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1. Introduction

An accurate description of systems in Nature needs combining
different processes which are often related to specific scales.
Hierarchy theory provides the conceptual framework of how
processes and components of an ecological system interrelate and
how they can be ordered (Lischke et al., 2007; Schneider, 2001) in
different hierarchical levels. Simplifying the mathematical models
representing these natural systems has to do with translating the
effect of processes acting at a specific scale into an upper scale,
what it is called up-scaling.

From a mathematical point of view, a model involving several
interacting organization levels can be described through a system
including several time scales. Indeed, each organization level
consists of some interacting entities with their own dynamics.
Those entities belonging to a given level with strong (or fast)
interactions can be grouped giving rise to the entities at the next

level. For instance, a population can be seen as several sets of
individuals, each set being characterized by a similar trait. This
description, based on a structured population, can be useful to
understand the role of the structure on the population dynamics.
When considering a community, if possible, the different sub-
populations are merged: the population as a whole is considered
for the study at the community level.

Mathematically, the process of up-scaling consists in deriving
global variables and their dynamics from those in the lower level.
Roughly, this is done by considering the events occurring at the
fastest scale as being instantaneous with respect to the slower
ones. This consideration entails a reduction of the number of state
variables and parameters needed to describe the dynamics of the
system at the upper level. The so-called aggregation methods are an
example of this general framework, see Auger et al. (2008, 2012)
for recent reviews. These methods study the relationship between
general classes of two time scale systems and their corresponding
aggregated or reduced ones. In this way, they supply a rigorous
support to simplifications that some models implicitly incorporate
without any further justification. With these methods we can
develop realistic models in a more detailed form, while keeping
them mathematically tractable aided by an appropriate reduction
of the dimension.
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Two distinguishing features characterize the population dynamic models considered in the present

work. On the one hand, we consider several interacting organization levels associated to different time

scales. On the other hand, the environment tends to be constant in the long term. The mathematical

representation of these properties leads to slow-fast asymptotically autonomous systems. These

characteristics add some realism in the models. However, the analytical study of this class of systems is

generally hard to perform.

Here we present a reduction technique that can be included among the so-called approximate

aggregation methods. The existence of different time scales, together with the long term features, are

used to build up a simpler system, which can be described by means of a lower number of state variables.

The asymptotic behavior of the simplified model helps to study the original one.

The reduction procedure is formulated in a general way. Following, two illustrations of

asymptotically autonomous models with two time scales, in a gradostat, are given: a consumer–

resource model and a competition model. Finally, a wider range of applications is suggested.
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Aggregation techniques for autonomous ordinary differential
equations are well established. The approach is based upon the
Fenichel theorems on persistence of invariant manifolds, Fenichel
(1971), and on the geometric singular perturbation theory,
Verhulst (2005, 2007). The general form of the system with two
time scales in Rm reads as follows:

dn

dt
¼ f ðnÞ þ esðnÞ; (1)

where functions f and s describe, respectively, the fast and slow
processes. The parameter e is a small positive constant represent-
ing the ratio between time scales. We note t and t = et,
respectively, the time variable in the fast and the slow time units.
We assume that there exist some constants of motion for the fast
part of the system, obtained with e = 0. These constants of motion
are called global variables. Then, a change of coordinates is
performed in order to used them explicitly in the model. Since they
are constant of motion for the fast part, it follows that they exhibit
a slow dynamics. The remaining variables are called fast variables,
which are assumed to reach an attractor (a stable equilibrium for
instance). Note that this attractor may depend on the global
variables. A reduced system, called aggregated system, for these
global variables makes easier the study of the asymptotic behavior
of system (1).

Autonomous systems, like (1), reflect the assumption of
constant environment. A lot of ecological questions of interest
involve variable environments and hence nonautonomous, or time
dependent, systems. The general form of nonautonomous system
with two time scales fits in the framework of singular perturba-
tions by Hoppensteadt (1966, 1993, 2010). The drawback in
applying these results lies in checking the assumptions, which may
be a very technical and difficult task. A useful approach in this
context, consists in finding particular forms of systems for which
Hoppensteadt assumptions are easily proved to be met. When this
goal is reached, a practical approximate aggregation technique is
available. In Marvá et al. (2012c) this program is carried out for
systems with two time scales and periodic terms which period is of
the order of the slow time scale. They could be written in the
following form

dn

dt
¼ f ðet; nÞ þ esðet; nÞ;

where f and s are taken to be periodic functions of t = et. The
reduction techniques presented in Marvá et al. (2012c) are further
applied to epidemic models in Marvá et al. (2012a,b).

The goal of this work consist in presenting the aforementioned
reduction procedure for a class of nonautonomous systems with
two time scales, of the form:

dn

dt
¼ f ðt; nÞ þ esðt; nÞ;

where f and s are asymptotically autonomous (in the sequel, A.A.)
functions. Roughly, an A.A. system could be described as a time
dependent system such that the explicitly time varying terms tend
to be constant (Thieme and Castillo-Chavez, 1995; Li and Wang,
2007). I other words, the explicit time dependence disappears in
the long term. To illustrate what is an A.A. system in a simple
context, let us consider a model of a population in a pond. We
assume that water enter and leave the pond at the same rate so
that its volume remains constant. The incoming water has a
constant concentration of a certain substance that affects the
species inhabiting the pond. Then, their environment inside the
pond is variable and it is possible to describe their dynamics with a
nonautonomous system. However, the amount of substance in the

pond tends to stabilize attaining the same concentration as in the
incoming water. Consequently, the species vital rates depending
on the substance concentration are eventually constant, i.e., the
system is A.A.

A model with two time scales for two competing species
inhabiting an A.A. environment, similar to the one just described
above, is presented in Section 2.2. Subsequently, it is analyzed in
Section 3.2 with the help of the reduction technique developed in
Section 3.

The main results on A.A. systems are due to Markus (1956) and
Thieme et al. (1995). Under certain conditions the asymptotic
behavior of an A.A. system can be obtained from an associated
autonomous system called limit system (the precise definitions
can be found in Appendix A). The use of this limit system together
with the results in Hoppensteadt (1966, 1993, 2010) provide the
reduction procedure that we present and apply in this work.

Section 2 presents two models with two time scales. The one in
Section 2.1 is autonomous. Solving it partially, for one of the variables,
yields a new system withone variable less,but at the cost of becoming
A.A. The model in Section 2.2 has already been mentioned. Section 3
is devoted to the presentation, step by step, of the reduction
technique. This is followed by its application to the analysis of the
models introduced in Section 2. All technical details and general
results are collected in Appendix A. In Section 4, we discuss our
results and suggest further applications, as for instance, how to deal
with two time scale models coupling A.A. and periodic terms.

2. Two time scale asymptotically autonomous models

In this section we introduce two population models in a
gradostat. Both include two time scales and can be represented by
A.A. systems.

2.1. A consumer–resource model in a gradostat

The model presented here has not been analyzed elsewhere and
it is related with the work in Loreau (1998, 2010) (in particular,
pages 44–45 of the latter). There, it is addressed an ecosystem
model consisting of N plants having limited access to an inorganic
nutrient in individual depletion zones.

Here we consider a gradostat consisting of chemostats 1 and 2
connected as shown in Fig. 1. Both vessels are shared by primary
producers and producers’ nutrient, and vessel 2 also hosts
consumers of primary producers. Variables Si and Pi are the
concentrations of nutrient and primary producers in vessel i = 1, 2,
and variable Q is the concentration of consumers in vessel 2.
Constant D denotes the dilution rate (1/time) that represents the
inflow to vessel 1, the flow from vessel 1 to vessel 2, and the
outflow from vessel 2, so that the medium in each chemostat
remains constant. The concentration of the input nutrient is S0

(mass/volume) so that I = S0D is the nutrient inflow (mass/time).
We assume, in the general case, that producers consumption

rate is proportional to the availability of nutrient and so it has a
general form vðSiÞPi. In absence of consumers, the equations
describing nutrient and producers concentration dynamics in each
chemostat are

dS1

dt
¼ I � DS1 � vðS1ÞP1;

dS2

dt
¼ DðS1 � S2Þ � vðS2ÞP2;

dP1

dt
¼ a1vðS1ÞP1 � DP1;

dP2

dt
¼ DP1 þ a2vðS2ÞP2 � DP2;

8>>>>>>>>><
>>>>>>>>>:

(2)

where ai, for i = 1, 2, are positive constants denoting conversion
efficiency factors.
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When incorporating consumers into system (2), we assume that
their vital processes are slow when compared to those of nutrients
and primary producers. The consumers consumption rate of
primary producers is given by the nonnegative bounded function
U(P2, Q) that vanishes for P2 = 0 or Q = 0. Consumers concentration
is supposed to follow a logistic growth law with constant growth
rate l and carrying capacity K(P2). Function K is nonnegative and
bounded and verifies that limP2! 0 KðP2Þ ¼ 0. Consumers do not
move from chemostat 2. At this point we make no further
assumptions on U(P2, Q) and K(P2).

In order to get an analytically tractable model we choose the
following form for nutrient consumption rate vðSiÞ ¼ jSi, where j is
a positive constant. For the sake of simplicity we also consider
a1 = a2 � a, what means that environmental conditions are
identical in both chemostats.

The model including consumers that takes into account all the
stated assumptions has the form:

dS1

dt
¼ I � DS1 � jS1P1;

dS2

dt
¼ DðS1 � S2Þ � jS2P2;

dP1

dt
¼ ajS1P1 � DP1;

dP2

dt
¼ DP1 þ ajS2P2 � DP2 � eY ðP2; QÞ;

dQ

dt
¼ elQ 1 � Q

KðP2Þ

� �
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(3)

where e is the small positive constant representing the ratio
between time scales.

System (3) is autonomous with two time scales. An appropriate
change of variables allows solving for one of the new variables
obtaining a less dimensional system, which is nonautonomous
though A.A.

We first define the new variables Ŝi ¼ aSi, for i = 1, 2, and the
new constant Î ¼ aI and we write again system (3) for them,
though keeping notation without hat, obtaining

dS1

dt
¼ I � DS1 � jS1P1;

dS2

dt
¼ DðS1 � S2Þ � jS2P2;

dP1

dt
¼ jS1P1 � DP1;

dP2

dt
¼ DP1 þ jS2P2 � DP2 � eY ðP2; QÞ;

dQ

dt
¼ elQ 1 � Q

KðP2Þ

� �
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(4)

If we consider now the total concentration of nutrient and primary
producers in chemostat 1, B1 = S1 + P1, we see that it satisfies the
equation

dB1

dt
¼ I � DB1;

which solution, for a given initial condition B1(0), is

B1ðtÞ ¼ S0 þ e�DtðB1ð0Þ � S0Þ:

We can interpret the new variable B1 as the total concentration of
potential resource in chemostat 1 available for individuals in
chemostat 2. We point out that the contribution of S1 and P1 to S0,
the asymptotic value of B1(t), can vary. We can eliminate variable
S1 in system (4) by using the substitution S1 = B1 � P1 what yields

dS2

dt
¼ DðB1ðtÞ � P1 � S2Þ � jS2P2;

dP1

dt
¼ jðB1ðtÞ � P1ÞP1 � DP1;

dP2

dt
¼ DP1 þ jS2P2 � DP2 � eY ðP2; QÞ;

dQ

dt
¼ elQ 1 � Q

KðP2Þ

� �
;

8>>>>>>>>><
>>>>>>>>>:

(5)

which is a A.A. system since limt ! 1 B1ðtÞ ¼ S0. We can see B1 as a
time varying environmental constrain that tends to a constant
value in the long term.

2.2. A competition two time scale model in a gradostat

The model proposed in this section is inspired in Li and Wang
(2007), where a problem on environmental toxicology was
addressed. Namely, the authors considered an A.A. system
describing the dynamics of a mutualistic community inhabiting
a polluted environment such that the amount of pollutant is
changing but tends to a constant level in the long term.

We consider here a gradostat which schematic diagram is
presented in Fig. 2. It consists of two identical chemostats,
connected so that a flow between them occurs, and such that each
chemostat has a separate inflow and outflow to the outside
environment. In the gradostat there are two competing species
affected by a pollutant input from an external source. We assume
that the pollutant moves all across the gradostat while both species
keep in the gradostat and can only move from one vessel to the
other. A final assumption is that both pollutant and species
transfers are fast compared to species demography.

For i, j = 1, 2, let nij(t) denote the size of the species j and Si(t) the
concentration of pollutant in chemostat i at time t. Positive
parameters mi, min

i and mout
i , i = 1, 2, represent the different

medium transference flows and their units are volume/time. These
rates keep constant the medium volumes, that we consider equals
to 1, in both vessels. The species transference rates are assumed to
be dm1 for displacements from chemostat 1 to chemostat 2 and dm2

in the other sense, where d is a positive parameter. Constant ei is
the concentration of the pollutant entering chemostat i, i = 1, 2,
mass/volume.

Competition in each chemostat is described by a Lotka–Volterra
model where lj, species j growth rate, Kj, species j carrying
capacity, and aj, competition coefficient on species j, j = 1, 2,
depend on Si(t), the concentration of pollutant in the chemostat i,

n11 , n12 n21 , n22

min
1 min

2

mout
2mout

1

m1

m2

e1 e2

1 2

Fig. 2. Scheme of the gradostat.

S1, P1

S2, P2, Q

D

D

D
S0

1

2

Fig. 1. Scheme of the gradostat.
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i = 1, 2. Finally, the system takes the form

dS1

dt
¼ �ðm1 þ mout

1 ÞS1 þ m2S2 þ min
1 e1;

dS2

dt
¼ m1S1 � ðm2 þ mout

2 ÞS2 þ min
2 e2;

dn11

dt
¼ �dm1n11 þ dm2n21 þ el1ðS1Þn11 1 � n11 þ a1ðS1Þn12

K1ðS1Þ

� �
;

dn21

dt
¼ dm1n11 � dm2n21 þ el1ðS2Þn21 1 � n21 þ a1ðS2Þn22

K2ðS2Þ

� �
;

dn12

dt
¼ �dm1n12 þ dm2n22 þ el2ðS1Þn12 1 � n12 þ a2ðS1Þn11

K1ðS1Þ

� �
;

dn22

dt
¼ dm1n22 � dm2n12 þ el2ðS2Þn22 1 � n22 þ a2ðS2Þn21

K2ðS2Þ

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(6)

where, as usual, e is the small positive parameter representing the
ratio between time scales. Pollutant equations form themselves a
linear, uncoupled system which can be straightforwardly solved.
Substituting the explicit solution (S1(t), S2(t)) into the equations of
species population sizes, nij, we get the following four dimensional
nonautonomous system with two time scales.

dn11

dt
¼ �dm1n11þdm2n21þel1ðS1ðtÞÞn11 1�n11þa1ðS1ðtÞÞn12

K1ðS1ðtÞÞ

� �
;

dn21

dt
¼ dm1n11�dm2n21þel1ðS2ðtÞÞn21 1�n21þ a1ðS2ðtÞÞn22

K2ðS2ðtÞÞ

� �
;

dn12

dt
¼ �dm1n12þdm2n22þel2ðS1ðtÞÞn12 1�n12þa2ðS1ðtÞÞn11

K1ðS1ðtÞÞ

� �
;

dn22

dt
¼ dm1n22�dm2n12þel2ðS2ðtÞÞn22 1�n22þ a2ðS2ðtÞÞn21

K2ðS2ðtÞÞ

� �
;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(7)

which is A.A. since limt ! 1 SiðtÞ ¼ Si, i = 1, 2, where equilibrium
ðS1; S2Þ is the solution of system

0 ¼ �ðm1 þ mout
1 ÞS1 þ m2S2 þ min

1 e1;

0 ¼ m1S1 � ðm2 þ mout
2 ÞS2 þ min

2 e2:

�

3. Approximate aggregation of two time scales asymptotically
autonomous systems. Analysis of systems (4) and (6)

The analysis of systems (4) and (6) relies on a reduction
technique whose mathematical justification is addressed in
Appendix A. For the convenience of the reader we present here
a step-by-step description (how-to) of this technique. System (6) is
of the general two time scale systems form

dn

dt
¼ f ðt; nÞ þ esðt; nÞ; (8)

described in the introduction while system (5) is already in the so-
called slow-fast form

dx

dt
¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy

dt
¼ eSðt; x; yÞ:

8><
>: (9)

where variables x and y are known as fast and slow variables,
respectively. Though there is no general rule to transform the
two time scale system (8) into its slow-fast form (9), in concrete
applications it is possible to derive such a change of variables

n 7! (x, y) having in mind that slow variables are invariant
for the fast dynamics. In Section 3.2 we see for system (6) that
the total population size of each species is invariant for the
fast process which is given by the displacements between
chemostats.

Let us describe the reduction procedure.

1 Get the limit system. Functions F, H, S are A.A. and we can calculate
Jðx; yÞ ¼ limt ! 1 Jðt; x; yÞ, for J 2 F; H; Sf g. The limit functions J

describe (roughly) the value of the derivatives of x, y for very
large time values, which tend toward a constant value. With its
help we set up the limit (autonomous) system

dx

dt
¼ Fðx; yÞ þ eHðx; yÞ;

dy

dt
¼ eSðx; yÞ:

8>><
>>: (10)

2 Find the fast equilibria. We consider y as a parameter and look for
the asymptotically stable equilibria of equation

dx

dt
¼ Fðx; yÞ:

First we solve for x*(y) equation

0 ¼ Fðx�ðyÞ; yÞ;

and then we must prove the asymptotic stability of x*(y). In

particular, we can do it by linearization, that is, we check that all

the eigenvalues of the Jacobian matrix

JxFðx�ðyÞ; yÞ

have negative real parts for every y in the corresponding domain.

These equilibria are known as fast equilibria.
3 Build up the aggregated system. Finally, we substitute x by

x*(y) in the second equation of system (10) and change t into
t = et to obtain the aggregated system for the slow (global)
variables

dy

dt
¼ Sðx�ðyÞ; yÞ: (11)

Under certain hypotheses (see Appendix A) the asymptotic behavior of

system (9) (or the equivalent system (8)) can be described by means of

the fast equilibria x*(y) and asymptotically stable solutions of system

(11).
It is interesting to point out that there are as many aggregated

systems as different manifolds x*(y) of fast equilibria (see, for
instance, Auger et al. (2009)).

In the following, we apply this technique to the study of the
models presented in Section 2.

3.1. Analysis of system (4)

We study system (4) by means of the equivalent A.A. system
(5). In order to relate system (5) and the A.A. prototype (9) we can
take as fast variables x = (S2, P1, P2) and as slow variable y = Q and
thus

Fðt; x; yÞ ¼
DðB1ðtÞ � P1 � S2Þ � jS2P2

jðB1ðtÞ � P1ÞP1 � DP1

DP1 þ jS2P2 � DP2

0
B@

1
CA

T

Hðt; x; yÞ ¼ ð0; 0; Y ðP2; QÞÞ and Sðt; x; yÞ ¼ lQ 1 � Q

KðP2Þ

� �
;

M. Marvá et al. / Ecological Complexity 14 (2013) 75–8478
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where T denotes transposition. We now follow the step-by-step
reduction procedure:

1 The corresponding limit system is obtained replacing B1(t) by
limt ! 1 B1ðtÞ ¼ S0, obtaining

dS2

dt
¼ DðS0 � P1 � S2Þ � jS2P2;

dP1

dt
¼ jðS0 � P1ÞP1 � DP1;

dP2

dt
¼ DP1 þ jS2P2 � DP2 � eY ðP2; QÞ;

dQ

dt
¼ elQ 1 � Q

KðP2Þ

� �
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
Thus, Fðx; yÞ, which does not depend on y, is

FðxÞ ¼
DðS0 � P1 � S2Þ � jS2P2

jðS0 � P1ÞP1 � DP1

DP1 þ jS2P2 � DP2

0
B@

1
CA

T

;

Hðx; yÞ ¼ ð0; 0; Y ðP2; QÞÞ and Sðx; yÞ ¼ lQ 1 � Q

KðP2Þ

� �
;

2 To find the fast equilibria we look for the nonnegative asymptotic
stable equilibria of system

dx

dt
¼ FðxÞ: (12)

First we solve 0 ¼ FðxÞ, obtaining

E�1 ¼ ðS0; 0; 0Þ; E�2 ¼
D

j
; 0; S0 �

D

j

� �
;

E�3 ¼ Ŝ
�
2�; S0 �

D

j
; S0 � Ŝ

�
2�

� �
; E�4 ¼ Ŝ

�
2þ; S0 �

D

j
; S0 � Ŝ

�
2þ

� �
;

where

Ŝ
�
2� ¼

jS0 þ D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjS0 þ DÞ2 � 4D2

q
2j

and

Ŝ
�
2þ ¼

jS0 þ D þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjS0 þ DÞ2 � 4D2

q
2j

:

We discard solution E�1 because it does not make sense in system (4)

noticing that P2 = 0 yields K(P2) = 0. On the other hand, if jS0 � D < 0

0 we see that E�2, E�3 and E�4 have some negative components and

thus we can also discard those cases. Finally, if jS0 � D > 0 by

linearization we obtain that the only nonnegative equilibrium

which is asymptotically stable is E�3.
3 In the last step, using x�ðyÞ ¼ E�3, for any y = Q, we get the

corresponding aggregated system, that simply consists of
equation

dQ

dt
¼ lQ 1 � Q

KðS0 � Ŝ
�
2�Þ

  !
(13)

which analysis is straightforward: any solution with positive

initial condition is in the domain of attraction of equilibrium

Q� ¼ KðS0 � Ŝ
�
2�Þ.

Theorem 2 on the asymptotic behavior of system (4), for the case
jS0 � D > 0, is a direct application of Theorem 6 in Appendix A. The
result is expressed in terms of equilibrium E�3 of system (12) (see step
2) and equilibrium Q* of system (13) (see step 3) together with their
domains of attraction. For Q* we already said that it attracts every

solution with Q(0) > 0 and we see in the next lemma, before stating
Theorem 2, a similar result for E�3.

Lemma 1. Let x(t) : = (S2(t), P1(t), P2(t)) be the solution of system (12)
with initial conditions S20 � 0, P10 > 0 y P20 � 0. Then

lim
t ! 1

xðtÞ ¼ E�3

Proof. The equation for P1 in system (12), P01 ¼ jðS0 � P1ÞP1 � DP1,
is scalar autonomous and it is straightforward to prove that for any
initial condition P10 > 0 the corresponding solution P1(t) verifies
limt ! 1 P1ðtÞ ¼ S0 � D=j.

Adding up the equations for S2 and P2 we obtain that

ðS2 þ P2Þ0 ¼ DS0 � DðS2 þ P2Þ:

The explicit solution of this linear equation leads to limt ! 1ðS2ðtÞ þ
P2ðtÞÞ ¼ S0 for any initial conditions, in particular if S20, P20 � 0.

We have, therefore, that solutions of system (12) with the
prescribed initial conditions are attracted to the closed invariant
set

G ¼ ðS2; P1; P2Þ 2 R3
þ : P1 ¼ S0 �

D

j
; S2 þ P2 ¼ S0

� �
:

On G the dynamics of system (12) can be expressed through the
following equation for S2

S02 ¼ D S0 � S0 �
D

j

� �
� S2

� �
� jS2ðS0 � S2Þ

¼ jS2
2 � ðjS0 þ DÞS2 þ

D2

j

A direct analysis of equilibria stability of this scalar autonomous
equation yields that for any initial condition S20 2 [0, S0] the
corresponding solution tends to Ŝ

�
2þ.

We can conclude that the v-limit set on any solution of system
(12) with initial conditions S20 � 0, P10 > 0 y P20 � 0 consist of the
asymptotically stable equilibria E�3, what proves the lemma. &

Theorem 2. Let XeðtÞ :¼ ðSe1ðtÞ; Se2ðtÞ; Pe1ðtÞ; Pe2ðtÞ; Q eðtÞÞ be the solu-

tion of system (4) with e > 0 and initial conditions

ðS10; S20; P10; P20; Q0Þ 2 R5
þ, P10 > 0 and Q0 > 0. If jS0 � D > 0 then,

for any d > 0, there exist ed > 0 and td > 0 such that

XeðtÞ � D

j
; Ŝ
�
2�; S0 �

D

j
; S0 � Ŝ

�
2�; KðS0 � Ŝ

�
2�Þ

� �����
����< d;

for every e � ed and t � td.

To complete the study of system (4) we have the following
result stating that if jS0 � D < 0 then primary producers, P1 and P2,
and consumers, Q(t), tend to disappear from the gradostat.

Theorem 3. Let XeðtÞ :¼ ðSe1ðtÞ; Se2ðtÞ; Pe1ðtÞ; Pe2ðtÞ; Q eðtÞÞ be the solu-

tion of system (4) with initial conditions ðS10; S20; P10; P20; Q0Þ 2 R5
þ. If

jS0 � D < 0 then

lim
t ! 1

XeðtÞ ¼ ðS0; S0; 0; 0; 0Þ:

Proof. We consider all along the proof that ðS1; S2; P1; P2; QÞ 2 R5
þ,

which is a positively invariant set for system (4).
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Let d > 0 be such that

jS0 � D < � d (14)

1 We first prove that limt ! 1 P1ðtÞ ¼ 0 and limt ! 1 S1ðtÞ ¼ S0.

We already showed, after the presentation of system (4), that

lim
t ! 1

S1ðtÞ þ P1ðtÞð Þ ¼ S0 (15)

The equation for P1 is

dP1

dt
¼ jS1P1 � DP1 ¼ ðjðS1 þ P1Þ � DÞP1 � jP2

1

From (14) and (15) we can find t1 > 0 such that for every t � t1 it

is verified that j(S1 + P1) � D � � d and thus we have

dP1

dt
� �dP1

what implies that limt ! 1 P1ðtÞ ¼ 0 and consequently

limt ! 1 S1ðtÞ ¼ S0.
2 Next we prove that for any e > 0 there exists te such that, for

t � te, S2(t) � S0 + e:

dS2

dt
¼ DðS1 � S2Þ � jS2P2 � DðS1 � S2Þ

hence

dS2

dt
þ DS2 � DS1;

d

dt
ðeDtS2Þ � DeDtS1

and integrating on [0, t] yields

S2ðtÞ � e�DtS20 þ e�Dt
Z t

0
DeDsS1ðsÞds:

Using that limt ! 1 S1ðtÞ ¼ S0 it is straightforward that we can

find te verifying the required conditions.
3 The inequality in (ii) allows proving that limt ! 1 P2ðtÞ ¼ 0.

Let e = 1/2d/j and call te = t2

dP2

dt
¼ DP1 þ jS2P2 � DP2 � eY ðP2; QÞ � ðjS2 � DÞP2 þ DP1

� � d
2

P2 þ DP1

that, using the integration procedure shown in (ii) on the interval

[t2, t], yields

P2ðtÞ � e�
d
2ðt�t2ÞP2ðt2Þ þ e�

d
2t
Z t

t2

De
d
2sP1ðsÞds

which together with limt ! 1 P1ðtÞ ¼ 0 gives limt ! 1 P2ðtÞ ¼ 0.
4 We can now prove that limt ! 1 S2ðtÞ ¼ S0.

For that, having in mind (ii), it is enough to show that for any
e > 0 there exists te such that, for t � te, S2(t) � S0 � e. This can
be obtained from limt ! 1 P2ðtÞ ¼ 0 which gives

dS2

dt
¼ DðS1 � S2Þ � jS2P2 � DðS1 � S2Þ � eS2;

for any e > 0 and t big enough, by using a similar integration

procedure to those used in (ii) and (iii) together with the fact that

limt ! 1 S1ðtÞ ¼ S0.
5 Finally we prove that limt ! 1 QðtÞ ¼ 0.

The equation for Q by means of the appropriate unity change
in the time variable can be written in the following form:

dQ

dt
¼ Q 1 � Q

KðP2Þ

� �

As K is a bounded function and dQ/dt < 0 if Q(t) > K(P2(t)) any

solution Q(t) is bounded from above; let BQ be an upper bound of

the solution Q(t). From limt ! 1 P2ðtÞ ¼ 0 and limP2! 0 KðP2Þ ¼ 0

we have that for each e > 0 there exists te > 0 such that

K(P2(t)) < e for every t > te. Thus, for every t > te it holds that

dQ

dt
� BQ 1 � Q

e

� �

and the usual integration procedure in this linear differential

inequality yields that limt ! 1 QðtÞ ¼ 0.
&

Now, we illustrate the previous results with numerical
simulations in Figs. 3 and 4. We display the results obtained
calculating the solutions with the complete system (4) and with
the aggregated system (along with the fast equilibria).

3.2. Analysis of system (6)

We study system (6) by means of the equivalent A.A. system (7),
which is in the form (8).

To apply the reduction procedure to system (7) we first need
to transform it into the slow-fast form (9). For that we must find
the slow variables and here we have two natural candidates:
each species total size, that we denote nj : = n1j + n2j, j = 1, 2.
These quantities keep invariant for the fast dynamic since
d(n1j + n2j)/dt = 0 when e = 0 in system (7), that is, total
species sizes do not vary with individual movements between
vessels.

The next change of variables

ðn11; n21; n12; n22Þ 7! ðn11; n12; n1; n2Þ;

Fig. 3. Concentration of primary producers in chemostat 1 (left) and 2 (right) calculated with the complete system. The asymptotic values rapidly approach the equilibrium

values given by the fast equilibria. We have considered U(P2, Q) = hP2Q and K(P2) = KP2. Parameter values: e = 0.01, h = 0.8, K = 1.5, l = 5, D = 2, j = 2.5, I = 2.
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leads to the following equivalent system in slow-fast form, where
n11 and n12 are the fast variables and n1 and n2 the slow ones.

dn11

dt
¼ �dm1n11 þ dm2ðn1 � n11Þ þ el1ðS1ðtÞÞn11 1 � n11 þ a1ðS1ðtÞÞn12

K1ðS1ðtÞÞ

� �
;

dn12

dt
¼ �dm1n12 þ dm2ðn2 � n12Þ þ el1ðS1ðtÞÞn12 1 � n12 þ a2ðS1ðtÞÞn11

K2ðS1ðtÞÞ

� �
;

dn1

dt
¼ el1ðS1ðtÞÞn11 1 � n11 þ a1ðS1ðtÞÞn12

K1ðS1ðtÞÞ

� �
þ el1ðS2ðtÞÞðn1 � n11Þ 1 � ðn1 � n11Þ þ a1ðS2ðtÞÞðn2 � n12Þ

K1ðS2ðtÞÞ

� �
;

dn2

dt
¼ el2ðS1ðtÞÞn12 1 � n12 þ a2ðS1ðtÞÞn11

K2ðS1ðtÞÞ

� �
þ el2ðS2ðtÞÞðn2 � n12Þ 1 � ðn2 � n12Þ þ a2ðS2ðtÞÞðn1 � n11Þ

K2ðS2ðtÞÞ

� �
;

8>>>>>>>>>>><
>>>>>>>>>>>:

(16)

We can now follow the step-by-step reduction procedure as we did
in Section (3.1):

1 The limit system is got replacing Si by its limit Si, i = 1, 2 in system
(16).

2 The only fast equilibrium, for every constant value of the slow
variables n1 and n2, is the solution of system

0 ¼ �dm1n11 þ dm2ðn1 � n11Þ;
0 ¼ �dm1n12 þ dm2ðn2 � n12Þ;

�

that is,

n�1i ¼ m�1ni; i ¼ 1; 2; where m�1 ¼
m2

m1 þ m2

which describe the asymptotic distribution of individuals of

species i in the first chemostat. It is straightforward to check that,

for constant n1 and n2, ðn�11; n�12Þ is a globally asymptotically

stable equilibrium of system

dn11

dt
¼ �dm1n11 þ dm2ðn1 � n11Þ;

dn12

dt
¼ �dm1n12 þ dm2ðn2 � n12Þ

3 Finally, we replace in the slow variables equations the fast
variables by the fast equilibria and change time variable to t = et,
getting the aggregated system which, rearranging terms, reads as
follows:

dn1

dt
¼ l1n1 1 � n1 � a12n2

K1

� �
;

dn2

dt
¼ l2n2 1 � n2 � a21n1

K2

� �
;

8>>>><
>>>>:

(17)

where we call m�2 ¼ 1 � m�1 and for i = 1, 2

li ¼ m�1liðS1Þ þ m�2liðS2Þ;

1

Ki

¼ 1

li

ðm�1Þ
2liðS1Þ

KiðS1Þ
þ ðm

�
2Þ

2liðS2Þ
KiðS2Þ

  !
;

bi ¼
1

li

ðm�1Þ
2liðS1ÞaiðS1Þ
KiðS1Þ

þ ðm
�
2Þ

2liðS2ÞaiðS2Þ
KiðS2Þ

  !
;

a12 ¼ b1K1 and a21 ¼ b2K2:

The reduced system (17) is the classical Lotka–Volterra competition
model and its analysis can be found, for instance, in Murray (1993). It
is important to note that the parameters of the aggregated system
depend on both displacement rates and the limit values of Si(t), i = 1,
2. Thus, we have incorporated the effect of fast dynamics to the slow
process, which entails the dimension reduction.

The following conclusions on the asymptotic behaviour of
solutions of system (6) are a direct consequence of the known
results of classical system (17) and Theorem 6 in Appendix A.

Theorem 4. Let XeðtÞ :¼ ðSe1ðtÞ; Se2ðtÞ; ne11ðtÞ; ne12ðtÞ; ne12ðtÞ; ne22ðtÞÞ be

any solution of system (6) with initial conditions in R6
þ. Then,

1 If a12K2 < K1 and a21K1 < K2 there is coexistence, that is, for any

d > 0, there exist ed > 0 and td > 0 such that, for every e � ed and

t � td,

jXeðtÞ � L�j < d;

where L� ¼ ðS1; S2; m�1n�1; m�1n�1; m�1n�2; m�2n�2Þ and ðn�1; n�2Þ is the

positive equilibrium of system (17).
2 If a12K2 < K1 and a21K1 > K2 then species 1 excludes species 2, that

is, for any d > 0, there exist ed > 0 and td > 0 such that, for every

e � ed and t � td,

jXeðtÞ � L�j < d;

where L� ¼ ðS1; S2; m�1K1; m�2K1; 0; 0Þ. Reversing the first inequal-

ities it is expressed analogously that species 2 excludes species 1.

3 If a12K2 > K1 and a21K1 > K2 then there is exclusion of one or the

other species depending on the initial conditions, that is, for any

d > 0, there exist ed > 0 and td > 0 such that, for every e � ed and

t � td,

jXeðtÞ � L�j < d;

where L� ¼ ðS1; S2; m�1K1; m�2K1; 0; 0Þ (resp. L� ¼ ðS1; S2; 0; 0;

m�1K2; m�2K2Þ), if (n11(0) + n21(0), n12(0) + n22(0)) is in the domain

of attraction of equilibrium ðK1; 0Þ of system (17) (resp. in the

domain of attraction of ð0; K2Þ).

Fig. 4. Comparison between the concentration of consumers calculated with the

complete system (blue) and the aggregated system (green). We have considered

U(P2, Q) = hP2Q and K(P2) = KP2. Parameter values: e = 0.01, h = 0.8, K = 1.5, l = 5,

D = 2, j = 2.5, I = 2. Note that the limit value of Q(t) is not K but K � P�2. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)
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4. Discussion and perspectives

The present work proposes a reduction method for asymptoti-
cally autonomous systems with two time scales. These systems
represent an important class of population models where two
families of processes act at different time scales and the terms
describing the environment variability tend to reach steady values.
The general form of the systems considered here is

dn

dt
¼ f ðt; nÞ þ esðt; nÞ:

The processes represented by f(t, n) are much faster than those
represented by s(t, n). The ratio between the orders of magnitude
of the fast and the slow process rates is marked by the presence of
the multiplicative constant e. A crucial assumption is that the
system can be transformed, by means of an appropriate change of
variables n 7! (x, y), into the slow-fast form:

dx

dt
¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy

dt
¼ eSðt; x; yÞ:

8><
>:
In the above system, we are implicitly assuming that the fast
process, now represented by F(t, x, y), is conservative for the slow

variables y. The next step in the reduction procedure consists in
considering alone the dynamics associated to the fast process. In
other words, we first consider the situation where e = 0. Two
additional assumptions are taken into account, the system is A.A.
and the limit system associated to the fast process, dx=dt ¼ Fðx; yÞ,
possesses hyperbolically asymptotically stable equilibria, x*(y), for
each fixed value of the slow variables y. Roughly speaking, we are
considering those events occurring at the fastest scale as being
instantaneous with respect to the slower ones. Thus, substituting
equilibria x*(y) into the equation for y we obtain the reduced,
aggregated, system

dy

dt
¼ Sðx�ðyÞ; yÞ

where the effect of the fast dynamics is summarized by the
parameters included in the expressions of the fast equilibria.

The study of the asymptotic behavior of the reduced system
together with the fast equilibria allows to know the asymptotic
behavior of the original system. The precise assumptions to be met,
in order to ensure that the whole procedure is justified, are
collected in Theorem 6. This theorem follows directly from the
results provided in Hoppensteadt (1966, 1993, 2010).

The presented reduction method justify on theoretical grounds
what is an implicit common practice: decoupling processes that
act at different time scales which are certainly coupled. To
illustrate the method, two different applications have been
developed. The first one is described by system (4). In a two
vessels gradostat, the dynamics of a nutrient and a primary
producer (PP) are considered. This nutrient–PP system is coupled
to a population consumer in the second vessel, feeding on the
primary producer. Furthermore, we assume that demographic
processes associated to the consumer are slow with respect to
those associated to the nutrient and the PP. System (4) is
autonomous, but solving it for a new variable turn it into an
A.A. system. The equation for the consumer population reflects the
fact that its resource availability is changing with time depending
on primary producers concentration. The result of the reduction
method shows us that the consumers dynamics can be approximat-
ed by a simpler model, where resource availability is taken to be
constant.

This simplification can be very useful in many other
situations. For instance, for some species, the amount of
available resources has a continuous effect on fecundity while,
for other species, there is a threshold effect because individuals
must accumulate a given amount of resource before reproduc-
tion. In Dubreuil et al. (2006) for instance, a hawk–dove model
with demography involving two time scales is analyzed, by
taking into account these continuous/threshold effects. The
authors consider a constant amount of resource. The application
of the reduction method would permit, with the same effort, to
study the influence of a variable resource provided that it tends
to a constant value.

Another interesting application has to do with A.A. epidemic
models, which importance is revealed in Castillo-Chávez and
Thieme (1994). Autonomous ecoepidemic models with two time
scales have been introduced in Auger et al. (2009). A predator–prey
slow dynamics coupled to a fast epidemic process was analyzed.
The same type of community model with an A.A. epidemic process
would be susceptible of being studied with the help of the
reduction technique.

The second application is presented in system (6). In a gradostat
with two vessels, we consider two competing species for which all
demographic parameters are affected by the concentration of a
pollutant. The transference of the pollutant and the movements
between vessels of individuals of both species are considered faster
than demographic changes. This is also a schematic setting of many
other situations; the pollutant can be interpreted more generally
as a control factor. Solving system (6) with respect to the pollutant
concentrations variables leads to an A.A. system, to which the
reduction method applies. In order to bring the system into the
slow-fast form, we use the global abundances of competing species
as slow variables. The aggregated system turns out to be a classical
Lotka–Volterra competition model. Theorem 6 allows to export the
different outputs of a classical competition model to the model in
(6) via the fast equilibria, which fix long term individual
distributions between vessels together with asymptotic pollutant
concentrations.

In this work, we have only dealt with two time scale systems,
for which both the fast and the slow processes are assumed to be
A.A. In Marvá et al. (2012a,b,c) the authors addressed the
approximate aggregation of slowly varying periodic systems with
two time scales. A procedure analogous to the one presented above
was developed for systems in which the fast and the slow
processes are periodic with a common period. This period was of
the order of magnitude as the slow time scale. We point out that
there is no more difficulty in applying approximate aggregation
techniques to models with two time scales and combining both
A.A. terms with slowly varying periodic terms.
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Appendix A. Asymptotically autonomous systems and
quasistatic-state approximation for nonlinear initial-value
problems

This section is devoted to the mathematical justification of the
approximate reduction technique presented in Section 3, which is
then applied to analyze different population models.

We first introduce precise definitions of elements related to the
asymptotically autonomous concept.
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Definition. A continuous function A : (t0, 1) � D ! D with
ðt0; 1Þ � D 	 R � RN , is said to be asymptotically autonomous, if
there exists a continuous function A : D ! D such that the limit

lim
t ! 1

Aðt; zÞ ¼ AðzÞ (A.1)

exists and it is locally uniform, that is, uniform on compact sets of
D. If function A is asymptotically autonomous then the nonauton-
omous system of ordinary differential equations

z0 ¼ Aðt; zÞ

is also said to be asymptotically autonomous, being its associated
limit system the autonomous system

z0 ¼ AðzÞ:

The reduction technique presented in Section 3 relies on the
results on quasistatic-state approximation for nonlinear initial-
value problems, due to Hoppensteadt (1966, 1993, 2010).
Hoppensteadt’s results are dimension reduction results that allow
us to extend approximate aggregation methods for autonomous
two time scale systems (Auger et al., 2008, 2012) to nonautono-
mous ones.

Approximate aggregation methods for two time scale autono-
mous ode systems take the general form

dz

dt
¼ vðzÞ þ ewðzÞ; (A.2)

where v; w : R p! R p are smooth functions representing the fast

and slow processes, z 2 R p is the state variables vector and e is the
positive constant close to zero accounting for the ratio between
time scales. The nonautonomous version of system (A.2) is

dz

dt
¼ vðt; zÞ þ ewðt; zÞ; (A.3)

We assume that system (A.3) can be written in the slow-fast form

dx

dt
¼ Fðt; x; yÞ þ eHðt; x; yÞ;

dy

dt
¼ eSðt; x; yÞ:

8><
>: (A.4)

where x and y represent the fast and the slow variables,
respectively. There is no general rule describing the transforma-
tion n 7! (x, y). The construction of general algorithms performing
it still remains an unsolved problem. Fortunately, in some
applications, the context gives a natural way to define the also
called global variables y and, thus, to express system (A.3) in slow-
fast form.

Introducing variable t = et, related to the slow time unit, and
calling

f ðt; x; y; eÞ ¼ F
t

e; x; y

� �
þ eH

t

e; x; y

� �

gðt; x; y; eÞ ¼ S
t

e; x; y

� � (A.5)

we transform system (A.4) into the following one which reduction
is treated in Hoppensteadt (1966, 1993, 2010)

e dx

dt
¼ f ðt; x; y; eÞ; xðt0Þ ¼ j0

dy

dt
¼ gðt; x; y; eÞ; yðt0Þ ¼ h0

8><
>: (A.6)

with x 2 Rn, y 2 Rm and e is a small positive parameter. We define
the domain V̂ ¼ V � ½0; e0
 where V ¼ I � BR � BR0 ,
I = {t : t0 � t � T � 1 }, BR ¼ fx 2 Rn : jxj � Rg and BR0 ¼ fy 2 Rm :

jyj � R0g, T and e0 being positive constants. In what follows, the
balls BR and BR0 can be replaced by any sets that are diffeomorphic
to them.

Hoppensteadt’s results need the following hypotheses to hold:

Hypothesis H1. Functions f and g are C2ðVÞ and any solution of the
system (A.6) beginning in BR � BR0 remains there for t0 � t � T.

Setting e = 0 in (A.6) we obtain the reduced problem:

0 ¼ f ðt; x; y; 0Þ
dy

dt
¼ gðt; x; y; 0Þ; yðt0Þ ¼ h0

8<
: (A.7)

Hypothesis H2. There is a function x = F(t, y) such that f(t, F(t, y),
y, 0) = 0 for ðt; yÞ 2 I � BR0 . Moreover F 2 C2ðI � BR0 Þ and det(fx(t, F(t,
y), y, 0)) 6¼ 0 for ðt; yÞ 2 I � BR0 .

Hypothesis H3. The system of equations

dX

dt
¼ f ða; X; b; 0Þ (A.8)

has X = F(a, b) as an equilibrium for each ða; bÞ 2 I � BR0 that is
asymptotically stable uniformly in the parameters ða; bÞ 2 I � BR0 ,
and the initial condition j0 is in the domain of attraction of the
equilibrium F(t0, h0) for system (A.8) with a = t0 and b = h0.

Hypothesis H4. The system of equations

dy0

dt
¼ gðt; Fðt; y0Þ; y0; 0Þ (A.9)

has a solution for t0� t < 1, say y*(t), that it is uniformly
asymptotically stable and h0 is in the domain of attraction of y*(t).

If those hypotheses are met the following theorem applies.

Theorem 5. Let Hypotheses H1–H4 be satisfied and let y0(t) be the

solution of (A.9) for y0(t0) = h0. Then, for sufficiently small values of e
the solution of problem (A.6), (x(t), y(t)), exists for t0� t < 1 and it

satisfies

xðtÞ ¼ Fðt; y0ðtÞÞ þ oð1Þ; yðtÞ ¼ y0ðtÞ þ oð1Þ

as e ! 0+ uniformly on any interval of the form t0< t1 � t < 1.

Proof. The interested reader can find a sketch of the proof in
Hoppensteadt (2010) and the complete proof in Hoppensteadt
(1966). &

It is clear from (A.5) that the assumption of functions F, H, S

being A.A. is crucial for the existence of the corresponding reduced
system (A.6). The following theorem gives an easy to apply version
of Theorem 5 for asymptotically autonomous systems of the form
of system (A.4).

Theorem 6. Let us consider system (A.4) where functions F, H, S are

asymptotically autonomous on V = [t0, 1) � Vm, where

Vm ¼ KR � KR0 , KR ¼ fx 2 Rm�k
þ : jxj � Rg and KR0 ¼ fy 2 Rk

þ :

jyj � R0g; F; H; S being their corresponding asymptotic limit functions.

Let us assume:

1 F, H, S 2 C2ðVÞ, F, H, S 2 C2ðVmÞ and any solution of system (A.4)
beginning in KR � KR0 remains there for t 2 [t0, 1).

2 There is a function x ¼ FðyÞ 2 C2ðKR0 Þ such that for any y 2 KR0 the

following hold:

(a) FðFðyÞ; yÞ ¼ 0.
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(b) The real part of the eigenvalues of JxFðFðyÞ; yÞ is negative for all

y 2 KR0 .

3 The system of equations, the so-called aggregated system,

dy

dt
¼ SðFðyÞ; yÞ (A.10)

has an asymptotically stable solution y*(t).

Let (x
e
(t), y

e
(t)), t = et, be the solution of system (A.4) for (x

e
(t0),

y
e
(t0)) = (x0, y0), with x0 and y0 in the domains of attraction, respectively,

of the equilibrium F(y0) of system dx=dt ¼ Fðx; y0Þ and of y*(t). Then, for

any d > 0, there exist ed > 0 and td > t0 such that

jðxeðtÞ; yeðtÞÞ � ðFðy�ðtÞÞ; y�ðtÞÞj < d;

for every e � ed and every t � td.

Proof. We recall that for autonomous systems asymptotic stabili-
ty is equivalent to uniform asymptotic stability in the sense of
Hoppensteadt (see Hahn, 1967). On the other hand, conditions 1–3
in the theorem imply Hypotheses H1–H4. So, the proof is a direct
consequence of Theorem 5. &
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Lischke, H., Löffler, T.J., Thornton, P.E., Zimmermann, N.E., 2007. Model up-scaling in
landscape research. In: Kienast, F., Wildi, O., Ghosh, S. (Eds.), A Changing
World. Challenges for Landscape Research, vol. 8. Springer Landscape Series,
Dordrech, pp. 249–272.

Loreau, M., 1998]. Biodiversity and ecosystem functioning: a mechanistic model.
Proceedings of the National Academy of Sciences of the United States of America
95, 5632–5636.

Loreau, M., 2010]. From populations to ecosystems. Theoretical foundations for a
new ecological synthesis. In: Levin, S.A., Horn, H.S. (Eds.), Monographs in
Population Biology, No. 46. Princeton University Press, Princeton, NJ.

Markus, L., 1956]. Asymptotically autonomous differential systems. Contributions
to the theory of nonlinear oscillations III. In: Lefschetz, S. (Ed.), Annals of
Mathematics Studies, vol. 36. Princeton University Press, Princeton, pp. 17–29.
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