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A B S T R A C T

In this work we consider a spatially distributed periodic multi strain SIS epidemic model. We let

susceptible and infected individuals migrate between patches, with periodic migration rates.

Considering that migrations are much faster than the epidemic process, we build up a less dimensional

(aggregated) system that allows to study some features of the asymptotic behavior of the original model.

In particular, we are able to define global reproduction numbers in the non-spatialized aggregated

system that serve to decide the eradication or endemicity of the epidemic in the initial spatially

distributed nonautonomous model. Comparing these global reproductive numbers with those

corresponding to isolated patches we show that adequate periodic fast migrations can in many cases

reverse local endemicity and get global eradication of the epidemic.
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1. Introduction

Periodic patterns have been observed in the behavior of many
infectious diseases as influenza, pertussis, mumps or chicken-pox.
A classical example is the weekly measles reports in England and
Wales for the period 1948–1968, Anderson and May (1991).
Scientists have focused on explaining these periodic behavior,
finding out a variety of plausible scenarios as Hethcote and Levin
(1989) did. Diseases with periodic transmission rates are among
the possible explanations. After the pioneering work of Hethcote
(1973), several authors have pursued his approach studying
periodic, or more general nonautonomous, SIS or SEIR models, see
Schwartz (1989) for a review (see also Hethcote, 2008).

A central problem in the analysis of nonautonomous epidemic
models is defining the reproduction number (the expected number
of secondary cases caused by a primary case in a fully susceptible
population) which value, greater or lower than 1, characterizes in
the autonomous case the existence of an epidemic or the disease
eradication, respectively. Ma and Ma (2006) suggested defining the
reproduction numbers of several periodic SIS and SEIR models
through the reproduction numbers of the corresponding averaged
systems (the autonomous systems obtained by replacing the time-
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varying parameters with their long-term time averages) that they
denoted R. With this definition, they found that the free-disease
equilibrium is always reached when R < 1 though this is not a
necessary condition; they showed, via numerical simulations, that
it might happen R > 1 together with the number of infected
individuals tending to zero.

Recently, Martcheva (2009) has considered a nonautonomous
multi-strain SIS epidemic model with periodic coefficients and has
defined its corresponding reproduction numbers similarly to what
is done in Ma and Ma (2006) and Thieme (2000). In this case,
conditions on reproduction numbers ensure the global stability of
the disease-free equilibrium and the single-strain periodic
solution.

Reproduction numbers for the simplified Kermack–McKendrick
periodic systems were defined in Bacaër and Gomes (2009). There,
authors show that the corresponding reproduction number is a
threshold for the eradication of epidemics. However, unlike in
constant environments, the final epidemic size may not be an
increasing function of the basic reproduction number or of the
initial fraction of infected individuals.

We consider a population affected by a periodic multi-strain SIS
epidemic models similar to that found in Martcheva (2009). We
distinguish population clusters according to epidemic behavior,
which may evolve different within the whole population, for
instance, due to spatial heterogeneity of environmental conditions
(different salubriousness conditions, infrastructures,. . .). We rep-
resent these clusters by patches which can be distant from each
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other, typically, are not isolated. Our interest relies in understand-
ing how epidemic behavior depends on the exchange of individuals
between patches and if any class of control on population flow can
contribute to handle epidemic. Thus, our model incorporates
individual displacements (migrations) between patches which are
assumed also to be periodic. We are considering processes of
different nature and we distinguish between local (individual)–
global (population) scales in order to tune our model. Individual
displacements between patches happen at global scale while
epidemic takes place at individual level, despite of how high the
infection/recovery rate are. Therefore, the spread of an epidemic
within each patch has small impact on the whole population and
migrations is considered to be a faster process than epidemic.

The inclusion of two different processes in the same model has
the disadvantage of increasing its number of variables and, in
general, its complexity. In some cases this difficulty can be overcome
via reduction methods. In particular, when the processes included in
the model act at different time scales the so-called aggregation
methods allow to perform an analysis of its asymptotic behavior in
terms of that of a reduced system. These methods are well developed
for autonomous ordinary differential equations, see Auger et al.
(2008a,b, this issue). In Kouokam et al. (2008) it is proposed an
autonomous system coupling constant migrations and SIRS
epidemic local models where migrations rates are considered much
higher than epidemic rates; the use of aggregation techniques
allowed defining the reproduction number corresponding to the
complete model through the aggregated (reduced) system and so
carrying out a tractable mathematical analysis.

Section 2 is devoted to the presentation of the model. In
Section 3 we justify the reduction of the system using the results of
Hoppensteadt (1966, 1993, 2010) presented in Appendix A; we
build up the aggregated system, that turns out to be similar to that
treated in Martcheva (2009), and state the result giving
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asymptotic information on the complete model in terms of that
obtained for the aggregated one. In Section 4 the reproduction
numbers for the complete model are defined as those associated to
the reduced system; with the help of the results in Section 3 and in
Martcheva (2009) conditions on the reproduction numbers are
established for the epidemic eradication and for the existence of
an endemic periodic state with a single dominant strain. Section 5
presents two important particular cases where it is shown that
periodic fast migrations tend to reduce the risk of epidemic and
that adequately chosen can in many cases even reverse local
endemicity and get global eradication of the epidemic. The
conclusions are included in Section 6. Finally, in the appendices
the technical details concerning the reduction technique are
presented.

2. Multi strain SIS epidemic model with fast migrations

We consider a population inhabiting a p patches environment.
Individuals move between patches and an infection evolves within
each patch according to a SIS model with multiple strains. Let Sk(t)
denote the number of susceptible individuals in patch k = 1, . . ., p at
time t. In each patch k the number of individuals infected by strain
j = 1, . . ., n is denoted by Ijk(t). We assume that migrations act at a
faster time scale than the changes of state with respect to infection,
so individuals leaving a patch in a particular infection state get to
the arrival patch in the same state.

The migration rate from patch k to patch i, k 6¼ i, at time t

for susceptibles is denoted by mik(t) and for infected by strain

j by m j
ikðtÞ. Functions mik and m j

ik are assumed non-negative

and periodic. Let us call M(t) = (mik(t))1�i,k�p, where

miiðtÞ ¼ �
Pp

k ¼ 1
k 6¼ i

mkiðtÞ, the matrix of susceptibles migration

rates and M jðtÞ ¼ ðm j
ikðtÞÞ1�k;i� p, where m j

iiðtÞ ¼ �
Pp

k ¼ 1
k 6¼ i

m j
kiðtÞ,

the corresponding matrices of migration rates for individuals
infected by strains j = 1, . . ., n. We notice that the entries of the
columns of all these matrices sum up to 0.

Now we introduce an assumption on migration matrices that
reflects the fact that there always exists a path through which
individuals can get any patch from any other patch. We assume
that matrices M(t) and Mj(t) (j = 1, . . ., n), are irreducible for every t.
As a consequence, see Seneta (1981) th. 2.6, 0 is a simple
eigenvalue larger than the real part of any other eigenvalue. The
left eigenspace of each of these matrices associated with the
eigenvalue 0 is generated by vector 1 : = (1, . . ., 1) 2 Rp. The right
eigenspace is generated by vectors n(t) = (n1(t), . . ., np(t)) and
n jðtÞ ¼ ðn j

1ðtÞ; . . . ; n j
pðtÞÞ (j = 1, . . ., n), respectively, which we

choose to have positive entries that sum up to 1 and so they are
unique.

The entries of these eigenvectors, n(t) and nj(t) (j = 1, . . ., n), for a
constant time t, represent the stable proportions that the
distribution among patches of the different types of individuals
would attain, at the fast time scale, if the migration process were
the only change affecting the population.

The ratio of migrations to infection time scales is represented by
the small parameter e > 0. The model takes the form:
The local SIS epidemic model with multiple strains for each
patch k = 1, . . ., p is represented by the terms preceded by e in the
right-hand sides of the equations. The mortality rate is the same for
all individuals in the same patch and denoted by mk(t). We assume
all newly recruited individuals are susceptible and the recruitment
rate equals mortality rate so that in absence of migrations the total
population in a patch remains constant. The transmission rate of
strain j = 1, . . ., n in patch k is denoted by bjk(t). Finally we denote
gjk(t) the recovery rate from strain j in patch k.

All the rates (migration, death, recruitment, transmission and
recovery) appearing in the model are assumed to be periodic
functions on t in C2ðRÞ with common period v.

The total population is given by

NðtÞ ¼
Xp

k¼1

SkðtÞ þ
Xn

j¼1

Ijk

0
@

1
A:

Summing up all the equations in (1) we see that dN/dt = 0. We
assume henceforth that the total population size is constant and
rescaled to one, and consider the system on the set:

V ¼ ðS1; . . . ; S p; I11; . . . ; I1 p; . . . ; In1; . . . ; InpÞ 2 R
pðnþ1Þ
þ : NðtÞ ¼ 1

n o
which is easy to see that it is positively invariant.
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3. Reduction of the model

Model (1) is written by coupling two different processes that act
at different time scales and so it fits in the general form (B.1)
presented in Appendix B. We now proceed to transform it into the
so-called slow–fast form so that we get the associated reduced
system that serves to study some aspects of its asymptotic
behavior. The precise results we are presenting are derived from
the Hoppensteadt results on quasistatic-state approximation for
nonlinear initial-value problem, Hoppensteadt (1966, 1993, 2010),
summarized in Theorem 6 of Appendix A.

To transform system (1) into slow–fast form the key point is
making emerge its slow variables. The natural choice is the total
number of susceptible and of individuals infected by each of the
different strains because these variables are kept constant through
migrations, the fast dynamics, and so they evolve at the slow time
scale, the one that infection process acts at. We denote them:

S ¼
Xp

k¼1

Sk and I j ¼
Xp

k¼1

Ijk; j ¼ 1; . . . ; n:

The change of variables, using Appendix B notation, that
transforms the system (1) into slow–fast form is the following:

n ¼ ðS1; . . . ; S p; I11; . . . ; I1 p; . . . ; In1; . . . ; InpÞ 2 R pðnþ1Þ:

is transformed into ðx; yÞ 2 Rð p�1Þðnþ1Þ � Rnþ1 where

x ¼ ðS1; . . . ; S p�1; I11; . . . ; I1 p�1; . . . ; In1; . . . ; Inp�1Þ and

y ¼ ðS; I1; . . . ; InÞ:

We define the following transformations TðnÞ :¼ ðx; yÞ, TxðnÞ :¼ x

and TyðnÞ :¼ y.
By summing up from k = 1 to k = p in (1) the equations for Sk and

Ijk (j = 1, . . ., n) and substituting Sp and Ijp by S �
P p�1

k¼1 Sk and
I j �

Pp�1
k¼1 Ijk, respectively, we obtain the equations for the global

variables where the fast part, corresponding to migrations, has
disappeared. To get the transformed equations for the rest of the
variables it suffices to perform the aforementioned substitution.
The resulting system has the standard slow–fast form (B.2)
presented in Appendix B

edx

dt
¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy

dt
¼ Gðt; x; yÞ:

8>><
>>: (2)

System (2) is a particular case of system (A.1) in Appendix A, taking

f ðt; x; y; eÞ ¼ Fðt; x; yÞ þ eHðt; x; yÞ and gðt; x; y; eÞ ¼ Gðt; x; yÞ:

Next, we follow the hypotheses of Theorem 6 to obtain some
results on the asymptotic behavior of system (1). Let us denote
VT ¼ TðVÞ, Vx

T
¼ TxðVÞ and Vy

T
¼ TyðVÞ.

Hypothesis H1 is met because VT is positively invariant for the
slow–fast system associated to system (1).

Hypothesis H2 asks for the existence of a function x = F(t, y)
that solves the equation F(t, x, y) = 0 which, in the present case, is
equivalent to find the eigenvectors associated to 0 of matrices M(t)
and Mj(t) (j = 1, . . ., n) which entries sum up to S and Ij (j = 1, . . ., n),
respectively. To be precise F(t, y) is defined as follows, for i = 1, . . .,
p � 1 and j = 1, . . ., n:

Si ¼ niðtÞS; Iji ¼ n j
i ðtÞI j: (3)

The assumptions made on migration rates implies that Hypothesis
H2 is also met.

Hypothesis H3 requires that the fast equilibria F(a, b)
are asymptotically stable uniformly in the parameters
ða; bÞ 2 ½t0; 1Þ � Vy
T

. System (A.3) has in this case the following
form:

dX

dt
¼ Fða; X; bÞ:

The assumptions on matrices M(t) and Mj(t) (j = 1, . . ., n), that are
taken to be irreducible and periodic, ensure the asymptotic
stability of equilibria x = F(a, b) uniformly on R � Vy

T
. Further-

more, the domain of attraction of the equilibrium F(t0, y0), for each
t0 � 0 and each y0 2 Vy

T
, includes all x0 2 Vx

T
.

Using the expressions (3) for the fast equilibria we obtain the
reduced or aggregated system (A.4), with variables y ¼ ðS; I1; . . . ; InÞ
and domain V ¼ ðS; I1; . . . ; InÞ 2 Rnþ1

þ : S þ
Pn

j¼1 I j ¼ 1
n o

, associat-
ed to system (2):

dS

dt
¼
Xn

j¼1

m jðtÞI j �
Xn

j¼1

b jðtÞSI j þ
Xn

j¼1

g jðtÞI j;

dI j

dt
¼ b jðtÞS I j � m jðtÞ þ g jðtÞ

� �
I j; j ¼ 1; . . . ; n

8>>>><
>>>>:

(4)

where we use the following notation:

m jðtÞ ¼
Xp

k¼1

mkðtÞn
j
kðtÞ; g jðtÞ ¼

Xp

k¼1

g jkðtÞn
j
kðtÞ and

b jðtÞ ¼
Xp

k¼1

bjkðtÞnkðtÞn j
kðtÞ:

Now Theorem 6 implies the following result that we use in the
next section to analyze some asymptotic features of system (1)
with the help of system (4).

Theorem 1. Assume that system (4) has a solution, say y�ðtÞ,
that it is uniformly asymptotically stable and let n(t) be the solution

of system (1) with initial conditions n(t0) = n0 2 V such that

Tyðn0Þ is in the domain of attraction of y�ðtÞ. Then, calling

YðtÞ ¼ diag nðtÞ; n1ðtÞ; . . . ; nnðtÞ
� �

, we have that for any d> > 0
there exist ed > 0 and td > t0 such that

jnðtÞ � y�ðtÞYðtÞj < d

for every e � ed and every t � td.

4. Analysis of the model

In this section we proceed to study system (1) with the help of
the aggregated system (4) via Theorem 1.

System (4) is similar to that study in Martcheva (2009) and we
are recovering some of her results that are susceptible of being
exported to the asymptotic behavior of system (1). The results we
present next are expressed in terms of the reproductions numbers
of the strains as defined in Ma and Ma (2006) or Martcheva (2009).

To define the reproduction numbers of the strains, we first
introduce the average of a periodic function over its period. If f(t) is
a periodic function of period v, then the average of f is given by

D
f
E
¼ 1

v

Z v

0
f ðtÞdt

which verifies that

D
f
E
¼ lim

t ! 1

1

t � t0

Z t

t0

f ðsÞds: (5)

We define the reproduction numbers of the strains as

R j ¼

D
b j

E
D
m j

E
þ
D
g j

E j ¼ 1; . . . ; n: (6)
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These reproduction numbers are defined for the aggregated system,
that is, for the global variables and so we call them global reproduction

numbers. Though the aggregated system is not spatially distributed,
the initial migration process is reflected in its parameters. We will see
that the global reproduction numbers decide the asymptotic stability
of the disease-free equilibrium and other asymptotic features of
system (1) so that we can consider their definition as an extension
from non-spatial systems to some patchy systems.

The following theorem states conditions on the global
reproductive numbers for the global asymptotic stability of the
disease-free equilibrium.

Theorem 2. Let y�0 ¼ ð1; 0; . . . ; 0Þ 2 Rnþ1 be the disease-free equilib-

rium of the aggregated system (4). If R j < 1 for j = 1, . . ., n then y�0 is

globally uniformly asymptotically stable.

Proof. For every j = 1, . . ., n we have dI j=dt ¼
b jðtÞSI j � ðm jðtÞ þ g jðtÞÞI j. Now, having in mind that SðtÞ 2 ½0; 1�
for every t, we obtain the following inequality

dI j

dt
� b jðtÞI j � m jðtÞ þ g jðtÞ

� �
I j

that yields

I jðtÞ � I jðt0Þexp

Z t

t0

b jðsÞ � ðm jðsÞ þ g jðsÞÞ
h i

ds

� �
:

Condition R j < 1 together with equality (5) implies that

lim
t ! 1

1

t � t0

Z t

t0

b jðsÞ � ðm jðsÞ þ g jðsÞÞ
h i

ds < 0

so we can find a constant s > 0 and a time t1 > 0 such that for every
j = 1, . . ., n, every t0 and every t such that t � t0 � t1 we have

Z t

t0

b jðsÞ � ðm jðsÞ þ g jðsÞÞ
h i

ds < � sðt � t0Þ

from which we obtain that I jðtÞ ! 0 as t! 1 for every j = 1, . . ., n,
uniformly in t0 and for any initial conditions in Vx.

The fact that SðtÞ ¼ 1 �
Pn

j¼0 I jðtÞ for every t � 0 completes the
proof.&

After presenting conditions for the eradication of the epidemic
we treat some simple cases where epidemic becomes endemic.
Sometimes, in multiple strain epidemic, one of these strains
manages to persist while the others die out. This fact is known as
single strain solution. In the next theorem it is shown that a global
reproductive number Ri being larger than one implies the
existence of a periodic solution, where strain i becomes endemic,
that attracts every solution starting with some individuals infected
by strain i and none infected by the rest of strains. This solution is
called the single-strain periodic solution.

Theorem 3. For each i for which Ri > 1, there exists a unique, positive

periodic function I
�
i ðtÞ such that ð1 � I

�
i ðtÞ; 0; . . . ; 0; I

�
i ðtÞ; 0; . . . ; 0Þ is a

solution of the aggregated system (4). Furthermore, if ð1 �
IiðtÞ; 0; . . . ; 0; IiðtÞ; 0; . . . ; 0Þ is a solution of system (4) starting from

Iið0Þ > 0, we have

lim
t ! 1

jIiðtÞ � I
�
i ðtÞj ¼ 0:

Proof. This result is proved in Martcheva (2009) (th. 3.1). The
proof uses de Poincaré map, P, associated to the equation

dIi

dt
¼ biðtÞð1 � IiÞIi � miðtÞ þ g iðtÞð ÞIi
considered in the domain Vi ¼ fIi : Ii 2 ½0; 1�g that it is defined: if

Iið0Þ ¼ I
0

i then PðI0iÞ ¼ Iiðv; I0iÞ, to demonstrate the existence,

uniqueness and attractivity of the periodic solution.&

Next theorem gives simple conditions on the reproductive
numbers so that the single-strain periodic solution be globally
uniformly asymptotically stable.

Theorem 4. If Ri > 1 and R j < 1 for j 6¼ i, then the single-strain

periodic solution ð1 � I
�
i ðtÞ; 0; . . . ; 0; I

�
i ðtÞ; 0; . . . ; 0Þ is globally uni-

formly asymptotically stable.

Proof. The global asymptotic stability is proved in Martcheva
(2009) (th. 4.2). The proof is based on the fact that R j < 1 implies
I jðtÞ ! 0 as t! 1, see the proof of Theorem 2, that yields the
following inequalities:

biðtÞð1 � e � IiÞIi � miðtÞ þ g iðtÞð ÞIi �
dIi

dt

� biðtÞð1 � IiÞIi � miðtÞ þ g iðtÞð ÞIi:

Now, using the proof of Theorem 3 with equations

dX

dt
¼ biðtÞð1 � XÞX � miðtÞ þ g iðtÞð ÞX

and

dY

dt
¼ biðtÞð1 � e � YÞY � miðtÞ þ g iðtÞð ÞY

it is shown that as IiðtÞ is bounded between two periodic functions
that converge to I

�
i ðtÞ as e ! 0.

To prove that the asymptotic stability is uniform we use a result
in Farkas (1994) (th. 1.4.12):

For the system ẇ ¼ hðt; wÞ if h is periodic in t and h(t, 0) � 0 then

the asymptotic stability of w ¼ 0 implies its uniform asymptotic

stability

which can be extended to a periodic solution w(t) by performing
the change of variables z ¼ w � ’ðtÞ.&

We summarize in the next theorem the results on the
asymptotic behavior of system (1) that can be deduced from
Theorems 2–4 using Theorem 1.

Theorem 5. Let n(t) be the solution of system (1) with initial con-

ditions n(t0) = n0 2 V.

1. If R j < 1 for j = 1, . . ., n then for any d > 0 there exist ed > 0 and

td > t0 such that

jnðtÞ � ðnðtÞ; 0; . . . ; 0Þj < d

for every e � ed and every t � td.
2. If Ri > 1 and n0 is such that

Pp
k¼1 Iikðt0Þ > 0 and

P p
k¼1 Ijkðt0Þ ¼ 0

for j 6¼ i then for any d > 0 there exist ed > 0 and td > t0 such that

jnðtÞ � 1 � I
�
i ðtÞ

� �
nðtÞ; 0; . . . ; 0; I

�
i ðtÞniðtÞ; 0; . . . ; 0

� �
j < d

for every e � ed and every t � td.
3. If Ri > 1 and R j < 1 for j 6¼ i then for any d > 0 there exist ed > 0

and td > t0 such that

jnðtÞ � 1 � I
�
i ðtÞ

� �
nðtÞ; 0; . . . ; 0; I

�
i ðtÞniðtÞ; 0; . . . ; 0

� �
jd

for every e � ed and every t � td.

Proof.

1. Direct consequence of Theorems 1 and 2.



M. Marvá et al. / Ecological Complexity 10 (2012) 34–4138
2. Considering system (4) on the domain Vi ¼ fx 2 V : I j ¼
0 for j 6¼ ig from Theorem 3 it is easy to establish that the
single-strain periodic solution is globally uniformly asymptoti-
cally stable (see the proof of Theorem 4). Now, if we
correspondingly consider system (1) on the domain

Vi ¼ fn 2 V : Ijk ¼ 0 for j 6¼ i and k ¼ 1; . . . ; pg;

the result is a direct consequence of Theorem 1.
3. Direct consequence of Theorems 1 and 4. &

Theorem 5 states that if every global reproduction number is
less than 1 we can consider that epidemic will be eradicated. It
suffices that one single reproduction number be larger than 1 to get
an endemic situation depending on initial conditions. In the case
where a strain is dominant, in the sense that its reproduction
number is larger than one while those of the others are less than
one, the behavior of epidemic evolves certainly towards an
endemic periodic state with all individuals in the population
being either susceptible or infected by the dominant strain.

5. Effects of fast migrations on epidemic behavior

In this section we compare strain reproduction numbers at
single patches not linked by migrations to the global strain
reproduction numbers obtained in Section 4 where a fast migration
process linking all patches was considered.

The reproduction number of strain j (j = 1, . . ., n) at patch k

(k = 1, . . ., p) when it is considered isolated is

Rjk ¼
bjk

D E
D
mk

E
þ g jk

D E

while the global reproduction number of strain j is R j as defined in
(6).

The comparison should provide some insights on how fast
periodic migrations might modify the global outcome of the
epidemic process. Due to the large number of involved parameters
it is difficult to obtain clear consequences in very general cases.
That is why we treat next two simplified cases which still keep
interest because they illustrate the fact that periodic fast
migrations can induce outcomes which are different from those
expected if patches were isolated. Next, we tackle the mathemati-
cal analysis. A brief discussion on the underlying mechanism can
be found in Section 6.

5.1. Homogeneous patches

The first case we treat considers that epidemic behaves exactly
the same at every patch, that is, for every j = 1, . . ., n:

bjkðtÞ¼b jðtÞ; g jkðtÞ ¼ g jðtÞ; mkðtÞ¼mðtÞ 8 k¼1; . . . ; p: (7)

In this case we have the same reproduction number of strain j at
every patch

Rjk ¼ R j ¼
b j

D E
D
m
E
þ g j

D E

and so the comparison should be established taking into account
R j and R j.

Assuming (7) we have:

m jðtÞ ¼
Xp

k¼1

mkðtÞn
j
kðtÞ ¼ mðtÞ

Xp

k¼1

n j
kðtÞ ¼ mðtÞ;
g jðtÞ ¼
Xp

k¼1

g jkðtÞn
j
kðtÞ ¼ g jðtÞ

Xp

k¼1

n j
kðtÞ ¼ g jðtÞ;

and

b jðtÞ ¼
Xp

k¼1

bjkðtÞnkðtÞn j
kðtÞ ¼

Xp

k¼1

nkðtÞn j
kðtÞ

  !
b jðtÞ:

Function n jðtÞ ¼
P p

k¼1 nkðtÞn j
kðtÞ, due to the definition of n(t) and

nj(t), verifies n jðtÞ < 1 and so b jðtÞ < b jðtÞ, from which we obtain
that reproduction numbers are smaller when migrations are
considered

R j ¼

D
b j

E
D
m j

E
þ
D
g j

E < b j

D E
D
m
E
þ g j

D E ¼ R j j ¼ 1; . . . ; n: (8)

We see then that migrations favour the eradication of the
epidemic. It is easy to express sufficient conditions for global
reproduction numbers being less than one while the local ones are
larger than one:D

n j 	 b j

E
<
D
m
E
þ
D
g j

E
< b j

D E
for j ¼ 1; . . . ; n: (9)

If condition (9) is met any strain can locally become endemic
depending on initial conditions while, via fast periodic migrations,
epidemic is globally eradicated.

Function n jðtÞ can be as little as wanted provided we choose
appropriately the migration patterns of susceptibles and individ-
uals infected by strain j. It suffices to increase the mismatch of
susceptible and infected individuals across the different patches to
get supn jðtÞ closer to zero. As hn j 	 b ji ¼ n jðjÞhb ji for a certain
j 2 [0, v], we can conclude that for an isolated strain with R j > 1,
i.e. locally endemic, it is always possible to find migration patterns
so that R j < 1, i.e. it is globally eradicated.

5.2. Asymmetric patches

Now we let epidemic behave different at each patch. We
assume that regions can be grouped in two disjoint sets according
with the following: transmission rates are larger at regions of the
first group, while recovery rates are larger at patches of the second
group, that is, disease has stronger incidence at patches belonging
to the first group than at those belonging to the second one. To
simplify we suppose a two patches environment for which the
epidemic rates verify the following conditions

b j2ðtÞ < b j1ðtÞ and g j1ðtÞ < g j2ðtÞ; for j ¼ 1; . . . ; n;
m1ðtÞ ¼ m2ðtÞ ¼ mðtÞ (10)

so we have

R j2 < R j1: (11)

Assuming (10) we obtain for each j = 1, . . ., n

n1ðtÞn j
1ðtÞb j1ðtÞ þ n2ðtÞn j

2ðtÞb j2ðtÞ < b j1ðtÞ; i:e: b jðtÞ < b j1ðtÞ
g j1ðtÞ < n j

1ðtÞg j1ðtÞ þ n j
2ðtÞg j2ðtÞ < g j2ðtÞ; i:e: g j1ðtÞ < g jðtÞ < g j2ðtÞ

mðtÞ ¼ n j
1ðtÞmðtÞ þ n j

2mðtÞ ¼ mðtÞ:
(12)

what yields

R j < R j1 (13)

but allows both inequalities either R j < R j2 or R j2 < R j.
We first consider the case where strain j is eradicated at patch 2

while it might become endemic at patch 1 depending on initial
conditions, R j2 < 1 < R j1. If we now take into account migrations



Fig. 1. Solutions of the reduced system, the complete system and, in absence of migrations, of the local subsystems. Global reproduction numbers R1 ¼ 0:9362, R2 ¼ 0:4494

entail global epidemic eradication (left top: aggregated system and right top: complete system). In absence of migrations R11 ¼ 1:7487, R21 ¼ 0:84574 and R12 ¼ 1:5371,

R22 ¼ 0:71378 imply local persistence for strain 1 and local eradication for strain 2 at patch 1 (left bottom) and at patch two (right bottom). Parameter values:

m1(t) = 1.1 + cos (t), m2(t) = 2m1(t), m11(t) = 1 + 0.5 cos (t) = m21(t), m12(t) = 2 + cos (t), m22(t) = 2 + 0.5 cos (t), m1(t) = 1 + 0.2 cos (t) = m2(t), b11(t) = 2.1 + cos (t),

b21(t) = 1.1 + 0.5 cos (t), b12(t) = 2 + cos (t), b22(t) = 1 + 0.5 cos (t), g11 = 0.2 + 0.1 cos (t), g21 = 0.3 + 0.2 sin (t), g12 = 0.3 + 0.1 cos (t), g22 = 0.4 + 0.1 sin (t), e = 0.5.
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the global fate of strain j depends on R j with two different
situations: R j < 1, entailing that if strain j is not isolated then it is
globally eradicated, and

R j2 < 1 < R j < R j1 (14)

yielding that strain j has the potential to become globally endemic.
We notice, see (12), that these two situations are possible
depending of the migration patterns of susceptibles and individu-
als infected by strain j.

It is also possible to find migration patterns ensuring

R j < 1 < R j2 < R j1; (15)

that is, an isolated strain j is globally eradicated while it might
become endemic at both patches when they are not linked by
migrations (see Fig. 1). To get that it suffices that susceptibles tend
to accumulate in one of the patches while the infected individuals
tend to do it in the other one.
6. Conclusions

In this contribution we consider a population affected by a
periodic multi-strain SIS epidemic and distinguish population
patches according with epidemic behavior. We aim to investigate
whether and how epidemic behavior depends on the exchange of
individuals between zones through a two time scales nonautono-
mous periodic model.

The first result of our study is the definition of global

reproductive numbers (6) generalizing those previously defined
for single patch populations. In particular, global reproductive
numbers combine the value of (local) reproductive numbers
corresponding to each patch in absence of migrations (that is, if
they were isolated) with information about individual displace-
ment patterns. Then, the outcome of epidemic may depend
somehow on migrations.

Subsequently, we compare the local and the global reproduc-
tive numbers seeking for measuring somehow the influence of
migrations in the epidemic process. It follows that the relation
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between these quantities is, in general, very sophisticated and
cannot be analyzed in the most general case. Thus, we study two
simplified but important cases.

For ascertaining the precise role of fast migrations we consider
n homogeneous patches. In this case we get that local reproduc-
tive numbers are always larger than global reproductive numbers.
This property allows global eradication when, in absence of
migrations, the contrary was expected, as entailed by the
sufficient condition (9).

We consider also the case of two patches, being the
consequences of the disease largest in one of them. We get again
that the outcome of epidemic can be drastically different
depending on migrations. For instance, under adequate migrations
scheme, global persistence is possible for a given strain when, if
patches were isolated, this strain could only persist in one of them.
Besides, we find scenarios of global strains eradication when in the
isolated strains could potentially persist at each patch (see below).

Indeed, our analysis suggests epidemic management mecha-
nisms based in controlling individual displacements and, most
important, provides with quantifiable threshold values entailing
eradication/persistence. The idea is in same way similar to
vaccination problems: infection can be kept under control
vaccinating a sufficient large fraction of the population. It is clear
that if we consider patches formed exclusively by either
susceptible or infected individuals and if these zones are always
spatially separated, epidemic cannot develop and will be
eradicated. This is an extreme situation which in many real
situations is not feasible. Therefore, the question is, is eradication
possible assuming a given amount of infected individuals moving
around? Our results point out that epidemic control is possible
through the control on individual displacements, as illustrated, for
instance, in expression (9). Computing global reproductive
numbers (which combine displacements and patch epidemic
information) is a cornerstone for implementing effective eradica-
tion/persistence policies. The same reasoning can be applied to
situation described in Section 5.2, where in some patches, the
epidemic has a stronger incidence than in other patches.

When dealing with multi-strain epidemic, competition among
strains is of interest. Let us consider just two strains which we note
a and b. We recall that being the global reproduction number (grn)
of a given strain less than 1 implies that the corresponding strain is
eradicated. If there is any strain whith grn larger than one, the
disease-free solution becomes unstable. Besides, if the grn of strain
a is less than 1 and the grn of strain b is larger than 1, strain a is
eradicated while strain b persists. Then, which is the outcome
when considering two strains with its global reproduction number
larger than 1? Using these results in Martcheva (2009) it is possible
to define the corresponding (global) invasion reproduction numbers

of each strain. Being both global invasion reproduction numbers
larger than one implies strains coexistence. In addition, competi-
tive exclusion occurs when the transmission rate is a product of a
periodic contact rate and a constant probability of transmission,
bij(t) = c(t)pij and establishes, in this case, that the strain with the
largest global reproduction number excludes, globally, the other
strain. These results are local and can be easily achieved following
this manuscript and Martcheva (2009).

Although the periodicity in epidemics is well documented,
there is controversy about the underlying mechanisms. Namely, it
is not clear whether periodicity comes across as an intrinsic
property of epidemic dynamics or it is due to external periodic
forcings. There is no doubt about the existence of external forcings
and, in many cases, considering them is a natural assumption. To
the best of our knowledge, ‘‘pure’’ autonomous epidemic models
do not exhibit per se such a periodic behavior, which are found
incorporating delays, demographic dynamics or community
relations to the model. Perhaps neglecting external forcings and
further underlying dynamics makes models too simple so that do
not describe reality.

The effect of external forcings can be investigated in laborato-
ries. In case of epidemic models including demographic dynamics,
it is questionable if both, epidemics and demographic processes,
evolve within the same time scale. If not, approximate aggregation
techniques for autonomous ODEs are a suitable tool for studying
such kind of systems.
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Appendix A. Quasistatic-state approximation for nonlinear
initial-value problems

We summarize here the results on quasistatic-state approxima-

tion for nonlinear initial-value problems, due to Hoppensteadt (1966,

1993, 2010), that allow to extend aggregation methods, see Auger

et al. (2008a,b, this issue), to some two time scales nonautonomous

systems of ordinary differential equations, in particular to system (1).

We consider the initial-value problem

e dx

dt
¼ f ðt; x; y; eÞ; xðt0Þ ¼ h0;

dy

dt
¼ gðt; x; y; eÞ; yðt0Þ ¼ j0;

8>>><
>>>:

(A.1)

where x 2 Rn, y 2 Rm and e is a small positive parameter. We define
the domain V̂ ¼ I � V � ½0; e0� where I = t : t0 � t � T � 1 ,
V = BR � BR0, BR ¼ fx 2 Rn : jxj � Rg, BR0 ¼ fy 2 Rm : jyj � R 0 g, and
e0 is a fixed constant. In what follows, the balls BR and BR0 can be
replaced by any sets that are diffeomorphic to them.

Hypothesis H1. Functions f and g are C2ðV̂Þ and any solution of the
system (A.1) beginning in BR � BR0 remains there for t 2 I.

Setting e = 0 in (A.1) we obtain the so-called reduced

problem:

0 ¼ f ðt; x; y; 0Þ;
dy

dt
¼ gðt; x; y; 0Þ; yðt0Þ ¼ j0:

8<
: (A.2)

Hypothesis H2. There is a function x = F(t, y) such that f(t, F(t, y),
y, 0) = 0 for (t, y) 2 I � BR0. Moreover F 2 C2ðI � BR0 Þ and det (fx(t,
F(t, y), y) 6¼ 0 for (t, y) 2 I � BR0.

Hypothesis H3. The system of equations

dX

dt
¼ f ða; X; b; 0Þ (A.3)

has X = F(a, b) as an equilibrium for each (a, b) 2 I � BR0 that it is
asymptotically stable uniformly in the parameters (a, b) 2 I � BR0,
and the initial condition h0 is in the domain of attraction of the
equilibrium F(t0, j0) for system (A.3) with a = t0 and b = j0.

Hypothesis H4. The system of equations

dy0

dt
¼ gðt; Fðt; y0Þ; y0; 0Þ (A.4)
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has a solution for t0� t < 1, say y*(t), that it is uniformly
asymptotically stable and j0 is in the domain of attraction of y*(t).

Theorem 6. Let Hypotheses H1–H4 be satisfied and let y0(t) be the

solution of (A.4) for y0(t) = j0. Then, for sufficiently small values of e
the solution of problem (A.1), (x(t), y(t)), exists for t0� t < 1 and it

satisfies

xðtÞ ¼ Fðt; y0ðtÞÞ þ oð1Þ; yðtÞ ¼ y0ðtÞ þ oð1Þ

as e ! 0+ uniformly on any interval of the form t0< t1 � t < 1.

Appendix B. Approximate aggregation methods:
nonautonomous case

System (1) belongs to a class of two time scales systems of the

form

e dn

dt
¼ f ðt; nÞ þ esðt; nÞ; (B.1)

with n 2 Rm
þ and where f and s represent the fast and slow

dynamics, respectively.

This kind of systems with f and s not depending on t have been

extensively studied and applied to different biological models, see

Auger et al. (2008a,b, this issue) for recent reviews, using approxi-

mate aggregation methods. The first step in applying these methods is

to transform the system into slow–fast form by means of an

appropriate change of variables. To reproduce this step with the

nonautonomous system (B.1) we assume that it exists a change of

variables n 2 Rm! ðx; yÞ 2 Rm�q � Rq that yields the following system:

e dx

dt
¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy

dt
¼ Gðt; x; yÞ;

8>><
>>: (B.2)

where x and y stand for the fast and the slow variables,
respectively. It is not always easy to find the appropriate
transformation leading to the slow–fast form (B.2) of system
(B.1). Nevertheless, in some applications, the context gives a
natural way to define the slow variables, also called global

variables, which are the key of the transformation. In system (1)
the obvious candidates for slow variables are the total number of
susceptibles and of individuals infected by each strain, which are
kept constant by fast dynamics (movements among patches) and
so they evolve at the slow time scale.

The autonomous case of the slow–fast system (B.2) is reduced by

means of Fenichel center manifold theorems, Auger et al. (2008a,b,
this issue). The asymptotic behavior of the complete initial system is

then studied with the help of a reduced system for the global variables

called aggregated system. Here, for the nonautonomous case, we

notice that system (B.2) is a particular case of system (A.1) taking

f ðt; x; y; eÞ ¼ Fðt; x; yÞ þ eHðt; x; yÞ and ðt; x; y; eÞ ¼ Gðt; x; yÞ

so we are using the Hoppensteadt results summarized in
Theorem 6. System (A.4) plays a similar role to the aggregated
system of the nonautonomous case in the sense that some features
of its asymptotic behavior can be translated in terms of system
(B.2) asymptotic behavior via Theorem 6.
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