < T < + 1.

3.4. Slow–fast population models with discrete spatial structure.

The aim of this section is to illustrate the fact that the abstract
setting also includes simpler situations in which the state space is
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finite-dimensional. In this case, the operator A is a matrix whose
spectrum s(A) must satisfy some conditions that assure the
essential point in our development, namely decomposition (15) of
the state space in invariant conservative and stable parts. Despite
the fact that this situation can be studied directly using tools from
classical analysis, it is interesting from the point of view of
modelling in population dynamics, as it is a suitable formulation to
represent discrete spatial structure.

To be precise, let us consider q populations (q � 1) living in a
region divided into discrete spatial patches. The evolution
processes are described by an ordinary differential system taking
into account nonlinear local interactions on each patch that occur
at a slow time scale and linear migration terms describing patch
changes that are assumed to occur at a fast time scale. The model
we are considering reads as:

X0eðtÞ ¼ 1

e AXeðtÞ þ f ðXeðtÞÞ XeðtÞ :¼ ðx jeðtÞÞTj¼1;...;q;

x jeðtÞ :¼ ðxi
jeðtÞÞ

T
i¼1;...;N j

where xi
jeðtÞ is the number of individuals of population j living in

the spatial patch i at time t, with j = 1, . . . , q, and N = N1 + 
 
 
 + Nq is
the total number of spatial patches.

We also assume that f : RN! RN is a locally Lipschitz continu-
ous function and that matrix A is a block-diagonal matrix
A : = diag (A1, . . . , Aq) in which each diagonal block Aj has
dimensions Nj 	 Nj, and satisfies the following hypothesis:

Hypothesis 6. For each j = 1, . . . , q, s(Aj) = {0} [ Lj with Lj � {z 2 C
Re z < 0}. Furthermore 0 is a simple eigenvalue of matrix Aj.

As a consequence, ker Aj is generated by an eigenvector of 0,
which will be denoted by nj. The left eigenspace of matrix Aj

associated to the eigenvalue 0 is generated by a vector n�j and we
choose both vectors verifying the normalization condition
ðn�jÞ

Tn j ¼ 1.

Remark 1. Hypothesis 6 holds for a matrix A if each diagonal block
Aj is an irreducible matrix with non-negative elements outside the
diagonal and in addition satisfies that n�j :¼ 1T

j :¼ ð1; . . . ; 1ÞT 2 RN j .
In this case, A is a suitable matrix to represent conservative
migrations between patches.

In order to simplify the calculations, we introduce the following
matrices

U :¼ diag ððn�1Þ
T . . . ðn�qÞ

TÞ; V :¼ diagðn1 . . . nqÞ

which satisfy UA ¼ 0, AV ¼ 0 and UV ¼ Iq, Iq being the q 	 q

identity matrix.
The above considerations assure the existence of the decom-

position (15) of the space X : = RN where ker A is a q-dimensional
subspace generated by the columns of the matrix V and
S :¼ fv 2 RN Uv ¼ 0g.

The global variables are defined by:

sðtÞ :¼ ðs1ðtÞ; . . . ; sqðtÞÞT ¼ UXðtÞ; s jðtÞ :¼ ðn�jÞ
T x jðtÞ:

Notice that in the case n�j ¼ 1 j, this set of variables represents the
total number of individuals of each population. Finally, the
aggregated model is given by:

s0ðtÞ ¼ U f ðVsðtÞÞ: (21)

In this finite-dimensional setting it is straightforward to check
the assumptions needed to apply Theorem 2 and therefore the
approximation result between the asymptotic behavior of solu-
tions to both models holds. Also, a direct comparison result when
e ! 0+ between the solutions similar to Proposition 2 can be
established without major difficulties. The main point in this case
is to assume supplementary smoothness conditions on function f

so that global existence and boundedness of solutions to the
perturbed and aggregated models can be assured.

Finally, let us illustrate the method with the following example,
which is a discrete-space version of the classical predator–prey
model. The model consists of two populations of predators and
preys living in a spatial region divided into two patches, connected
by fast migrations:

n01ðtÞ ¼ 1

eðk12n2ðtÞ � k21n1ðtÞÞ þ r1n1ðtÞ 1 � n1ðtÞ
K1

� �
� a1n1ðtÞ p1ðtÞ

n02ðtÞ ¼ 1

eðk21n1ðtÞ � k12n2ðtÞÞ þ r2n2ðtÞ 1 � n2ðtÞ
K2

� �
� a2n2ðtÞ p2ðtÞ

p01ðtÞ ¼ 1

eðm12 p2ðtÞ � m21 p1ðtÞÞ � m1 p1ðtÞ þ b1n1ðtÞ p1ðtÞ

p02ðtÞ ¼ 1

eðm21 p1ðtÞ � m12 p2ðtÞÞ � m2 p2ðtÞ þ b2n2ðtÞ p2ðtÞ

8>>>>>>>>>>><
>>>>>>>>>>>:
where ni(t), pi(t), represent the populations of preys and predators
respectively at time t in patch i (i = 1, 2), the positive constants k12,
k21 are the prey migration rates and the positive constants m12, m21

are the predator dispersal rates.
Simple calculations show that the global variables are the total

populations of preys and predators:

NðtÞ :¼ n1ðtÞ þ n2ðtÞ; PðtÞ :¼ p1ðtÞ þ p2ðtÞ

and the aggregated model (21) is the classical predator–prey
model:

N0ðtÞ ¼ r�NðtÞ 1 � NðtÞ
K�

� �
� a�NðtÞPðtÞ

P0ðtÞ ¼ b�NðtÞPðtÞ � m�PðtÞ

8<
:
in which:

r� :¼ r1k12 þ r2k21

k12 þ k21
; K� :¼ r�

ðr1=K1Þk̃
2

1 þ ðr2=K2Þk̃
2

2

a� :¼ a1k̃1m̃1 þ a2k̃2m̃2; b� :¼ b1k̃1m̃1 þ b2k̃2m̃2;

m� :¼ m1m̃1 þ m2m̃2

where

k̃1 :¼ k12

k12 þ k21
; k̃2 :¼ k21

k12 þ k21
; m̃1 :¼ m12

m12 þ m21
;

m̃2 :¼ m21

m12 þ m21
:

4. Discussion and conclusions

In this work we have shown that spatial aggregation methods can
be useful to derive from an initial spatial complete model involving
many variables associated with many patches a reduced model
governing few variables at a slow time scale. We extended as well
the method to continuous space, allowing us to obtain an aggregated
O.D.E. model from the complete P.D.E. model. The method is
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particularly useful when one cannot get analytical results from the
complete model while the analysis can be done for the aggregated
model which in turn can be used to understand the dynamics of the
complete model. The method presented in previous sections can be
applied to several examples in population dynamics and some
concrete examples are presented in other articles of this issue.

Aggregation methods may also be applied to reduce complex
models in which complexity is not the result of a spatial extension
but for instance, results from individuals properties (behavior,
physiology, etc.) in problems where these properties are of
importance for populations or communities dynamics. Ecology
has nowadays to face new challenges since important perturba-
tions (climate change, human activities like harvesting, etc.)
modify ecosystem functioning and the services associated. To
address these problems, approaches integrating different organi-
zation levels and various spatial and time scales are needed. It is
non sense to expect to get a general approach or a theory which
unifies the various concepts from those associated to individuals
properties (metabolism modifications in varying environment,
individuals responses to these modifications, changes of behavior,
etc.) to those concerning ecosystem functioning (matter fluxes like
CO2 production/consumption, etc.). However, it is important to
propose methods which allows to get some bridges between these
organization levels and the associated concepts. Aggregation
methods, with indeed some assumptions like characteristic time
scales, are developed in this perspective.

To conclude with perspectives in a spatial context, we think that
it would be interesting to consider chemotactic terms as well as
convective terms in continuous spatially structured models.
Indeed, this would allow us to obtain at the fast equilibrium
spatial distributions which are not spatially homogeneous, but
depending on the spatial variables. In that case, the aggregated
model would pilot at the slow time scale a succession of spatial
patterns associated with different fast equilibria, modeling thus
pattern formation and morphogenesis processes. Our approach
would also include particular cases like situations where one
population (predator) moves faster than another one (its prey),
which is known to produce spatial structures (see for instance de
Roos et al., 1998 and references therein).
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