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a b s t r a c t

We present a spatial host–parasitoid model where individuals move on a square lattice

of patches. Local interactions between hosts and parasitoids within patches are described

by the Nicholson–Bailey model. Dispersal between patches is represented by a series of

movement events from a patch to neighbouring patches. We study the effect of the number

of movement events on the stability of the host–parasitoid system. The aim of this work is to

determine conditions on this number for using a reduced model (called aggregated model) to

predict the total host and parasitoid population dynamics. When the number of movement

events is small, the system is usually persistent and spatial patterns are observed, such as

spiral waves or chaotic dynamics. We show that when this number is larger than a critical
value, spatial homogeneity is observed after some transient dynamics and the system does

not persist; in that case the reduced model can be used. Our results show that the critical

and that the reduced model can be used in realistic situations.

favourable habitat (Bell, 1990). This situation is likely to occur
value is relatively small

1. Introduction

A classical model describing host–parasitoid interactions
is the Nicholson–Bailey model. This model predicts non-
persistence of the community. However, early spatial mod-
els have demonstrated that the system can become persis-
tent when individuals perform movements to neighbouring
patches on a square lattice (Hassell et al., 1991). Spatial mod-
els extend possibilities of population dynamics models to the
study of spatial structures, exhibiting singular spatial pat-
terns. Spatial host–parasitoid dynamics models usually com-
bine two sub-models, one describing local host–parasitoid

interactions on each patch and the other describing dispersal
among patches (see the review by Briggs and Hoopes, 2004). In
an earlier work, Hassell et al. (1991) considered spatial environ-
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ment as a two-dimensional network of patches connected by
migration. Their model, and related models (e.g., Rohani and
Miramontes, 1995), were mostly developed to study the persis-
tence of the host–parasitoid system and the spatial structures
that may emerge such as spiral waves, spatial chaos or crys-
tal structures. In these spatial models, dispersal and local
interactions are performed once per generation. The dispersal
process consists of movements from one patch to neighbour-
ing patches, or of one global event of dispersal (Travis and
French, 2000). However, hosts and parasitoids can visit sev-
eral patches in there lifetime in order to choose the most
for most host–parasitoid associations involving winged adults
like wasps, butterflies, flies or midges (Godfray, 1994; Hochberg
and Ives, 2000). To take this into account, multiple events of

mailto:tnguyenh@ens-lyon.fr
dx.doi.org/10.1016/j.ecolmodel.2006.03.035


g 1 9

m
u
a

o
h
c
m
b
t
m
w
s
d
a

o
f
1
l
p
g
f
t
f
T
e
m
p
o
h
b
t
c

p
w
m
c
c
t
t

F
g
p

e c o l o g i c a l m o d e l l i n

igration per generation should be considered, giving individ-
als the opportunity to disperse in a relatively small domain
round the patch in which they emerged.

In a recent work, Lett et al. (2003) studied the effects
f repeated dispersal events on the global dynamics of a
ost–parasitoid system (see also Bernstein et al., 1999). They
onsidered a system consisting of two patches connected by
igration. Local host–parasitoid interactions were described

y the Nicholson–Bailey model, and dispersion corresponded
o a migration between patches with a constant proportion of

igrants. Migration events could be repeated several times,
hile local interactions only occur once per generation. Con-

idering several migration events implies the existence of two
ifferent time scales: there is a slow dynamics, the local inter-
ctions, and a fast one, the dispersal.

The existence of two time scales allows using aggregation
f variables methods to describe global population dynamics,
or continuous or discrete time models (Auger and Roussarie,
994; Auger and Poggiale, 1998; Arino et al., 1999; Bravo de
a Parra et al., 1999; Auger and Bravo de la Parra, 2000). It is
ossible to build a reduced model (referred to as the aggre-
ated model) of the original model (the complete model), with
ewer global variables. The aggregated model is obtained from
he complete model by making the approximation that the
ast dynamics tends to a stable attractor, like an equilibrium.
he validity of the aggregated model depends on the differ-
nce between time scales. In Lett et al., it appeared that for
ore than five events of migration, the solutions of the com-

lete and the aggregated models were very close in the case
f a stable fixed point or for a cyclic attractor. Lett et al. (2005),
ave considered a linear network of spatial patches connected
y frequent migration events. Their results have shown that
he aggregated model could be used to predict stability of the
omplete system.

The aim of the present work is to reconsider host–
arasitoid spatial interactions on a square grid of patches
hen individuals perform the same proportion and number of
ovement events for hosts and parasitoids. We use the classi-
al Nicholson–Bailey model to describe local interactions and
onstant migrant proportions from patch to patch. We study
he influence of the number of movement events on the persis-
ence of the host–parasitoid community. Our key objective is to

ig. 1 – (a) Time series of a Nicholson–Bailey host–parasitoid sys
et extinct after 21 generations and the host population grows u
revious system.
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determine the number of movement events needed to approx-
imate the dynamics of the complete model by the dynamics
of the aggregated model.

2. Presentation and reduction of the model

2.1. The classical Nicholson–Bailey model

We first briefly recall the Nicholson–Bailey host–parasitoid
model. In a homogenous environment, the host–parasitoid
association dynamics is described by a system of two
equations:

nt+1 = �nt e−apt , pt+1 = cnt(1 − e−apt ) (1)

where nt and pt are the host and parasitoid densities, respec-
tively, at time step t. Parameter � > 1 corresponds to the
host growth rate, a the parasitoid searching efficiency, and c
the number of parasitoids emerging from one infected host.
The dynamics of this system is well known. There exists a
unique positive equilibrium given by: N* = (� ln(�))/(ac(� − 1))
and P* = ln(�)/a, which is unstable for any set of parameters.
Numerical simulations of host and parasitoid dynamics show
growing oscillations (Nicholson and Bailey, 1935) driving one
or both populations very close to zero. Below some critical
density values the populations can be considered as extinct
(see Fig. 1) and therefore, the Nicholson–Bailey model predicts
non-persistence of the host–parasitoid community.

2.2. The complete spatial model

In an environment consisting of a square lattice with A × A
patches, we consider a spatial model derived from the
Nicholson–Bailey model. The dynamics involves two phases:
the first one corresponds to local host–parasitoid interactions.
On every patch, local dynamics are ruled by the same set of
equations than for the classical Nicholson–Bailey model (1).
The second phase corresponds to dispersal. In one move-
ment event, a constant proportion �n and �p of hosts and
parasitoids leave their patch for one of the eight neighbour-
ing patches. The following equations describe the dispersal

tem with parameters � = 2, a = 0.068, c = 0.4. The parasitoids
nboundedly. (b) Phase portrait corresponding to the
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process on one patch for one movement event:

nt+1 = (1 − �n)nt + �n

8

∑
neighbours

nt,

pt+1 = (1 − �p)pt + �p

8

∑
neighbours

pt (2)

We use reflexive boundaries where individuals going out of
the lattice return to the place they come from.

For each generation, movement events can be repeated k
times, allowing individuals to reach farther patches and to
cover a larger area with radius k.

At each generation, we consider the 2A2-dimension vec-
tor Vt which A2 first elements (resp. last elements) correspond
to the host (resp. parasitoids) densities on every patch. Local
dynamics can be represented by a function F, which incorpo-
rates the two equations of (1) for each patch. One movement
event over all patches can be described by a non-negative
matrix M, corresponding to Eq. (2). The complete model can
finally be written

Vt+1 = F(MkVt) (3)

In the particular case k = 1 this model is the same as the one
used by Hassell et al. (1991).

The dispersal sub-model is deterministic, but describes
underlying non-deterministic dynamics (random dispersal).
Since Nicholson–Bailey model is also deterministic, so is the
global model.

2.3. The aggregated model

When the number of movement events k per generation
becomes large, the dispersal process is fast in comparison to
local interactions, and then we can use aggregation methods:
we build a reduced model that governs total host and para-
sitoid population densities over the grid. To build this model,
we proceed in two steps: first we neglect the slow process (local
interactions) and study the fast one (dispersal) only. This fast
process has a stable positive equilibrium, called the fast equi-
librium, which corresponds to uniform host and parasitoid
density distributions among patches, with the same propor-
tion 1/A2 of individuals on each patch (for further details about
aggregation we refer to Lett et al., 2003 in the case of a two
patch system and also to Lett et al., submitted, for a linear
chain of patches).

On the second step we assume that at each generation t
the fast equilibrium is reached, and substitute in every patch
the values of host and parasitoid densities at the fast equilib-
rium. By adding the number of individuals over all patches, we
obtain a reduced model (4) governing the total host and para-
sitoid densities at time step t, given by Nt and Pt, respectively

Nt+1 = �Nt e−a(Pt/A2), Pt+1 = cNt(1 − e−a(Pt/A2)) (4)
The aggregated model is the same as the Nicholson–Bailey
model, but governing the total densities and with a global
searching efficiency parameter a/A2. Therefore, the dynam-
ics of the aggregated model predicts growing oscillations of
1 9 7 ( 2 0 0 6 ) 290–295

the total host and parasitoid densities and a non-persistent
host–parasitoid association. In the next sections, we are going
to look for the conditions which allow using the aggregated
model to describe the dynamics of the complete system.

3. Results

The complete model has been previously studied by Hassell
et al. (1991) under the hypothesis of one movement event
per generation (k = 1). They show that considering the
host–parasitoid association within a spatial context can lead
to a persistent system. Above a certain size of lattices (15 × 15
patches for �n = 1), the global dynamics of the system is sta-
ble, in the sense that host and parasitoid total densities stay
bounded, with both populations persisting. Additionally, dif-
ferent spatial structures may appear, like spiral waves, crystal
lattices and spatial chaos, depending on the values of �n and
�p, ranging from 0 to 1 (see Hassell et al., 1991; Comins et al.,
1992; Rohani and Miramontes, 1995). We now study the effect
of increasing the number of movement events k on the global
dynamics of hosts and parasitoids, and compare the complete
model and aggregated model dynamics. In the following sim-
ulations, we always use the same set of parameters, a = 0.2,
� = 2, c = 0.4 and a constant proportion of migrants �n = �p = 1
(henceforth called the default set of parameters), to make the
comparison of the different results easier. We have used other
sets of parameters (results not shown) leading to the same
qualitative results and conclusions. In the discussion, we show
the effects on the results of changes in the proportions of
migrants �n and �p.

4. Effect of migration frequency on spatial
dynamics of the complete model

For the complete model, we observe the spatial patterns
obtained in the simulations for different values of k. Simu-
lations start with one patch containing 20 hosts and 20 par-
asitoids. For k = 1, spatial patterns eventually appear after a
transient dynamics, like in Hassell et al. (1991). Since the
model is deterministic, those spatial patterns only depend on
the parameters of the model and initial distribution of hosts
and parasitoids. Influence of the initial distribution will be dis-
cussed later.

For increasing values of k, we observe that the size of spa-
tial patterns grows (Fig. 2). For k = 1, we observe several small
spiral waves while for k = 2 and 4, there are, respectively 3 and
1 bigger spiral waves. Increasing parameter k acts like a zoom
effect. For even higher value of k, spiral waves become too
large to fit in the grid and the persistence of both populations
cannot be obtained.

5. Comparison of the complete and
aggregated models
5.1. Influence of migration frequency

The aggregated model is a classical Nicholson–Bailey model
(4), predicting growing oscillations of host and parasitoid total
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Fig. 2 – Spatial patterns of host density obtained with the Nicholson–Bailey model spatialized on a 50 × 50 patches lattice,
using the default set of parameters a = 0.2, � = 2, c = 0.4 and �n = �p = 1, for an increasing number of movement events k per
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tested various types of initial conditions: a pack of individuals
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5

eneration. High density corresponds to dark colour.

ensities and non-persistence of the association. In the com-
lete model, the number of movement events k influences the
ispersal speed and has a big influence on the persistence of
he populations. The time evolution of host and parasitoid
ensities is represented in Fig. 3 for a low (1, Fig. 3a) and a
igh (4, Fig. 3b) value of k, starting from the same initial con-
ition (one patch with 20 hosts and 20 parasitoids). For the

ow value of k, spatial structures come along with persistence,
oth population densities becoming quasi-periodic after a
ransient period. In that case, the complete system is per-
istent while the aggregated model predicts non-persistence.
hus, for low k values, the aggregated model is not useful

o predict the dynamics of the complete model. For the high
alue of k, total densities of hosts and parasitoids present
nboundedly growing oscillations. After some generations, we
bserve that the system is not persistent. In this case, the

omplete model and the aggregated one are in good agree-
ent as both lead to unbounded density oscillations and

on-persistence.

ig. 3 – Time evolution of host and parasitoids densities for k = 1
0 × 50 patches lattice.
5.2. Dependence on initial condition

Two simulations running with the same set of parameters
but with two different initial conditions may lead to differ-
ent results. When starting with barely uniform densities, the
system is more likely to show unbounded oscillations than
with an initial condition with singularities, where persistence
is easier to obtain. For example, Fig. 3a shows the dynamics
obtained with initially one patch containing 20 hosts and 20
parasitoids. In that case, both populations persisted. With a
more uniform initial condition (e.g., 15 ± 5 hosts and para-
sitoids on every patch), we usually observed unbounded oscil-
lations.

For every initial condition, there exists a value of k under
which the system is persistent, and above which it is not. We
randomly distributed at the centre of the grid, one patch con-
taining individuals and spiral waves. The initial condition that
appeared to be the most “stabilizing” was the last one as larger

(a), and k = 4 (b), with the default set of parameters and a
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Table 1 – Value of the threshold k̃ for different sizes of
the lattice, using the default set of parameters

A k̃

30 3

50 5

100 11

values of k were required to get unbounded oscillations. Such
a condition is obtained by running simulations using a low
value of k, not leading to extinction. For example, for a 50 × 50
lattice, we run a simulation for k = 1, with an initial condition
consisting of 20 hosts and 20 parasitoids on one patch, like
in Fig. 3a. After the transient dynamics, we store the density
distribution (the spiral wave) and use it as initial condition for
other simulations.

6. Migration frequency threshold

As we noticed that for any initial spatial distribution there
exists a value of k above which the system is unstable, we tried
to determine a global threshold value k̃ above which, for any
initial condition, the system would exhibit unbounded oscil-
lations. In our simulations, it is for the initial condition with
spiral waves that we need the highest value of k for the system
to be unstable. For this reason, the value of the global thresh-
old k̃ was chosen as the critical value of k for this specific type
of initial conditions. Under this critical value, there were some
cases where spatial structures maintained and both popula-
tions persisted. Above this value, the complete model behaved
like the aggregated one, for any initial condition, as far as we
could test. To compute the threshold k̃, we run simulations for
different values of k over a large number of time steps (10,000
steps) with the spiral wave initial condition. For a given value
of k, if one population goes extinct within this period, we con-
sider that k is over or equal to k̃. If both populations maintain
after 10,000 steps, we assume that we are in the situation of a
persistent system and consider that k̃ is larger than k. Table 1
shows the threshold value obtained for different sizes of the
lattice, using the default set of parameters.

7. Effect of the proportion of migrants
The number of movement events k is not the only param-
eter that influences dispersal. The proportion of migrants �

is also a major parameter for dispersal. We expect that both
parameters are important and must be taken into account to

Table 2 – Second row: critical value k̃ above which the system i
a = 0.2, � = 2, c = 0.4 and for a 50 × 50 grid

� 0.1 0.2 0.3 0.4 0.5
k̃ 44 15 15 12 9

�̃k 4.4 3 4.5 4.8 4.5

Third row: corresponding values of the product �̃k.
1 9 7 ( 2 0 0 6 ) 290–295

characterize the dispersal process. The product �k is there-
fore expected to be a good global indicator of dispersal and
there should be a threshold value for this product above which
the host–parasitoid association is not persistent. In the results
shown previously, we considered a proportion of migrants
equal to 1. We now try other values of � = �n = �p ranging from
0 to 1, keeping the same values for the other parameters a = 0.2,
� = 2, c = 0.4, and for a 50 × 50 patches lattice. Both critical value
k̃ and the corresponding product �̃k are represented in Table 2.

According to Table 2, for each value of � there exists a
threshold value k̃ above which the complete model behaves
like the aggregated one. For � > 0.3, the corresponding prod-
uct �̃k is approximately constant in the range [4.5,5]. � and
k have a similar effect on the dynamics. At constant k, an
increase of � corresponds to a larger proportion of migrants
to the neighbouring patches. At constant �, an increase of k
permits dispersal to farther patches. Therefore, an increase of
k or � favours individual dispersal.

The value of the product �̃k allows making suitable pre-
dictions about the persistence of the system with a threshold
value of about 5 for a 50 × 50 grid. It must be noted that this
threshold is rather realistic. Indeed if � = 1, the threshold value
is obtained when k = 5, which corresponds to a dispersal from
the departure patch in a disk of radius 5 which has to be com-
pared to the size of the grid equal to 50.

8. Discussion and conclusion

The fact that for high values of migration frequency k the
complete model behaves like the aggregated one is intuitive,
because repeated movements tend to reduce the spatial vari-
ability among patches of the lattice. When k increases, popu-
lation densities get more uniform, and for high enough values
of k spatial structures eventually disappear. When the popu-
lation densities are spatially uniform, we can use the aggre-
gated model given by Eq. (4) which is defined according to this
assumption.

What is more unexpected is that our numerical simula-
tions have shown that the value of the threshold k̃ (or �̃k)
above which the aggregated model is a valid approximation
of the complete one is relatively small compared to the grid
size (about 10% of it). This means that species do not have
to move very fast for the aggregated model to be valid. For
many species, flying species in particular, one can expect that

migrant individuals cannot only reach the nearest patches but
also farther ones. Therefore, our results show that it is often
possible to use the aggregated model to make suitable predic-
tions about the asymptotic behaviour of the complete spatial

s not persistent, for different values of �, for parameters

0.6 0.7 0.8 0.9 1
8 7 6 5 5

4.8 4.9 4.8 4.5 5
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ost–parasitoid system. We also considered other values for
he parameters a, � and c than the ones used above, leading to
he same qualitative results. The critical value of k̃ obtained
as found to be relatively independent of the specific values
f these parameters.

As a consequence, our work has shown that aggrega-
ion methods can be used in realistic biological situations to

ake suitable predictions about the global behaviour of the
ost–parasitoid community.

Dispersal speed has a strong influence on the persistence
f spatial structures. Hassell et al. (1991) have determined
he behaviour of their system for small values of dispersal
peed. They have found domains in the (�n, �p) parameter
pace where spatial structures occur and populations persist.
ur results have shown that the product �k allows defining
eneral domains of persistence and non-persistence of the
ystem. For small values of this product, the host–parasitoid
ssociation is generally persistent while it is not for higher
alues. Hassell et al. (1991), mentioned that for �n and �p very
lose to 0, the system was not persistent. It would be worth
nvestigating the existence of a lower and upper limit for the
alue of the product �k for which the system is generally per-
istent. We also plan to study the relative influences of the
roportion of migrants within hosts �n and parasitoids �p,
nd of the number of movement events for hosts kn and par-
sitoids kp, on the spatial dynamics and persistence of the
ystem.

Introducing several movement events per generation
nables us to take into account situations that are more
elevant from a biological point of view. Using aggregation

ethods, it is possible to determine the global dynamics
f the host–parasitoid system for relatively low values of
he product �k. Migration speed appears to determine to

large extent the stability of the model. However, other
rocesses that can influence stability, like environmental
ariability or asymmetrical migration, which induce spatial
synchrony and break spatial uniformity, have not been
onsidered in our model. Furthermore, we focused on a fixed
roportion of migrants, but density-dependent proportions
f migrants should also be considered (French and Travis,
001).

The present model is deterministic, but the processes
escribed are intrinsically probabilistic, regarding as well to
igration as to parasitism. It would be an interesting addi-

ion to make an individual-based model that would describe
hose processes explicitly. It would be also natural to introduce

andom events by considering more interlaced processes. In
he present model, migration events always take place before
he demographic event. The demographic event on each patch
ould occur randomly in the middle of the k events of migra-
7 ( 2 0 0 6 ) 290–295 295

tion. In that case, parasitism would not occur at the same time
on all the patches, which could induce different dynamics.
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