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A B S T R A C T

The pervasive influence of human induced global environmental change affects biodiversity across the
globe, and there is great uncertainty as to how the biosphere will react on short and longer time scales. To
adapt to what the future holds and to manage the impacts of global change, scientists need to predict the
expected effects with some confidence and communicate these predictions to policy makers. However,
recent reviews found that we currently lack a clear understanding of how predictable ecology is, with
views seeing it as mostly unpredictable to potentially predictable, at least over short time frames.
However, in applied, ecology-related fields predictions are more commonly formulated and reported, as
well as evaluated in hindsight, potentially allowing one to define baselines of predictive proficiency in
these fields. We searched the literature for representative case studies in these fields and collected
information about modeling approaches, target variables of prediction, predictive proficiency achieved,
as well as the availability of data to parameterize predictive models. We find that some fields such as
epidemiology achieve high predictive proficiency, but even in the more predictive fields proficiency is
evaluated in different ways. Both phenomenological and mechanistic approaches are used in most fields,
but differences are often small, with no clear superiority of one approach over the other. Data availability
is limiting in most fields, with long-term studies being rare and detailed data for parameterizing
mechanistic models being in short supply. We suggest that ecologists adopt a more rigorous approach to
report and assess predictive proficiency, and embrace the challenges of real world decision making to
strengthen the practice of prediction in ecology.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Accurate predictions about the consequences of environmental
change for natural populations, communities, and ecosystems
would be valuable to inform conservation, management and
adaptation strategies (Clark et al., 2001). This is even more evident
when considering the current speed and magnitude of environ-
mental change, for instance climate change, which has spurred
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scientific disciplines such as climatology to invest considerable
effort in predicting the future (IPCC, 2014).

Ecology has a long history of using explanatory prediction to test
hypotheses and theories (Peters, 1991; Resetarits and Bernardo,
1998). The purpose of anticipatory prediction, in contrast, is to
provide useful information about the future state of a system
(Mouquet et al., 2015). As such it is unimportant how anticipatory
predictions are made (mechanistic versus phenomenological
models), so long as they are useful. A culture of anticipatory
predictions is only beginning to develop, and opinion about the
success of such an enterprise is divided (Petchey et al., 2015). Some
believe that medium- to long-term predictions in ecology are
impossible due to factors such as model and parameter
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uncertainty, system complexity and non-ergodicity (i.e., not having
the same behavior averaged over time as over all the system’s
states), or long-term transients (Planque, 2016), making predic-
tions “computationally irreducible” (Beckage et al., 2011). Others
show that mechanistic models are able to make precise, accurate,
and reliable predictions about a variety of state variables of
complex ecosystems (Purves et al., 2008). General and specific
statements about the ability to make useful anticipatory pre-
dictions about ecological variables could be facilitated by the
considerations below (Petchey et al., 2015).

First, one should not ask whether ecology is predictable or not,
but about the predictive proficiency for a given response and a
given time frame. It may be easy to predict that a 50% increase in a
forest fragmentation index in certain locations will result in some
bird species going locally extinct within the next 100 years. It
would, however, be harder to predict the percentage of bird species
that would become extinct, and still harder to predict exactly
which bird species would become extinct. So ‘what is being
predicted’ needs to be specified carefully, as well as the time frame
of prediction (Petchey et al., 2015).

Second, coherence about how to measure predictive ability is
desirable, yet there are many metrics available, some of which are
redundant, whereas others measure distinct features of predictive
ability (Olsen et al., 2016). Petchey et al. (2015) proposed that
coherence and generality could be achieved by the ecological
forecast horizon (EFH). The EFH is a quantitative tool to assess the
predictive proficiency when observations are compared (e.g. using
R2) to a particular model of the system. The forecast horizon is the
time into the future for which forecasts can be made within a given
predictive proficiency domain. Use of the EFH makes both time
frame and predictive proficiency explicit.

Third, a view of past and current predictive ability, and a vision
for the future would be useful (Fig. 1). In weather forecasting,
predictive proficiency has continuously improved since the 1980’s
from about 80% to better than 95% in 2013 for forecasts three days
ahead, while weekly forecasts improved from about 40% to 70%
(Bauer et al., 2015). Some of the success in improving predictions is
related to the meticulous monitoring of predictive success. Hence,
knowing and critically evaluating predictive proficiency is essen-
tial, as it allows evaluation of our progress and enables
identification of areas with deficient predictive proficiency.
Fig. 1. Scenarios of how the ability to predict ecological dynamics may evolve in the
future. Business as usual (shaded region) involves relatively sparse and uncoordi-
nated efforts in ecological forecasting, and would result in no or slow increase in
predictive ability, with occasional breakthroughs (not illustrated). Concerted effort
is another scenario to transform ecological science into being primarily concerned
with and coordinated to improve anticipatory predictions. The resulting increase in
predictive ability is uncertain (hence multiple different lines). One scenario of
limited advances in predictive ability despite increased efforts (dotted line) could
result from there being hard limits to ecological predictability (e.g., computational
irreducibility). Other scenarios (solid lines) showing faster increases in predictive
ability, could result from advances in data availability and modeling, for example.
Fourth, ecologists need to understand where advances in
predictive ability are most easily achieved, and what is required to
make such advances. For example, one major difference between
ecology and fields such as weather forecasting is the availability
of data to check predictions. Ecological studies are often
conducted over a given time frame (e.g., a thesis or research
grant) and may be short compared to the relevant time scale of
the study system (e.g., population dynamics of a particular animal
or plant species). The vast majority of datasets in ecology fall into
the category of short-term independent studies (Mouquet et al.,
2015). Furthermore, datasets are often not collected with the
specific purpose of making anticipatory predictions (Mouquet
et al., 2015). This currently limits our ability to check the
predictive success of particular forecasting techniques and to
define the baseline of predictive success in ecology.

While ecology in general is only beginning to develop the
practice of prediction, related fields such as fisheries science that
have to provide quantitative predictions to government agencies,
may have already developed standardized reporting rules and
rigorous means for assessing predictive proficiency from which
ecologists can generally learn. We therefore selected fields and
phenomena such as fisheries, epidemiology, eutrophication and
algal blooms, ecotoxicology, forestry, and marine and terrestrial
biogeochemistry and searched for representative case studies.
Importantly, these fields often deal with similar kinds and levels
complexity. Given the vast literature in each field, our overview is
necessarily incomplete; hence we informally (i.e., through
discussion rather than quantitative analysis) review representative
case studies. Our goal is to derive some insights as to why and
when predictions succeed in these fields and produce some
suggestions as how to strengthen the practice of prediction in
ecology.

2. Predictions in ecology-related fields

In this section we give an overview of fields, in no particular
order, in which policy relevant predictions are made. To facilitate
comparisons across fields, we use a common template to describe
the predictive practice. In each subsection we first describe why
prediction is important for the field and what type of predictions
are made. We then discuss the predictive proficiency obtained and
the types of models used in the representative case studies. Finally,
we assess the importance of data availability and quality in the
field, and highlight particular strengths and challenges for the
practice of prediction (summarized in Table 1).

Predictive models span a range of techniques, from simple
extrapolation, to time series modeling using statistical or
machine learning type models that can capture linear and non-
linear patterns, to process-based models (e.g. individual-based
models or population models based on first principles) that
include biological mechanisms and environmental dependencies.
Here we follow the rough separation of models into mechanistic
(e.g. individual-based models) versus phenomenological models
(including extrapolation, statistical and machine learning
approaches) introduced by Mouquet et al. (2015). Whereas the
latter are powerful at capturing patterns in the data, they do not
capture explicit mechanisms and hence may predict poorly out of
the range of data (Evans et al., 2013). On the other hand, process-
based models are expected to work better under novel conditions,
provided the key mechanisms are correctly included. Approaches
also differ in terms of the data required for parameterization.
Process-based models tend to be more demanding in terms of the
data required, whereas phenomenological approaches often are
applied directly to the state variable (e.g. time series analysis of
population sizes).



Table 1
Overview of the ecology-related fields that were reviewed in terms of responses, model types used for predictions, measures of predictive success as well as strengths and
challenges to achieve better predictive proficiency. Abbreviations used: RE = relative error, AE = absolute error, R2 = coefficient of determination, ROC = receiver operating
characteristic curve, AUC = area under the ROC curve.

field targets of prediction (variables
to be predicted)

models used (e.g.
phenomenological,
mechanistic)

measures of
predictive success
(e.g. R2, correlation
coefficient, RE or
AE)

strengths challenges

Fisheries abundance and landings,
recruitment, biomass, relative
abundance and occurrence,
maximum sustainable yield

Empirical dynamic
modeling, generalized
additive models, single
age or stage structured
population models,
EBFM model

correlation
coefficient, R2, ROC
curves, multiple
regressions,
observations
within predicted
boundaries

regular data collection over large
spatio-temporal scales

Delay between data collection
and assessments, often only
short-term forecasts,
insufficient data about species
interactions

Epidemiology establishment of novel
pathogens, peak and timing of
epidemics, effect of
interventions such as
vaccination, quarantining,
culling, vector control, disease
outbreak and invasion
thresholds

SIR and extensions such
as TSIR, stochastic-,
statistical-, eco-
epidemiological-
models, individual-
based model

R2, likelihood, time
difference in
epidemics peak,
disease outbreak
timing

High quality data sets covering
vast spatio-temporal scales; new
technologies such as mobile
phone data and search engine
queries can be used for real-time
prediction

Inclusion of social network data,
complex system models,
individual oriented disease
control modeling, inclusion of
immune system models

Eutrophication
and algal
blooms

phytoplankton biomass, nitrate
levels, phosphate levels

mechanistic (often
with several simple
statistical
components),
statistical models

R2 and RE relatively well-understood
physical and chemical
components, predictions of
physical variables is good,
predictive ability is high when
there are strong physical drivers

Biological processes less well
understood, difficult to get
enough data to parameterize
complex models, there's a
widespread practice of bolting
together models without
questioning the suitability of the
underlying functional forms

Ecotoxicology Contaminant fate in
environment, mortality,
chemical uptake in organisms

Mechanistic models,
individual-based
models

Statistical
comparisons with
empirical data,
both in the
laboratory and field

Ability to use hydrologic models
for contaminant fate, large
amount of laboratory data for
contaminant uptake and effects
of toxicants on individuals

Huge numbers of new chemicals
entering the environment for
which few data on effects are
available

Forestry Forest succession and primary
production

Individual-based
models, Perfect-
Plasticity
Approximation, species
distribution models

Statistical
comparisons with
species
composition and
production, R2, AUC

Ability to test against ‘space for
time' for forest succession and
plantation data for wood
production

Increasing the tree species for
which adequate data exist to
parameterize IBMs, upscaling to
global level

Biogeochemistry Nutrient flows, plant growth and
nutrient uptake, plant turnover
and decomposition, primary
production (amount and
variability) of marine systems,
amount of C trapped in the
ocean

Compartment models,
structured in elements
(C, N, P, Si, Fe)

Statistical
comparisons with
empirical data at
various spatial and
temporal scales

Models with physico-chemical
components for which data
exist; newly available data
(satellite, AUV, . . . )

Plant dynamics and
decomposition processes for
new systems may not be well
known; some physical models
(e.g. marine hydrology) still have
high uncertainty; marine
biogeochemical models are
sensitive to herbivory, which is
often uncertain
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2.1. Fisheries

Anticipatory predictions in fishery science are needed to inform
management and conservation as fish stocks are depleted on a
global scale. According to Garcia and Grainger (2005) 52% of stocks
are fully exploited and 16% overfished. Fish stock assessments
provide guidelines for sustainable management of focal fish
species, and are based on catch data, scientific surveys and
biological information about the species. Important predicted
quantities are the total population size or biomass to inform
maximum sustainable yield, the age structure of a stock, and its
fecundity.

Since the 1950’s very simple population dynamic models have
been used to make forecasts of abundance based on the single-
species formalism of Beverton and Holt (1957). These models
usually consider only age or stage structure, with multiple cohorts.
Stock-recruitment relationships such as the Ricker or Beverton-
Holt curve are used to predict the recruitment of a harvested
population using information on its spawning biomass. Cury et al.
(2014) have found low explanatory power of the stock-recruitment
relationship, explaining only 8.8% of the variation in a global
dataset of stock-recruitment curves, even though it is still widely
used in fish stock assessments. They suggested that a better
consideration of density-independent factors (e.g. species inter-
actions and temperature) may increase the amount of variation
explained.

Moving beyond simple linear relationships, non-linear time
series analysis has gained traction in fishery sciences. One promising
technique is empirical dynamic modeling (EDM) as introduced by
Sugihara (1994). Recent papers show application of the method to
forecast population dynamics (Glaser et al., 2014a,b), and unravel
environmental dependencies of population dynamics (Deyle et al.,
2013; Hsieh et al., 2005). The methodology can deal with non-
linearity and readily produces forecasts from time series of
abundance for which relatively long-term records exist in fisheries.
Glaser et al. (2014a) found that about 70% of 206 time series of fish
and marine invertebrates had significant predictable structure, but
that the average predictive proficiency (using the correlation
coefficient r) was only about 0.39. They concluded that short-term
(e.g., 1 year forecasts) are feasible, whereas mid to long-term
forecasts (2–10 years) are not reliable yet. Francis et al. (2005) used
a more traditional generalized additive modeling approach to model
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relative abundance and occurrence of individual species. They report
that models performed reasonably well (r > 0.5) on only 4 out of 12
fish species; however, presence was predicted with greater success
(8 out of 12). These authors also reported an independent
assessment, using a different dataset collected later, in which 5
out of 8 species were predicted with a r larger than 0.5.

It has been suggested that predictions of fish stocks could be
improved by a more ecosystem-focused fishery management that
includes interactions between species and human exploitation
(Travis et al., 2014). Olsen et al. (2016) performed a rigorous
assessment of the Northeast U.S. Atlantic marine ecosystem model
using 40-year hindcasts and 10-year forecasts using different
metrics of predictive proficiency (including correlation and
different error measures). Twenty-two ecosystem indicators were
evaluated, including emergent properties of the model (e.g.,
average trophic position). Model performance had large variation
across species, but several of the target species showed correla-
tions greater than 0.5 in both hindcast and forecast skill. Root mean
squared error for the normalized biomass data ranged between 0.1
and 0.8.

Data for fish assessments is often based on fish landings (sold
fish biomass) or portside assessments of catch. Whereas the
former has the advantage of capturing the effects of a major human
intervention, they can be confounded by complex human behavior,
including under-reporting of catch (Glaser et al., 2014b). Time
series of abundance can be of considerable length (>50 years) in
fisheries, facilitating data-driven approaches, however, detailed
data to parameterize more process-based models is not so readily
available (Travers et al., 2007). More explicit consideration of biotic
interactions and environmental drivers would probably lead to
better predictions (Brander, 2003; Travis et al., 2014). A general
shift towards an ecosystem-based fisheries management ap-
proach, based on trophic web models with many components
and across levels of organization, can be observed (e.g. Travers-
Trolet et al., 2014). These models still suffer from over-simplifi-
cations, such as describing interactions in marine communities as
largely unidirectional trophic relationships instead of fully
embracing their complexity (Travis et al., 2014).

The use of forecasting centered methods such as EDM, as well as
the use of ecosystem models, provide a clear baseline for the level
of predictive proficiency in fisheries. Forecasting proficiency with
of rhos about 0.4–0.5 are obtained with different methodologies on
population and ecosystem level.

2.2. Epidemiology

The public health implications of infectious diseases renders
epidemiology an important field for frequent and policy relevant
predictions. Important targets of prediction are: the likelihood of
an outbreak of a disease (Woolhouse, 2011), the timing and
amplitude and shape of an epidemic (Grenfell et al., 2002), and the
outcome of specific interventions (Grenfell and Keeling, 2008).

The SIR model developed by Kermack and McKendrick (1927),
in which the population is divided into susceptible, infective and
recovered individuals, forms the basis of many epidemiological
models. The crucial parameter of the model, R0, predicts the spread
of the epidemic, i.e., when R0 > 1, the infection will spread in a
population. A recent example of epidemiological prediction is the
occurrence of dengue during the 2014 FIFA World Cup in Brazil.
Lowe et al. (2014) predicted a high risk of acquiring dengue in
Brazil, providing probabilistic forecasts of risk based on seasonal
climate forecasts. Aguiar et al. (2015a) also analyzed the
epidemiological data, taking into consideration population densi-
ties in the twelve host cities, and the seasonality of mosquitoes. In
contrast, they predicted a low infection rate during the World Cup
due to the incorporation of different drivers, which was confirmed
later (Aguiar et al., 2015b). Another predictive success in
epidemiology was the foot-and-mouth-disease outbreak in Great
Britain in 2001, which yielded detailed insights into the disease
dynamics and a high quality data set (Grenfell and Keeling, 2008;
Woolhouse, 2011). A statistical model (logistic regression) and
individual-based models were used in hindsight to check their
ability to predict which farms were at risk during the 2001
outbreak (Woolhouse, 2011). The statistical model was found to
predict the risk of becoming infected slightly better than the
dynamic model (Woolhouse, 2011). Measles dynamics are
emblematic cases of successful prediction due to characteristic
recurrent cycles in large population centers and occasional
breakouts in smaller communities (Bjørnstad et al., 2002). The
authors predicted cases of measles by fitting a time-series SIR
model (TSIR, Grenfell et al., 2002) to data from 60 UK communities
and reported impressive short-term (two weeks ahead) mean R2 of
0.85 by comparing predicted to observed cases. The R2 ranged from
0.98–0.92 for large cities, and was still reasonably high (0.74) for
small communities. Extensions of measles modeling to small
communities that have highly stochastic dynamics still achieved R2

of 0.86 to 0.55, with 5 out of 6 communities scoring higher than
0.73 (Caudron et al., 2015). A recent review gives a comprehensive
account of the predictability of influenza outbreaks, comparing
time series modeling, individual-based, compartmental and
metapopulation models (Nsoesie et al., 2014). Three studies
predicted the magnitude of influenza activity and reported
correlation coefficients between 0.58 and 0.94 (Nsoesie et al.,
2014), whereas mechanistic approaches were evaluated in terms of
observations falling within the confidence intervals of the model.
The use of different measures hence hampers direct comparisons
between the predictive proficiency among approaches.

Epidemiology has excellent long-term records of disease-
incidence through space and time. This can be used for validation
and testing models, including the influence of measures such as
vaccination, quarantining and vector control. Epidemiology also
benefits from new data sources, such as internet search queries. A
correlation between predicted and observed influenza cases of
0.96 was obtained (Ginsberg et al., 2009), highlighting the
potential of these techniques in improving forecasts and decreas-
ing time delays. As these models rely on correlations between
search patterns and disease symptoms, input data have to be
reviewed carefully to protect against false alerts (Woolhouse,
2011). However, issues related to data quality and availability are
not unique to new predictive approaches in epidemiology, but
apply equally to more traditional approaches. Aguiar et al. (2014)
describe a situation where datasets based on different interpre-
tations of official documents created divergent predictions of
disease dynamics. Another problem is that at an international level
some countries may be unwilling to share the data with the World
Health Organization (Woolhouse, 2011), exacerbating the genuine
lack of data for many other diseases.

Epidemiology shows impressive examples of forecast profi-
ciency with R2 ranging above 0.9 and even above 0.7 in more
difficult settings (e.g. smaller communities, larger influence of
stochasticity). Nevertheless, the review by Nsoesie et al. (2014)
shows that even when targets of prediction are well defined, the
use of different measures of forecast proficiency can hamper
conclusions regarding the state of the art of prediction.

2.3. Eutrophication and algal blooms

Eutrophication models predict the availability of key nutrients
(nitrogen, phosphate), phytoplankton biomass (i.e. chlorophyll a
concentration) or oxygen availability in aquatic systems. Excessive
nutrients in aquatic system can lead to phytoplankton blooms,
especially cyanobacteria (Conley et al., 2009). As some of the
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organisms can harm humans and ecosystems, environmental
monitoring aims to predict harmful algal blooms.

Early studies of N and P fertilization were successful at
predicting that fertilization with P would lead to dominance by
N-fixing phytoplankton, but not which species would be dominant
(Schindler, 1977). Modern eutrophication models include a
significant, relatively well understood hydro-dynamical compo-
nent. Nevertheless, this results in eutrophication models being
computationally expensive, requiring substantial data to calibrate,
often to the detriment of biological detail (Robson, 2014a).
Arhonditsis and Brett (2004) compiled a list of 153 mechanistic
aquatic biogeochemical modeling studies. Models could generally
reproduce the temperature and dissolved oxygen time series well,
with R2 values of 0.93 and 0.7, respectively, and median relative
error <10%. In contrast, state variables relevant to eutrophication—
nutrients and phytoplankton—were only moderately predictable,
with R2 values ranging from 0.4 to 0.6, and median relative errors
of around 40%. The models predicted the dynamics of bacteria and
zooplankton even less well. Trolle et al. (2014) compared the
ability of three of the most widely used aquatic ecosystem
models—DYRESM-CAEDYM (Hamilton and Schladow, 1997);
PCLake (Janse, 1997) and PROTECH (Elliott et al., 2010) to predict
chlorophyll a concentrations in lakes. No model performed
particularly well when predicting the day-to-day chlorophyll
concentrations (max R2 0.33, minimum relative error 103%), but
predictions of monthly means were reasonable (max R2 0.62,
minimum relative error 77%).

Jacobs et al. (2014) modelled the presence, abundance and
potential virulence of Vibrio vulnificus in marine surface waters.
They used a logistic regression model based on the output of
ChesROMS, a three-dimensional model that simulated the
circulation and physical properties of the estuary (sea surface
height, temperature, salinity, density and velocity). The model
achieved 82% classification success in the training data based on a
set of environmental variables. The same variables were also useful
in predicting abundance (low versus high) with concordance of
92% (R2 of frequency of occurrence on validation high: 0.94–0.98).
Froelich et al. (2013) modelled the presence of the whole Vibrio
genus in estuarine waters. They used a mechanistic model based
on hydrodynamics, growth and death rates and a statistical model
(multiple linear regression) based on environmental parameters
(temperature and salinity) to predict Vibrio. This allows direct
comparison of predictive abilities of statistical and mechanistic
models. The mechanistic model was based on the Environmental
Fluid Dynamics Code (Hamrick, 1992) and predicted physical
environmental parameters such as salinity and temperature very
well (R2 86.6 and 97.1, respectively). The mechanistic model
achieved 63% of explained variation for log-transformed abun-
dances, timing and magnitude of the peak abundance were mostly
well predicted. The statistical model explained 48% of variation in
abundance.

Mechanistic eutrophication models require many physical
inputs, including hydrodynamic data, weather conditions, nutrient
influx and outflow, as well as water quality parameters and
ecological inputs. Data availability on the biological components is
likely to increase as new monitoring schemes based on environ-
mental genetic data becomes more widely used (Paerl et al., 2003).
This may enable real-time microbiological assessments of aquatic
systems in the future.

Eutrophication models tend to make good predictions when
they ‘have strong physical drivers’ (Robson, 2014b). Both Froelich
et al. (2013) and Arhonditsis and Brett (2004) show that physical
properties of the environment are often well captured, whereas the
biological layer has considerably lower predictive proficiency. In
the N and P fertilization studies, both the behavior of nutrients and
the behavior of the phytoplankton community as a whole were
fairly law-like. However, exactly which N-fixing species would
dominate was not so predictable, because detailed knowledge
about the individual species was lacking (Schindler, 1977).
Nevertheless, reported levels of R2 for phytoplankton dynamics
(range 0.3–0.8) indicate low predictive proficiency even for the
biotic components. The ensemble approach used by Trolle et al.
(2014) can improve proficiency and indicate prediction uncertain-
ty, and is commonly used to compare climate (Murphy et al., 2004)
and meteorological models (Houtekamer et al., 1996; Tracton and
Kalnay, 1993).

2.4. Ecotoxicology

Ecotoxicology aims to predict the movement of toxicants in the
environment, their uptake and bio-concentration in organisms,
and the resulting population level effects. Contaminant fate
models describe the fate and distribution of contaminants in the
aquatic system. Important processes are transport (flow and
dispersion), degradation, volatilization, sorption, sedimentation
and resuspension.

The predictive ability of several models simulating the
bioconcentration of organic chemicals by fish has been reviewed
by Barber (2003). Based on the properties of various organic
chemicals, these models successfully predicted the bioconcentra-
tion of chemicals in tissues through time. Progress in extrapolating
the effects of toxicants on individuals to the population level is
being made through individual-based models. Dynamic Energy
Budget (DEB) theory extrapolates the effects of toxicants measured
at the individual level to the population level. DEB is based on first
principles in bioenergetics and uses a common model structure for
all species. Martin et al. (2013) present the general approach for
animals, and give an example using Daphnia magna exposed to an
herbicide. The model captured the density dynamics and changes
in the size structure without fitting or calibration at the population
level. It therefore successfully extrapolated to environmental
conditions not included in the parameterization process.

Eco-toxicological data are mostly collected in controlled
laboratory studies where lethal effects of toxicants on individuals
are measured. Detailed physiological models of toxicant concen-
tration in individuals hence exist, but the challenge is to predict the
effects on higher levels of organization. Individual-based models
and DEB theory in particular show promise for predicting across
levels of organization and take advantage of the rich data sources
available on the individual level. In addition, accidents can provide
important and realistic situations to predict contaminant spill in
the environment; e.g., accidental discharge of nitrobenzene in
2005 in the Songhua River, China (Lei et al., 2008). Ecotoxicology,
with its strong foundation in physiology relies a lot on mechanistic
modeling, rather than more phenomenological approaches.
However, it has been suggested that machine learning has
considerable promise in detecting individual level biomarkers
based on gene expression profiles (Vandersteen, 2011).

2.5. Forestry

Two primary targets of prediction in forestry are forest
succession and forest productivity. Foresters need predictions to
take long-term decisions regarding the forest composition in the
face of climate change, invasion by non-native trees, and forest
fragmentation, while at the same time managing forests for
production. Forests also play an important role in the carbon cycle
and hence in the response of the global climate system to carbon
dioxide emissions (Purves and Pacala, 2008).

Individual-based forest gap models have been used to predict
forest succession, composition, and effects of environmental
changes on forests from their inception in the early 1970’s with
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the development of JABOWA (Botkin et al., 1972). They use data on
individual trees modified by environmental conditions, including
growth, competition through local interactions (shading), and
reproduction. Such models have successfully reproduced the
species composition of old-growth, semi-natural forests (Purves
et al., 2008). Ngugi et al. (2011) used the Ecosystem Dynamics
Simulator (EDS), based on JABOWA-II (Botkin, 1993) in projecting
growth dynamics of mature remnant Australian brigalow forest
communities and the recovery of brigalow thickets. The model was
parameterized for 34 tree and shrub species and tested with
independent long-term measurements. It closely approximated
actual development trajectories of mature forests and regrowth
thickets. Changes in species composition in remnant forests were
projected with a 10% error. Basal area values observed in all
remnant plots ranged from 6 to 29 m2ha�1 and EDS projections
between 1966 and 2005 (39 years) explained 89.3 (�1.8)% of the
observed basal area of the plots.

Individual-based forest models are often quite complex and
hence analytically intractable. Recently the perfect-plasticity
approximation (PPA) was developed as a model of forest dynamics
(Purves et al., 2008). It is based on individual tree parameters,
including allometry, growth, and mortality. For eight common
species in the US, timing and magnitude of basal area dynamics
and ecological succession on different soil types were found to be
accurate, and predictions for the diameter distribution of 100-year-
old stands had qualitatively correct shape (Purves et al., 2008).

A serious obstacle for testing predictions of forest succession is
that this process can take centuries to reach its final state. For that
reason, ‘space-for-time' substitutions have been used (Pickett,
1989). Clebsch and Busing (1989) empirically measured forests
after 63 years of agricultural abandonment. Forest composition at
63 years was used as starting condition for a forest gap succession
simulator (FORET). The prediction (300 years ahead) matched the
state of a nearby old-growth forest.

Phenomenological approaches have been used to model the
geographic distribution of 30 different tree species, based on
environmental data, in Switzerland (Guisan et al., 2007). Ten
different methods (ranging from GLMs to GAMs, MaxEnt and
regression trees) were compared using the area-under-the-curve
metric (AUC > 0.9 means good skill, <0.7 poor skill). Predictive
proficiency varied among species more than among modeling
technique, so that most of the species’ distributions were predicted
reasonably well (AUC >0.7) with at least one of the techniques.

It is not surprising that the economic importance of forests has
led to abundant data, from individual tree growth to the dynamics
of forest stands. Individual-based models require detailed infor-
mation such as light transmission and seed dispersal kernels for
parameterization, but have proven to be successful at local scales
(Purves et al., 2008). However, currently available data from long-
term forest monitoring programs is often still insufficient to
implement parameter-rich, process-based models (Evans and
Moustakas, 2016). New developments such as the PPA may
circumvent some of these limitations, as they require less data to
upscale in a computationally efficient manner. Forest inventory
data, where sample plots are measured on a regular basis (every 5–
10 years), are becoming increasingly available and can be used as
input for PPA (Purves et al., 2008).

Forestry can be considered a quite successful predictive science.
Predictive proficiency is assessed by the ability to capture patterns
(e.g. size distributions, growth dynamics) rather than metrics (e.g.
R2). The need for long-term predictions has led to original
approaches (e.g. space-for-time) to test models. Modelling
approaches that aim to predict across levels of organization
(individual growth), stand dynamics (population), compositional
changes (community), as well as ecosystem properties are needed,
and IBMs have shown some promise in achieving this goal.
2.6. Terrestrial and marine biogeochemistry

Biogeochemistry encompasses linked physical, chemical, geo-
logical, and biological processes in the environment at all scales
(Schlesinger, 1991). Biogeochemical models are key components in
predictions of climate change and in understanding the feedbacks
with the biosphere. They therefore have very important implica-
tions for global policy. For instance, global vegetation models are
important components of climate change models (Purves and
Pacala, 2008).

An important goal of terrestrial biogeochemical models is to
predict carbon storage as a function of increasing CO2 in the
atmosphere. Predictions of four global terrestrial ecosystem
models regarding the terrestrial carbon storage from 1920 to
1992 were compared (McGuire et al., 2001). These models, which
have a spatial resolution of 0.5”, have been calibrated and tested on
small scales. In the tests, atmospheric CO2, climate, and cropland
extent were used as inputs. Among other predictions, three of the
four models predicted net release of terrestrial carbon up to 1958,
and all four predicted net uptake after 1958. At local spatial scales,
the CENTURY model is representative of terrestrial biogeochem-
istry models, which are based on relationships between climate,
human management (fire, grazing), soil properties, plant produc-
tivity, and decomposition (Parton et al., 1993). CENTURY is a
general ecosystem level model that simulates plant production,
soil water fluxes, soil organic matter dynamics and nutrient cycling
for grassland, forest, savanna and agroecosystems (Parton et al.,
1993). It has been tested using observations from many temperate
and tropical grasslands around the world. The results show that
soil C and N levels can be simulated to within �25% of the observed
values (100 and 75% of the time, respectively) for a diverse set of
soils.

Models in marine biogeochemistry have been developed to
understand and predict biogenic cycles (carbon, nitrogen, phos-
phorus, silica, etc.) over broad temporal and spatial scales. They
were also used to understand the drivers of spatio-temporal
variation in primary production. Najjar et al. (2007) compared
twelve models predicting global primary production, sea surface
concentration of dissolved organic carbon and seasonal oxygen
fluxes. The results agreed with empirical data, but predictions were
very sensitive to the circulation and to the mixing layer depth. Carr
et al. (2006) made predictions of global primary production on the
basis of satellite data, and the predictions varied within a factor of
2. For comparison, 24 biogeochemical models were used in the
same regions, with the result that the predictions encompassed the
same ranges as the empirical estimates, and shared the property of
a strong divergence in the Austral Ocean, in the polar and subpolar
regions and in eutrophic regions. A follow-up study compared 21
ocean color models and 9 biogeochemical models in their ability to
predict primary production in the tropical Pacific region from 1983
to 1996 (Friedrichs et al., 2009). Models varied widely in predictive
proficiency, but this was not related to model type or complexity.
Saba et al. (2010), used 36 models (22 ocean color models using
spectral analysis to estimate water constituents, including
chlorophyll-a) and 14 biogeochemical models to calculate the
primary production in two regions from 1989 to 2004. 90% of these
models underestimated the primary production, with the bias of
the biogeochemical models being twice that of the ocean color
models, and only 2% of the biogeochemical models were able to
reproduce the primary production increase observed in these
stations (2% per year), indicating it may take time for marine
biogeochemical simulation models to catch up with more direct
observational indicators such as ocean color.

The broad spatio-temporal scales of biogeochemical cycles
make reliable measurements difficult. Primary sources of data
could be reconstructions of biogeochemical cycles preserved in
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paleo-records. Remote sensing techniques have promise in
improving data availability for global biogeochemical models
and increasingly provide data for more local scales (Asner and
Vitousek, 2005).

Biogeochemical models are often based on first principles (laws
of thermodynamics and chemistry), and hence some predictions
can be made with confidence on these aspects. The biotic
component of these models is dominated by plants and decom-
posers, which allows reasonable predictions to be made about
what to expect when environmental change occurs, or when
different ecosystems are studied. Nevertheless, the complexity of
the global cycles and the feedbacks between abiotic and biotic
processes pose great challenges to accurate prediction.

3. Discussion

Our review of the practice of prediction in ecology-related fields
showed that some fields achieve relatively high predictive
proficiency. Both phenomenological and mechanistic approaches
are used in most fields, but when direct comparisons are made,
differences are often small, with no clear superiority of one
approach over the other. Comparisons are hampered by proficien-
cy being evaluated in many different ways: different metrics are
used within and among fields, and predictive proficiency is judged
Fig. 2. The “forecasting loop” to improve the practice of prediction in ecology. Improved
sense) that are not limited by insufficient data quality. Both hindcasting and forecasting s
of predictive proficiency. Such evaluations are facilitated by making data, models and mod
proficiency are expected to be greater if forecasts are made and reported on a regular basi
are important and provide opportunity to evaluate forecasts. The goal is to provide accu
about and adapt to recent challenges such as global environmental change.
differently for phenomenological and mechanistic models. Data
availability is limiting in most fields, with long-term studies being
rare, and detailed data for parameterization of mechanistic models
being in short supply. Learning from these examples, we give
suggestions as to how we may improve the practice of prediction in
ecology, summarized in the “forecasting loop” (Fig. 2).

3.1. The practice of prediction in ecology-related fields

We found that truly anticipatory predictions are not very
common in applied fields, even though some are reported to
government agencies (e.g. epidemiology, fisheries), with hindcasts
more commonly used to assess predictive proficiency. Epidemiol-
ogy is one of the most predictive fields, with high predictive
proficiency achieved (R2 > 0.9). Whenever new pathogens arise
(e.g. Zika virus) anticipatory predictions are made, evaluated in
real-time, and also hindsight (e.g., evaluation of models used
during the foot and mouth epidemic in the UK in 2001). Another
indication for the level of sophistication obtained in epidemiology
is the integration of evolutionary processes in predictive models
(Gandon et al., 2016).

Fisheries also report yearly forecasts to government agencies;
however, we are not aware of rigorous tests of truly anticipatory
predictions. Nevertheless, hindcasting using a phenomenological
 data availability and quality will help to develop predictive models (in the widest
kills of these predictive models will be tested rigorously to quantify the current state
el output available in a common database. Importantly, improvements in predictive
s (indicated by the large loop). Inner loops illustrate that regular and long-term data
rate, precise and reliable predictions to policy makers and stake holders to inform



F. Pennekamp et al. / Ecological Complexity 32 (2017) 156–167 163
approach provides a baseline of average predictive proficiency (rho
0.4) in fisheries for different time frames (Glaser et al., 2014a).
Lower proficiency may be due to uncertainty about the abundan-
ces, or time lags between forecasts and the reporting of stock
assessments (Brander, 2003).

Generally, we found that models dominated by basic physical
and chemical processes are often better at predicting than models
that do not have strong drivers. Epidemics with strong seasonal
forcing and eutrophication are good examples. Eutrophication
models show high R2 for environmental properties, but consider-
ably lower skill for the biotic component. This indicates that the
properties of the biota are still not sufficiently well understood,
and/or that biological processes involve complexities inherently
more difficult to model. Forestry predictions are successful when a
lot is known about the effects of environmental conditions on the
survival and growth of individuals (especially shade tolerance),
and their life-cycle characteristics. The relative importance of
physical and biotic drivers hence may contribute to the predict-
ability of a variable. Whereas physical processes often arise from a
single mechanism (or a small number thereof), biological
processes often arise from a large, complex system of interacting
sub-processes. While these sub-processes may be individually
mathematically and experimentally tractable, the complete
system rarely is. Consequently, models of biological processes
are typically coarse-grained approximations of these complex
systems with a resulting increase in uncertainty. By contrast,
physical processes can be much more completely characterised
and thus are more predictable.

We divided models into phenomenological and mechanistic
models. It is often argued that mechanistic models are superior
under changing conditions if they capture the correct mechanisms
(Evans et al., 2013; Stillman et al., 2015). A few studies compared
mechanistic to phenomenological approaches, with phenomeno-
logical models often being equal on average (inferior performance
in eutrophication models, but slightly better predictions in some
epidemiology studies). For the time being it seems that no
approach is clearly superior in terms of predictive proficiency, but
this may be because challenging and novel predictions are rarely
formulated. Therefore, we should be agnostic about the approach
and rigorously assess the accuracy and precision of our predictions.
Comparing mechanistic and phenomenological approaches, we
also found that predictions are seldom evaluated with a set of
standard metrics, which can reveal complementary aspects of
predictive proficiency. Mechanistic models are more often judged
by qualitative assessments (e.g. do observations fall within the
model confidence intervals), whereas phenomenological
approaches usually rely on single metrics such as R2 or correlation
coefficients. Meta-analyses of predictive proficiency would be
facilitated by either using a standard set of evaluation metrics,
including deviations between predictions and observations (e.g.
RMSE) and the range of predicted values (e.g. the specificity of
predictions).

Some technical issues regarding the application of complex
simulation models to prediction should also be mentioned. The
accuracy of a prediction is not only contingent on the parameteri-
zation of mechanistic equations capturing relevant processes
(parameter sensitivity), but even small, purely quantitative, errors
in parameterization can lead to inaccuracy of predictions if the
system is structurally sensitive (Adamson and Morozov, 2014;
Cordoleani et al., 2011; Wood and Thomas, 1999).

The relevant outputs of mechanistic models are also usually the
asymptotic dynamics. For that reason, simulations usually include
an initial period of considerable length to get rid of transient effects
of arbitrary initial conditions. However, long-term transients have
been found in spatio-temporal predator-prey models that last far
longer than the effects of initial conditions (Banerjee and
Petrovskii, 2010; Rodrigues et al., 2011). Therefore, more attention
should be paid to transient behaviors, to determine whether they
are spurious or, possibly in some cases, important parts of
predicted behavior (Hastings, 2004, 2001).

3.2. The role of data in ecological prediction

The quality and availability of data is essential for developing a
predictive science, and better data archiving practices will improve
access to data (Mouquet et al., 2015). High quality data are needed
to parameterize models and test explanatory predictions, which
help us to understand systems. Low quality data compromise our
ability to test models rigorously, as it is unknown whether
predictions are incorrect due to inappropriate data or to poorly
specified models (i.e., due to model or parameter uncertainty).
Simulated data can be very valuable for discovering whether
modeling approaches are able to recover the parameters that
generated the data after adding moderate levels of noise and are
commonly used to show the usefulness of the modeling technique
(e.g. Pascual and Kareiva, 1996). However, data collectors need to
know the noise levels where modeling approaches will fail to
recover signals from data: this will help design measurement and
sampling schemes guaranteeing appropriate data for predictive
models. Other important data properties are sampling frequency,
duration of time series, and spatial replicates. More dialogue
between modelers and practitioners in terms of data collection is
clearly needed and could foster the collection of data specifically
for the purpose of prediction. Micro- and mesocosms are widely
used and very well suited tools to generate time-series of
population, community and ecosystem dynamics (Altermatt
et al., 2015; Fraser and Keddy, 1997; Resetarits and Bernardo,
1998). Because the study organisms are fast-growing and small,
they are amenable to frequent monitoring. Experimental systems
can furthermore be manipulated to study the ability of models to
capture press or pulse perturbations.

Data availability is as crucial as data quality to foster the
practice of prediction. Ideally, data should be long-term and real-
time, such that anticipatory predictions can be made and checked
with the smallest delay. This seems in reach for epidemiology;
however, the majority of studies reviewed evaluated predictive
proficiency by hindcasts. An alternative to collecting data for the
purpose of prediction is to integrate data from governmental
environmental monitoring schemes such as the long-term
ecological research network (LTER, https://www.lternet.edu/)
(Niu et al., 2014) or the collection of phenology data (monitoring
by national meteorological agencies). Another source of regular
data could be the use of volunteer-based monitoring schemes (for
instance for birds or butterflies). These citizen science projects
have the advantage of often covering large geographic areas
(national to continental) and are designed to run for decades.
However, careful assessments are needed to ensure data quality
and comparability (Isaac et al., 2014). Nevertheless, making
frequent predictions (e.g. abundance trends), and checking their
precision/accuracy in hindsight, would allow comparison of
different model types in terms of predictive success, as well as
definition of an ecology-wide baseline of predictive success.

3.3. Ensuring representative predictive proficiency of models and
towards a gold standard of prediction

The majority of the predictive models reviewed here make
hindcasts: cross-validations where a set of data is partitioned into a
training set, to which the model is calibrated, and a test data set
which the model aims to predict. Because of that they fall short of
anticipatory predictions, for several reasons. One major issue with
hindcasts is that the modelers have access to the test data.

https://www.lternet.edu/
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Therefore, test and training data sets are unlikely to be indepen-
dent, as the training data set is unlikely to be chosen if it is not
representative of the time series as a whole. In addition,
investigators have unlimited attempts to predict (Franks, 2009),
usually without indicating how many times it has failed. Complete
failures or low success of models to predict a test data set will even
go unpublished, limiting our ability to determine a representative
measure of predictive success.

The predominance of hindcasts may cause several biases in the
predictive power of ecological models, both in terms of the general
predictive ability of a field and the predictive proficiency of certain
model types relative to one another. They may be misleading
because a model with enough degrees of freedom is likely to
perform well through ‘overfitting’, regardless of how well it
represents the scenario it is predicting. In this case, the predictive
ability of complex mechanistic models may be overstated, because
they have greater numbers of unconstrained parameters, and are
therefore often underspecified given that data in ecology are hard
to come by. The predictive ability of sufficiently flexible
phenomenological/statistical models may be overstated as well,
because of their focus on reproducing observations instead of
incorporating mechanisms (Wenger and Olden, 2012). On the
other hand, the predictive ability of simple mechanistic or more
constraining phenomenological models could be underestimated.
Tools to deal with over-fitting such as Akaike Information Criterion
and procedures to systematically simplify complex IBMs (pattern
oriented modeling) exists and can help to tackle these issues
(Burnham and Anderson, 2002; Grimm and Railsback, 2012).

For these reasons, we should improve the way in which
predictions are evaluated in ecology. This does not entail a
complete rejection of hindcasting, but an attempt to mitigate the
problems associated with retrospective predictions playing ‘too
safe’. First, test and training data should be kept as independent as
possible, potentially keeping the test data inaccessible to the
researchers making the prediction (e.g. by using a database). The
modelers can later submit predictions that are compared against
the test data by an independent party. To keep test and training
data independent, they should naturally be kept separated in time,
but should also ideally be obtained from different locations and
scenarios in order to properly test the model’s general applicability
beyond its calibration data—also known as transferability (Wenger
and Olden, 2012). This is the rationale behind the use of ‘space-for-
time' substitution in forest succession modeling, in which
predictive models are calibrated for new forests, run for time
periods of hundreds of years, and subsequently tested for their
ability to predict nearby old growth forests. In contrast with
hindcasting, anticipatory predictive studies automatically guaran-
tee that modelers don’t have access to test data beforehand. The
genuine anticipatory prediction of a different situation to which
the model has been calibrated also guarantees independence of the
test and training data, and is therefore the “gold standard” of
prediction.

3.4. How should we report predictions?

Anticipatory predictions are rarely formulated and even less
frequently checked in hindsight, even when predictions are
reported to government agencies on a regular basis. This is
surprising, as predictions could easily be checked, as soon as new
data becomes available. Hence, we suggest to make predictions in
the first place so we have something to compare with when new
data become available. A good example is Glaser et al. (2014b), who
used hindcasts to test the predictive proficiency of their model but
also provide an anticipatory prediction for the next year, for which
data was not yet available. A rigorous assessment of proficiency
would require us to collect the predictions (ideally for a number of
steps into the future) in a database with specific information about
the model and data used. Whereas databases with population
dynamic data (e.g., Global Population Dynamics Database, GPDB)
and stock assessments (RAM legacy database) are available, we are
not aware of databases that store model predictions and thereby
allow the quantification of predictive proficiency. One could
perform model inter-comparisons to evaluate their proficiency or
rely on ensemble forecasts to study the consistency of different
model types (e.g. statistical versus mechanistic). This may help to
quantitatively disentangle whether certain ecological levels of
organization, processes or organism properties are related to
predictive success.

A major difficulty in comparing predictive proficiency across
fields was the great diversity in how predictive proficiency was
reported. A diversity of measures was used across studies,
including correlation coefficients between predictions and
observations, different measures of error (the absolute or relative
difference between predictions and observations) as well as
whether observations fell within the confidence bounds of
predictions. This is true even in more predictive fields such as
epidemiology (e.g. Nsoesie et al., 2014), which has a good practice
of reporting and communicating predictions but in which no
single metric is consistently reported. Whereas there may have
been good reasons to choose one measure over the other in
specific studies, we would advocate either the use of a single
metric for reporting predictive proficiency in ecology, or the use
of several complementary metrics that capture different aspects
of predictive success. For time series, several recent studies
(Garland et al., 2014; Ward et al., 2014) used the mean absolute
scaled error (Hyndman and Koehler, 2006) which facilitates
assessment of forecast accuracy within and among time series
and hence facilitate comparisons. On the other hand, Olsen et al.
(2016) report different metrics of predictive success to assess the
predictive ability of a large ecosystem model and conclude that
only the combination of metrics captures the different aspects of
predictive proficiency. Ideally, predictions would be stored in a
database, such that several metrics could be calculated across a
variety of predictions and observations.

3.5. The practice of prediction and evidence-based policy

Although most models reviewed were quantitative, predictions
do not need to rely on mathematical models to be useful. Evidence-
based policy requires interactions among various groups and can
take evidence from various sources. Policy makers and practi-
tioners make decisions about how to achieve a particular outcome,
or to solve a particular problem; e.g. how to control the outbreak of
a particular disease, or how to reverse the decline in abundance of a
threatened species. Predictions are intrinsic in any decision, in that
one is predicting that the course of action decided upon will have
the desired outcome.

In the case of controlling the 2001 foot and mouth disease
outbreak in the UK, scientists quickly developed mathematical
models, which were used to make forecasts about the effects of
alternate vaccination and culling policies (Ferguson et al., 2001).
When mathematical models are unavailable, or cannot be developed
in time, decisions can be informed by other sources of evidence,
including expert opinion. Expert opinion can be defined as a
prediction made by a specialist with extensive experience and
expertise relevant to the problem at hand. Unfortunately, expert
opinion must be treated with great care, due to the thoroughly
demonstrated cognitive biases that greatly reduce its predictive
value (Sutherland and Burgman, 2015; Tetlock, 2006). One solution
to the frailty of expert opinion is to train experts in the practices
associated with accurate forecasting.
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Groups and individuals making forecasts should attempt to
first collate and apply relevant objective evidence to the problem
at hand (the outside view). Evidence from comparable situations,
and from relevant empirical studies, can be used as a baseline. For
example, during the 2001 foot and mouth outbreak, comparisons
with previous outbreak, particularly the large outbreak in 1967,
and past interventions, were made. Only after application of the
outside view, predictions are modified according to particular
characteristics of the specific problem at hand (the inside view). As
for quantitative models, assessment of predictive proficiency is an
essential feedback to experts, especially when operating in groups
that share evidence on which forecasts are based. Assembling
empirical evidence (outside view) in advance of needing it for a
particular policy decision has been termed “solution scanning”
and explicitly involves decision makers (Sutherland et al., 2014).

All of the previous points share similarities with systematic
reviews in medicine and evidence-based conservation, which
require careful assessment by experts to compile the evidence,
assess potential confounding factors, and make these available in
forms of databases that are frequently updated (http://www.cebc.
bangor.ac.uk/ebconservation.php). It also shows how important it
is to still keep humans “in the loop” in terms of checking model
predictions. Indeed, even in fields like meteorology, which
showed impressive gains in predictive proficiency, model
predictions are still cross-checked by experts for errors (Doswell,
2004).

3.6. Making predictions relevant beyond predictive proficiency

While we argued here for rigorous assessment of predictive
proficiency, we acknowledge that improving predictive proficiency
requires resources and may only be justified if there is a higher
payback in terms of better informed policy. Analytical frameworks
to assess the value of information are available from decision
theory and applied in fields such as health economics (Claxton
et al., 2002) or conservation biology (Canessa et al., 2015). Such
analysis requires clear specification of the uncertainty of alterna-
tive decisions under a suite of hypotheses (scenarios describing
what the future may look like) to evaluate the costs of certain
actions (Canessa et al., 2015). Based on this information, scientists
can decide whether it is worthwhile to collect further information,
and if so prioritize where reduced uncertainty will yield the
highest pay backs. Coupling predictive models with socio-
economic models may also help to account for economic
constraints and also better understand when sociological factors
limit the adoption of evidence based policy (Sutherland and
Freckleton, 2012).

Another important aspect to consider for scientists is that
counterintuitively, better predictive proficiency does not neces-
sarily lead to better decisions (Pielke and Conant, 2003). This is
because science is not directly translated into decisions, but is only
part of the decision making process, together with communication
and the multiple constraints (i.e. societal and economic) that need
to be balanced (Pielke and Conant, 2003). Communication of the
inherent uncertainty of ecological predictions to policy makers is
essential, as well as considering the needs of policy makers in
terms of ecological evidence (Sutherland and Freckleton, 2012).
One major factor for the adoption of ecological prediction is the
experience (exposure to and ability to assess the quality of
predictions) that policy makers have with ecological predictions
(Pielke and Conant, 2003). Only predictions considered useful for
decisions will be incorporated in the decision making process.
These points are essential to make ecological predictions more
relevant to policy makers and may be as important as improving
predictive proficiency itself.
4. Conclusions

Global environmental change poses many threats to natural
ecosystems and global biodiversity. Hence, there is a pressing need
for anticipatory predictions, which will help to foresee, manage
and adapt to the effects of global change (Mouquet et al., 2015;
Petchey et al., 2015). Ecologists have come a long way towards
making their science more quantitative and have developed the
habit of testing theories using explanatory predictions. Now there
is an urgent need to follow the example of other fields to develop a
rigorous practice of prediction to inform policy makers and the
public. More anticipatory predictions, as well as critical evaluation
of predictive proficiency, are needed in ecology to define the
baseline of predictive proficiency and we propose various ways
how to foster such a practice of prediction summarized by the
forecasting loop. We believe that such concerted actions by
ecologists may lead to larger gains in predictive proficiency in the
long run, and will lead to more accurate and precise predictions to
inform policy makers and stake holders.
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