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Impact of periodic nutrient input rate on trophic chain properties
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A B S T R A C T

Marine ecosystems are characterized by a strong influence of hydrodynamics on biological processes.

The associated models involve the coupling of physical to biological models and therefore require a large

number of state variables. The consequent high complexity limits our capacity to perform a complete

and detailed study and even prevents any complete mathematical study of these models. It is also

difficult to disentangle among all the processes involved, which ones actually drive the system at any

moment. Hydrodynamics, among other consequences, affect the way under which the nutrients are

supplied to marine ecosystems. The variability of nutrient input rate in marine systems generally results

from runs-off in coastal systems and from physical processes (wind forcing and hydrodynamics) in open

ocean. This paper is devoted to the study of the effects of the nutrient input rate variability on the

dynamics and the functioning of trophic chains. In this context, we aim to provide an understandable

study, based on simplified system models. We consider a periodic nutrient input rate and analyze how

this variability modifies some system properties: its dynamics, its functioning and its structure. The

dynamics is obtained by numerical simulations and when possible, enlighten by already published

mathematical results. The functioning is measured by the time averaged state variables during the

simulation period, and their variability. The structure concerns the number of surviving populations, a

proxy of specific biodiversity. We show how these properties can be affected and provide some

conditions under which the modifications can occur. We also highlight that, even if the physical process

is the main driving force in the global dynamics, the choice of the biological model is important to

understand the biological response of the system to physical forcing.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

A recurrent question in marine systems concerns the relative
role of physics and biotic interactions on the structure of
communities. Of course, hydrodynamics is a forcing factor having
a strong influence on the spatial distribution of plankton and
nutrients. This influence can even have very subtle effects, see
d’Ovidio et al. (2010) for instance. However, recent studies have
demonstrated that biotic interactions also play a crucial role in the
formation of spatial patterns, e.g. Hilker et al. (2006), Malchow
et al. (2005) or Malchow et al. (2008) and references therein. What
is indeed determinant in the coupling between physical and
biological processes is the spatio-temporal scale, and when scales
match, both types of processes interact and contribute to the
formation of patterns. For instance, it is well known that
hydrodynamic structures such as turbulent eddies drive the
spatial distribution of phytoplankton species at various scales
(Seuront et al., 1999). Physical processes can also have direct and
* Corresponding author at: Case 901, Campus de Luminy, 13288 Marseille Cedex

09, France. Tel.: þ33 491 829 119.
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indirect consequences on the higher trophic levels (Seuront and
Lagadeuc, 2001).

Because of the different scales involved, the response of
individuals to environmental constraints has to be taken into
account. This has led to the use of individuals-based models in
marine ecosystem studies (Travers et al., 2010; Travers and Shin,
2010 for instance). On the one hand, this approach allows to
understand both how the individual properties (metabolism,
behavior, . . .) respond to physical and chemical variability at small
scales, and what the effect of this response is at the community and
ecosystem scales. On the other hand, this approach leads once
again to complex and unwieldy tools. It is thus relevant to ask if it is
possible to build models at the population or community level,
which take into account individual properties but which do not
contain a complete detailed description. This question needs a
transition scale approach. Different families of methods have been
proposed in the literature in ecology like the moment approach,
Chesson et al. (2005), the interacting particle approach, Morale
et al. (2005) or aggregation of variables, Iwasa et al. (1987), Iwasa
et al. (1989) or Auger et al. (2008). In Morozov et al. (2012),
the authors show how these different approaches have been
used to get mathematical formulations of a particular process

http://dx.doi.org/10.1016/j.ecocom.2013.01.005
http://www.sciencedirect.com/science/journal/1476945X
http://dx.doi.org/10.1016/j.ecocom.2013.01.005
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(the predation rate) at the community level from local information
at the individual level. It is indeed recognized that the choice of the
mathematical formulation can play an important role on the
dynamical behavior of a mathematical model, Cordoleani et al.
(2011), Myerscough et al. (1996), Fussmann and Blasius (2005),
Poggiale et al. (2010), and this choice depends of course on the
scale that we are interested in, and finally it depends on the
question we want to address.

In this article, we focus on phytoplankton–zooplankton–
consumer interaction models in varying environment, where the
variability takes place at different scales and is assumed to result
from various physical processes. We then analyze the effect of this
temporal variability on the population dynamics and community
properties and discuss the results in the light of the scale of forcing
variability. Two types of population models are used: a common
Monod–Herbert model which makes a direct link between
resource and consumer, and a more mechanistic model based
on Dynamics Energy Budget (DEB) theory, Kooijman (2010), which
is built on individual properties and is an interesting approach for
considering the individual level in ecosystem theory, Sousa et al.
(2010). These models are presented in the next section. We also
explain how these models will be studied, by means of numerical
simulations. A Fourier analysis allows to understand how the
periodic input rate interact with the possible internal fluctuations
of the food chain. This analysis is done for a large set of possible
periods of the input rate. Then we will study the community
structure and functioning. Since the systems fluctuate, we consider
the mean of the state variables during an appropriate length of
time, for a large number of parameter values. We obtain the
distributions of the means and compare the constant input rate
case to the periodic input rate case for various periods and
amplitudes.

2. Materials and methods

In this section, we describe two food chain models, involving a
prey (phytoplankton), a predator (zooplankton) and a super-
predator (zooplankton consumer). The first one is the Monod–
Herbert model (MH), it is based on direct links between resource/
prey densities and consumer/predator densities. The other one
(DEB) is based on the DEB theory, with two state variables for each
population, a reserve density and the structural biomass. In the
case of a constant input rate, these models have already been
studied. The former model has been studied in Boer et al. (1998) for
instance, the latter model has been described in Kooi et al. (1997),
the authors provide the bifurcation analysis.

2.1. Monod–Herbert model (MH)

This MH model involves four state variables, the nutrient
concentration N(t), the phytoplankton density P(t), the zooplank-
ton density Z(t) and the consumer density C(t). The model reads:

dN

dt
¼ IðtÞ � kN � a01N

K01 þ N
P (1a)

dP

dt
¼ y01

a01N

K01 þ N
P � m1P � a12P

K12 þ P
Z (1b)

dZ

dt
¼ y12

a12P

K12 þ P
Z � m2Z � a23Z

K23 þ Z
C (1c)

dC

dt
¼ y23

a23Z

K23 þ Z
C � m3C (1d)
where I(t) is the input rate of nutrient in the system. In a coastal
marine ecosystems for instance, this input results from the runoff
along the coast or the contribution by rivers. Parameter k is the
nutrient output rate. At each trophic level i, a consumption
function GijðxÞ ¼ aijx

Kijþx defines the per capita consumption rate of
resource i by a consumer j, where x = S for i = 0, x = P for i = 1 and
x = Z for i = 2. yij is the yield coefficient measuring the proportion of
resource i consumed per unit of time and converted in consumer j.
mi is the mortality rate of trophic level i.

2.2. DEB model

This model involves seven state variables. Using DEB notations,
the state variables are the nutrient concentration N(t), the
phytoplankton structure VP, the phytoplankton reserve density
eP, the zooplankton structure VZ, the zooplankton reserve density
eZ, the consumer structure VC and the consumer reserve density eC.
The model reads:

dN

dt
¼ IðtÞ � kN � a01N

K01 þ N
VP (2a)

dVP

dt
¼ n01eP � mPgP

eP þ gP

VP � m1VP �
a12VP

K12 þ VP
VZ (2b)

deP

dt
¼ n01

N

K01 þ N
� eP

� �
(2c)

dVZ

dt
¼ n12eZ � mZgZ

eZ þ gZ

VZ � m2VZ �
a23VZ

K23 þ VZ
VC (2d)

deZ

dt
¼ n12

VP

K12 þ VP
� eZ

� �
(2e)

dVC

dt
¼ n23eC � mCgC

eC þ gC

VC � m3VC (2f)

deC

dt
¼ n23

VZ

K23 þ VZ
� eC

� �
(2g)

where I(t) is the input rate of nutrient in the system and the
parameter k is the nutrient output rate, like in the MH model (1). At
each trophic level, there are two state variables, the structural
biomass V and the reserve density e. The consumption functions
are similar as in the MH model. The DEB parameters nij, gx and mx

are the energy conductance, the energy investment ratio
respectively and the maintenance rate, for each trophic level. mi

is the death rate of the population at trophic level i.

2.3. Fluctuating input rate I(t) and parameter values

Since we want to understand the effect of nutrient supply
fluctuations on the food chain functioning, we compare simula-
tions with varying nutrient supply to simulations with constant
nutrient supply, with the same total amount of nutrient provided
during the simulation time length. We consider that I varies
periodically with respect to t and we use I(t) = A(1 � cos(2p/Tt)) + B

where 2A is the amplitude of I(t), T is the period of the fluctuations
and B is the minimal input rate of nutrient. In order to carry out the
numerical simulations, we set the parameter values as follows. We
first consider the parameter values provided in Boer et al. (1998)
for the MH model (1) and in Kooi et al. (1997) for the DEB model
(2), they are recalled in Appendix A. We call these sets of
parameters the reference parameter sets for each model. We then
perturb randomly these reference parameter vectors. The random
sampling is made in a subset of the parameter space, in a such
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manner that each parameter p is selected between pr� 10 %, where
pr is the reference value obtained from the above mentioned
references. The random selection is performed using a Sobol
quasirandom sequence algorithm Bratley and Fox (1988). This
approach allows to get a best covering of the parameter space region
in order to avoid aggregates, which finally permits to make a lower
number of simulations.

2.4. Numerical studies

Two sets of numerical studies have been performed with both
MH and DEB models. The first one deals with a Fourier analysis of
model outputs. The spectra are plotted against the periods of the
nutrient supply rate. The aim of the second set of studies was to
understand if the periodic fluctuations of nutrient input rate
modified the trophic chain functioning, and if we could say more
on the modifications.

The Fourier analysis was made by varying the nutrient input
rate period from 10 to 300 h and for each period, by considering the
Fourier spectrum of the state variables during the asymptotic
regime. We thus simulate the models during 3000 h and consider
only the last 2000 h in order avoid the initial condition effect and
work with stationary time series. This type of analysis has been
performed for low and high amplitudes, for both models (MH and
DEB).

For the effect of fluctuations on trophic chain functioning, we
again considered the asymptotic regime by running the models
during 3000 h and analyzing the time series during the last 2000 h.
We then calculated the mean of each trophic level biomass, with a
without fluctuations of the input rate. In order to get more robust
results, we performed this analysis for a large number (1000) of
parameter sets, the choice of this number is explained hereafter.
We have done this for different nutrient input rate periods and
amplitudes, for both models (MH and DEB). The parameter sets are
obtained using a Sobol quasirandom sequence in a hypercube
around a reference parameter set provided in Boer et al. (1998) for
the MH model and in Kooi et al. (1997) for the DEB model, the range
for each parameter is more or less 10% around its reference value.
1000 parameter sets is in fact very low since we have 13
parameters for the MH model and 16 parameters for the DEB
model. This number has been chosen for the following reasons.
First, the Sobol quasirandom sequence allows us to get a well
distributed sampling of the parameter domain. Thus we decided to
Table 1
List of the parameters and their units for the MH model and the DEB model. The reference 

Kooi et al. (1997) for the DEB model.

MH model 

Parameter Value Unit 

k 0.4 h�1

y01 0.4 – 

y12 0.6 – 

y23 0.6 – 

a01 1.25 h�1

a12 0.33 h�1

a23 0.25 h�1

K01 8 mg dm�3

K12 9 mg dm�3

K23 10 mg dm�3

m1 0.025 h�1

m2 0.01 h�1

m3 0.0075 h�1
select an arbitrary number (5000) and to reduce it by a sensible
factor to see if the results would be different. The first analysis have
been performed with 5000 parameters and the resulting distribu-
tion of means obtained for each state variable was very similar
with 1000 parameter sets. We thus decided to reduce the time of
simulation by finally considering only 1000 parameter sets for
each study.

2.5. Some comments on these models

The mathematical formulation of these models in a chemostat
would be very similar from a mathematical point of view. Indeed, it
would be sufficient to replace k by the dilution rate D, the input
rate I by DNin where Nin would be the nutrient concentration in the
chemostat reservoir, and mi should be replaced by D þ m0i. Our
Table 1 in Appendix A is based on these relations. It follows that the
mathematical analysis provided in the literature on food chains in
chemostat, see Boer et al. (1998) and Kooi et al. (1997) for instance,
can therefore be easily extended to the MH and DEB models. A
bifurcation analysis of a chemostat model in the parameter space
(Nin, D) can be somehow interpreted for our models in the
parameter space (I, k). Experiments with fluctuating concentration
Nin in a chemostat would thus provide empirical data related to our
theoretical work.

In the case where the input rate I is a constant, the MH model
has been studied in different papers. With C(t) � 0, we refer for
instance to Smith and Waltman (1995) and Li and Kuang (2000).
These works provide some results in particular on the role of the
parameters I and k on the dynamics and on the structure of the
community. Among these results, it is shown that a periodic
solution can occur. In Boer et al. (1998) (and see references
therein), the authors analyze the MH model with a constant value
of I and provide some bifurcation diagrams in the parameter plane
(I, k). It is shown that complex dynamics can occur (chaotic
attractors for instance) and the role played by the parameter I in
the occurrence of complex dynamics is described. It is also shown
that for low and for high input rates as well, the consumer goes
extinct, it can coexist for intermediate input rates. Moreover, the
paper (Smith, 1997) deals with the Droop model for phytoplankton
growth in chemostat, which is slightly different from the DEB
model but also considers a reserve (or quota) compartment.
Results mainly show that, under relevant conditions on I and on the
biological parameter values, the system admits a periodic solution.
values of theses parameters come from Boer et al. (1998) for the MH model and from

DEB model

Parameter Value Unit

k 0.4 h�1

n01 40 h�1

n12 0.2 h�1

n23 0.0756 h�1

a01 1.25 h�1

a12 0.33 h�1

a23 0.25 h�1

mP 0.025 h�1

mZ 0.01 h�1

mC 0.0075 h�1

gP 80 –

gZ 1 –

gC 0.504 –

K01 8 mg dm�3

K12 9 mg dm�3

K23 10 mg dm�3

m1 0.5 h�1

m2 0.2 h�1

m3 0.15 h�1
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A similar type of analysis is provided for the DEB model in Kooi
et al. (1997), still for a constant value of the input rate I and in the
situation where the reserve densities are so fast that quasi-steady
state assumption is applied, which is a particular case of the DEB
model. It is also shown that for a constant I, the food chain can
exhibit a complex dynamics with chaotic behavior for instance,
and that the parameter I plays a crucial role in the occurrence of
this complex dynamics.

In the present paper, we consider variable input rate, focusing
on a periodic function of time, and we analyze the effect of this
temporal variability on the food chain functioning. For instance, we
compare the cases where, during a given period, a given amount of
nutrient is first provided at a constant rate and, afterward, at a
periodic rate. The role of the period T and amplitude 2A of the
periodic nutrient input rate is studied. Many works have
considered periodic forcing in chemostat on predator–prey
systems or on competition, with different types of models. We
refer to (Zhao, 2003 or Farkas, 1991) for instance. The results focus
on the coexistence of several species competing for a few number
of limiting nutrient. To our knowledge, there is only very few
mathematical results on food chain models like the MH model and
even less for models like the DEB one, for time dependent input
rate I(t).

3. Results

3.1. Fourier spectrum analysis

The results obtained for the DEB model are rather similar to the
results of the MH model. We thus detail the MH model results and
we will discuss the differences between both models afterward.
Since the results are very close for the different amplitudes used in
the analysis, we first focus on one amplitude in detail and we then
briefly describe the slight effect of amplitude. The amplitudes have
been chosen according to the following criterion. When the input
rate is constant, it is well known that if this rate is low, the system
reaches an equilibrium state while if we increase the input rate, the
state variables fluctuate. We thus considered two sets of values for
the amplitude. It must be noticed that the MH model, with the
Fig. 1. The MH model (1), using the reference parameter set (see Appendix A) and A = 5, B

series for each state variable, for different input rate period T, from T = 0 to T = 300. The h

highest values of the spectrum are in white. Each panel corresponds to a different state v

consumer = bottom right).
reference parameter set and a constant input rate I = 10, exhibits a
periodic behavior with a period around 86 h (frequency around
0.01 Hz, that we will call internal frequency).

The main result here is illustrated in Fig. 1. In this figure, we see
the spectrum of the asymptotic time series obtained with the MH
model. The most important pattern is represented by the
hyperbolic white curves which means that the main mode in
the Fourier spectrum for each input rate period T is obtained for the
frequency 1/T. This means that the forcing term I(t) has a strong
influence on the dynamics of all the state variables. Furthermore,
we can see that for input periods T between 10 h and around 50 h
and between 100 h and 200 h, the spectrum is a bit ‘‘noisy’’. When
T < 50 h, the frequency 1/T > 0.02 Hz is too large to appear on the
graph and the internal frequency provides the main mode. For
100 < T < 200, the ‘‘noise’’ corresponds to a resonance effect since
in this case, the ratio between the internal frequency and the
external frequency is close to one. Note that the choice A = 5 and
B = 5 corresponding to Fig. 1 leads to an averaged input value of 10,
which should have been the same with the choice A = 10 and B = 0.
This averaged level of nutrient input rate is required for getting
fluctuations of the populations even for constant input rates. But in
the latter case, the input rate fluctuations have larger amplitudes
than those obtained with the former case.

Fig. 2 shows the result for this larger amplitude of nutrient
input rates. Similar patterns can be seen. However, for the
consumer, the pattern is very different. Indeed, with large input
amplitude (A = 10), for long periods (around T > 80), the consumer
is excluded (its biomass tends to zero). This is probably due by too
long periods during which the nutrient level was too low to
maintain the whole chain. This is supported by the transcritical
bifurcation observed in the constant input case for low nutrient
input, leading to the extinction of the consumer. The second
difference between the spectra built with A = 5, B = 5 (Fig. 1) and
those with A = 10, B = 0, (Fig. 2) is the level of ‘‘noise’’ on the
spectrum, which is lower in the latter case. Indeed, the amplitude
of the forcing term is larger, thus the internal fluctuations have less
importance.

The last result pointed out in this subsection concerns the
comparison with the DEB model outputs. As it can be observed in
 = 5, has been simulated during 3000 h. A Fourier analysis has been done on the time

eight of the spectrum is represented in a gray color. Black corresponds to 0 and the

ariable (nutrient = top left, phytoplankton = top right, zooplankton =bottom left and



Fig. 2. The MH model (1), using the reference parameter set (see Appendix A) and A = 10, has been simulated during 3000 h. A Fourier analysis has been done on the time series

for each state variable, for different input rate period T, from T = 0 to T = 300. The height of the spectrum is represented in a gray color. Black corresponds to 0 and the highest

values of the spectrum are in white. Each panel corresponds to a different state variable (nutrient = top left, phytoplankton = top right, zooplankton = bottom left and

consumer = bottom right).
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Fig. 3, the main pattern is similar for the DEB model but more
diffuse. In the DEB model, the relation between the resource
concentration in the environment and the biomass state variable of
consumer is not direct, since at each level, the resource ingested is
first assimilated in a reserve compartment. As we can see in Fig. 3,
the main mode in the Fourier spectrum is still obtained for the
frequency corresponding to the nutrient input fluctuation. But this
mode is not so clear than in the MH model spectra and this can be
interpreted by the fact that the response of the different trophic
levels to nutrient input variations in the DEB model is less
instantaneous than in the MH model.
Fig. 3. The DEB model (2), using the reference parameter set (see Appendix A) and A = 5, B

series for each state variable, for different input rate period T, from T = 0 to T = 300. The h

highest values of the spectrum are in white. Each panel corresponds to a different state va

consumer = bottom right).
3.2. Response of the population levels to periodic fluctuations

In this subsection, we study how the periodic fluctuations of the
nutrient input rate affect the mean (time average) of populations at
each trophic level, in the asymptotic regime. We first consider the
MH model. In Fig. 4, the mean, maximal and minimal values for
each state variable between t = 1000 h and t = 3000 h are
represented. On panel (A), they are plotted against the nutrient
input rate amplitudes A, between A = 0 and A = 10 and for T = 100.
We can see that the consumer abundance tends to zero when the
amplitude of nutrient input rate is too large. On panel (B), the
 = 5, has been simulated during 3000 h. A Fourier analysis has been done on the time

eight of the spectrum is represented in a gray color. Black corresponds to 0 and the

riable (nutrient = top left, phytoplankton = top right, zooplankton = bottom left and



Fig. 4. Simulations with the MH model (1) are run, using the reference parameter set (see Appendix A). For each state variable, the mean value (black line), the maximal value

and the minimal value (dotted grey lines) are calculated and are plotted against the amplitude A (panel A) or against the period T (panel B) of the nutrient input rate. When the

amplitude is varying (panel A), the period is fixed to T = 100. When the period is varying (panel B), the amplitude is fixed to A = 10.
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abundance descriptors (mean, maximum, and minimum) are
plotted against the period of the nutrient input rate T between T = 0
and T = 250 h, for A = 5. This value has been chosen by considering
the last graph of panel (A) in Fig. 4 in order to maintain the
consumer population, at least for some period values. According to
these graphs, we decided to execute simulations with different
parameter sets and A between 0 and 10 and T between 0 and 100.
Fig. 5 illustrates the effect of nutrient input fluctuations. Fours
graphs are presented, with A = 5 and T = 10 (graph (A)), A = 5 and
T = 100 (graph (B)), A = 10 and T = 10 (graph (C)) and A = 10 and
T = 100 (graph (D)). In this figure, the distribution of the relative
difference of the means, obtained for each random set of
parameters, between the constant input rate situation and the
periodic one. More precisely, if M1 denotes the mean value of a
state variable with the constant input rate and M2 denotes the
mean value with the periodic input rate, we represented the
distribution of:

D ¼ M1 � M2

M1
−0.3

−0.2

−0.1

0

N P Z C

A=5 ; T=10

−0.5

0

0.5

N P Z C

A=10 ; T=10
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(C)

Fig. 5. The MH model (1) has been simulated 1000 times with different parameter sets. Th

of each state variable is calculated. The figure shows the distribution of the means, for dif

central mark on each box correspond to the median, while the 25th and 75th percenti
When the result is negative, it means that the time average of the
state variable is lower in a constant environment than in the
fluctuating one, for the same amount of nutrient provided during
the whole simulation. We see on graphs (A) and (C), which
correspond to a low input rate period T = 10, that the differences
are rather low. In the case (A), we can see that the nutrient is lower
in a constant environment than in a fluctuating environment
(around 30% lower), but the phytoplankton, the zooplankton and
the consumer have close mean values in constant and fluctuating
environments. On graphs (B) and (D), we note that the nutrient
mean is generally much lower in a constant environment (40%
lower in graph (B) and 400% lower in graph (D)). However, the
phytoplankton is generally more abundant in a constant environ-
ment (25% higher in graph (B) and 20% higher in graph (D)). Finally
the consumer biomass is higher in the constant environment (75%
higher in graph (B)). However, if we can see in graph (D) that the
consumer biomass in a constant environment is around 90% higher
than in the fluctuating situation, it is mainly because the
abundances are very low (the population is very close to
extinction) and thus the decrease induced by fluctuations in this
case is not important. Since the differences are much more
important for the nutrient level, the box-plot for the other levels
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Fig. 6. The DEB model (2) has been simulated 1000 times with different parameter

sets. The parameter sets are chosen according to a Sobol quasirandom sequence.

The mean of each state variable is calculated. The figure shows the distribution of

the means, for different values of T and A. Distributions are presented through box-

plot diagrams. The central mark on each box correspond to the median, while the

25th and 75th percentiles correspond to the edges.
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seem to be very close to zero (see details in the supplementary
material), but the distributions in the case (B) and (D) are
significantly different from zero.

We summarize the previous result as follows: the fluctuations
have a positive effect on the nutrient level, a negative effect on the
phytoplankton level, a positive effect on the zooplankton level and
a negative effect on the consumer level. For large amplitudes and
low periods, the effects are small and random. We also shown that
these results are still true but much diffuse in shorter trophic chain.
Even, for a nutrient–phytoplankton system, the effects of fluctua-
tions on the mean of state variables is very low. Indeed, in the
nutrient–phytoplankton system, the outputs of the model are
strongly correlated to the forcing term and since the constant input
rate has the same mean as the fluctuating input rate, it follows that
the state variables have very close mean in constant and
fluctuating environment. When the length of the food chain
increases, the feedback effects of the higher trophic levels enhance
the differences between the constant and the fluctuating
environment.

With the DEB model, the results are rather different, see Fig. 6.
In this figure, two set of simulations are presented, one with A = 5
and T = 50 (low amplitude), the other one with A = 10 and T = 100
(large amplitude). As it can be seen, the distributions of the means
are very close to zero, the effect of the fluctuations is much more
variable than what we observed in the MH model. We conclude
that this more detailed model, containing more state variables,
have a much more complex response to the periodic fluctuations of
the nutrient input rate. In other words, the choice of the biological
part of an ecosystem model remains an important choice, even if
we already admit that the physical forcing is the main factor
driving the dynamics. For instance, a direct relation between
trophic levels lead to robust patterns while indirect relations (use
of reserves or quota), which are often more realistic, lead to more
complex responses.

4. Discussion and conclusion

In this article, we analyzed the bottom-up effects of fluctuating
nutrient uptake on different food chains, starting from the simple
nutrient–phytoplankton case to a tri-trophic food chain nutrient–
phytoplankton–zooplankton–consumer. For each of the models
considered in the paper, we used different parameter sets around a
reference parameter set taken from the literature. For this
particular set of parameters, if the mean value of the input rate
was taken large enough, oscillations occurred for constant input
rate. These intrinsic fluctuations induced by biotic interactions
were called internal oscillations. We shown that the nutrient input
rate variability has different effects on the system properties. We
first shown that the period of input rate provides a clear signature
of the Fourier spectrum, regardless the period of the input.
However, for low periods, the internal period of the trophic chain
drives the main pattern. Furthermore, when the external oscilla-
tions (those of the external forcing) had a period of the same order
of magnitude as the internal oscillations, a resonance effect was
observed on the Fourier analysis. Finally, for long input rate
periods, the consumer was excluded. We also shown that the
previous results were exhibited by both models (Monod–Herbert
and DEB), while the Fourier spectra obtained with the DEB model
were more diffuse.

A second set of results shown that the nutrient input rate
fluctuations enhances the abundance of nutrient in the environ-
ment, meanwhile it decreases the consumer biomass. For the
intermediate trophic levels (phytoplankton and zooplankton), the
effects depended on the model. With the Monod–Herbert model,
the time average phytoplankton biomass is decreased by nutrient
rate fluctuations, while the mean zooplankton biomass was
increased. We obtained different results with the DEB model.
The insertion of reserve compartments leaded to more complex
responses of the community model to the nutrient input
fluctuations. The difference of means of the state variables
between the constant environment simulations and the periodic
input rate case was sometimes positive and sometimes negative,
even if the nutrient abundance was essentially enhanced by
fluctuations.

To some extent, our results suggest that the nutrient level is
mainly driven by the physical forcing, its mean is much sensitive to
the fluctuations than the mean of other state variables, for both
models. From a modeling point of view, it is enhanced in more
complex and detailed systems, as we have seen by comparing the
Monod–Herbert model to a DEB one. Furthermore, we observed
that the sensitivity of the mean nutrient concentration to the
nutrient input rate increases with the length of the food chain.
Furthermore, the effect of the nutrient input rate variability on the
time average state variables is more robust in systems where the
trophic levels are directly linked, like in the Monod–Herbert model,
than in models with buffers such as reserves, like in a DEB model.

Consequently, we suggest that when simulating large marine
ecosystems with physical models coupled with biological ones, the
more complex the biological network is, the more attention must
be paid to the effect of the physical forcing on the ecosystem
functioning and on the community structure.

Three research directions are envisaged to continue this work.
We first aim to provide some mathematical results in order to
generalize our results and provide more detailed explanations and
the underlying mechanisms of our results. For instance, we started
to consider the equilibrium of the food chain models discussed in
the present paper, even if an explicit formula for the tri-trophic MH
model is already difficult to get (and so complicated that it is not
useful). We tried to see if the values of the state variables could be
simply related to the input rate I in the constant input rate case. We
expected to see if the Jensen inequality could help to explain our
results. The idea is the following. If the equilibrium value of
nutrient for instance, is a convex function of I, we could thus
imagine that periodic variations of the nutrient input rate would
increase the nutrient. Furthermore, when the system exhibits
internal oscillations (case observed if I is large enough), we can
consider that the state variables fluctuate around the values of an
unstable equilibrium. But the mean of the state variable is not
necessary equal to this equilibrium value, thus any relation
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between the equilibrium value and I would not be useful. Further
investigations need to be conducted.

The second research direction concerns the development of
mathematical analysis of the MH model. We will focus on
bifurcation analysis with the period of nutrient input rate as a
bifurcation parameter. From a numerical point of view, more
realistic forcing terms (with several periods, intermittent, and so
on) should be considered. Finally, it is well known that space
occupies a central place in ecology and we will thus work on spatial
extensions of the models used in this paper.
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Appendix A. Parameter values

We recall here the parameter values for models (1) and (2).
We arbitrarily took (1) for the initial conditions of all variables.
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