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Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of
Oceanography (MIO), UM 110, 13288 Marseille, Cedex 09, France

Over-parametrization in modelling is a well-known issue that makes it hard

to identify which part of a model is responsible for a given behaviour. In line

with that ascertainment, this work presents the outline of an empirical

method to simplify models by decreasing the number of parameters. By

using regression trees to classify outputs according to related input

parameters, the method provides the modeller with an objective tool to

reduce the range of the used parameters and, under certain conditions,

to establish relations between them. Thereby, the complexity of the model

is reduced on the basis of mathematical arguments. As an example, a

dynamic energy budget-based model of a mesopelagic bacterial ecosystem

is simplified using the presented method. The main benefits of such a

method are thus highlighted: (i) more robust parameter estimations;

(ii) less complex formulations; and (iii) fewer modelling assumptions. To

conclude, the difficulties encountered are discussed, and several solutions

are proposed to deal with them.
1. Introduction
In order to increase their ability to represent various situations, mathematical

models in environmental sciences nowadays integrate an increasing number

of variables and parameters. Because they describe physical, chemical and bio-

logical processes at different time and space scales, such models are at the

interface of different disciplines. Consequently, they often result from a consen-

sus among the various specialists involved in their development [1]. Such a

consensual nature generally explains this increasing number of parameters

and state variables, because each implied process is relevant from the specialist

point of view.

Furthermore, because of the lack of general laws in environmental sciences,

the mathematical formulation of a given process is generally an open problem.

Empirical formulations are obtained by fitting data with an a priori chosen

mathematical formula. Phenomenological models aim to reproduce a given

phenomenon with the simplest mathematical expressions. Mechanistic formu-

lations are supposed to integrate the mechanisms underlying the modelled

processes. Even if each approach has its own set of interests, which depends

on the questions that the model aims to address, mechanistic formulations pro-

vide a more robust approach in conceptual modelling (as defined in [2]), because

they are built on assumptions based on a theorization of the system.

Nevertheless, the recurrent use of complex mechanistic formulations has

led some modellers to be lured by the unreasonable effectiveness of mathematics
[3], namely in situations where accuracy of the model results is rather due to

its mathematical flexibility than to a good representation of the system.

Indeed, if it appears clear that mechanistic formulations have given more

sense to parameters, they are still constrained by assumptions that explain

why several formulations can be relevant to represent the same process. More-

over, two formulations of the same process can give the model very different

behaviours [4–6] and thus the choice is not always obvious. Finally, the relation

between the mechanistic approach and the efficiency of models to reproduce

observations may not be straightforward [7].
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A difficulty associated with the large number of par-

ameters in models concerns over-parametrization [8,9].

Among other problems, it makes it difficult to identify

which modelled processes are really responsible for the

observed results. Indeed, when mathematical tractability is

lost, the modeller begins to use a model with an unknown

dynamical behaviour, a kind of mathematical black-box.

There is no guarantee that the results are due to a good rep-

resentation of the system: a sufficiently complex model could

easily give expected outputs because of the flexibility of the

model induced by the large number of parameters [3].

Finally, among other phenomena, the parameter redundancy

(as defined in [10]) may lead to the difficulty to estimate par-

ameters adequately, and being able to identify useless

parameters is definitely a hard task [11].

As a consequence, it appears that when it is possible, the

simplification of models may provide an interesting issue.

Simplification methods generally aim to reduce complexity.

However, according to the nature and the structure of the

models, existing simplification methods [12–18] cannot

always be directly used. Also, only some of those method-

ologies [13,15] allow a better understanding of the model

properties through the simplification process. In order to sim-

plify, additional assumptions may be useful. In some cases,

these assumptions can directly be linked to the part of the

model that can be simplified. However, in many cases,

there is no direct link between assumptions made on the

basis of data, observations or more generally stylized facts

[19] and the way to simplify models. It would thus be inter-

esting to develop methods that specifically simplify a model

according to data, or more globally, to the purposes of the

modeller, and that also enlighten some of the model inner

properties. Following this objective, the need of a tool capable

of identifying how the outputs of a model are linked to its

input parameters appears. One goal is to identify which par-

ameters actually drive the model to reach some specific

outputs. The bifurcation theory is dedicated to this type of

problem, but is nowadays impractical with a high number

of parameters. Thus, in this work, we aim at simplifying non-

mathematically tractable models by using a statistical

approach capable of outlining a pattern of outputs relative

to inputs.

Such an empirical approach, extremely dependent on the

numerical realizations of the model, requires the use of an

objective statistical tool. Different methods along this line

have been proposed. In Raick et al. [13], for instance, the

authors conclude that principal component analysis may be

used to simplify models but with constraining conditions

when nonlinear relationships occur. The approximation

Bayesian computation has been used by Toni et al. [20,21]

to develop a model selection method. By sampling the par-

ameter space, they outline the output distribution of each

compared model and then, using a Bayes criterion, define

which of the compared models is the more appropriate one.

However, a set of models has to be defined a priori, and the

best model is not produced by the method itself. Thus, this

work is of great help when comparing different models

with the same purpose, but it does not produce a simpler

and more appropriate model by itself.

In the present paper, we propose a method that also uses

an outline of the outputs distribution by sampling the par-

ameter space. Nevertheless, we now propose to classify the

coupled distribution of the parameters and variables using
regression trees [22]. Although the primary objective of that

statistical method is to predict a response variable using a

set of explanatory variables, regression trees will be used

here to highlight the impact of parameters on the output dis-

tribution. Using that statistical tool in another context has

already been done by Pappenberger et al. [23] to introduce

an interesting parameter sensitivity analysis approach.

Thus, we use here only the classification capabilities provided

by the regression trees. In our case, the set of state variables of

the model forms the response variable, and the explanatory

variables are formed by the set of parameters. Note that

here, we use a multivariate extension of trees because of the

multivariate structure of the response variable.

A classification obtained using regression trees is in the

form of a binary tree containing several final classes. Each

of those final classes associates a specific part of the state vari-

able space to a specific part of the parameter one. It is likely

that at least one of those final classes of outputs reaches the

modeller’s expectations. Thereby, by using this association,

we should be able to establish mathematical relations

between parameters within the parameter space associated

with this given subset of outputs and so define a new

model, with less parameters, for this subset. We underline

the fact that the classification process will not require any

data, because the sampling of the output space will be

done using randomly generated parameter sets.

The paper is organized as follows. In the next section, we

present the general approach, on the basis of the regression

trees method. We first describe how far we use this statistical

method in our simplification approach. In the following sec-

tion, we apply the method on an example to illustrate the

way it functions and the results that can be obtained. Then

we discuss the different problems that may occur when build-

ing the tree used for the simplification results, the interest of

the simplification and the limits of the method. Finally, we

conclude and provide some perspectives to extend the

method to more general situations.
2. General description of the method
2.1. On the use of regression trees
Let M be a model that has m parameters and n state variables.

We assume for the sake of simplicity that the model M admits

an equilibrium vector X ¼ ðx1; . . . ; xi; . . . ; xnÞ [ Rn. We define

M1 the map that associates the equilibrium X (the output) to

the parameter vector P ¼ ðp1; . . . ;pi; . . . ;pmÞ [ Rm (the

input) for a given initial condition X0 [ Rn. Thus, we have

M1 : L� fX0g ! V;

ðP;X0Þ 7! X ¼M1ðP;X0Þ:

The whole parameter domain L ¼ L1 � � � � � Lm forms an

orthotope belonging to Rm. Each parameter pi takes realistic

values in Li ¼ ½b�i ; bþi �, ranging from bi
2 to bi

þ. Those bound-

aries can be chosen from values found in the literature or

directly from experimental data. We name V , Rn the equili-

brium state variable domain. Because of nonlinearities in the

structure of M1, the set V is not necessarily an orthotope

(figure 1). Moreover, it is likely that a part of the V domain

is unrealistic from the studied system point of view. For

example, when using an ecological model, admissible

values of parameters can lead to negative biomasses, which

http://rsif.royalsocietypublishing.org/
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a;i ¼ Vb (dotted rectangle).
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is a nonsense. More precisely, there exists a condition that we

will call the a-condition that delimits a part Va , V that is

coherent with basic properties of the system. Some stylized

facts, as described in [19], can be used to define this

a-condition. Consequently, each equilibrium X [ Va has

been obtained from P [ La, the a-conditioned part of the

parameter domain defined as

La � fX0g ¼M�1
1 ðV

aÞ:

Note that La , L. This set is not necessarily an orthotope, but

La
1 � � � � � La

m is the smallest orthotope in which La is con-

tained, as shown in figure 1.

Suppose now that only a part of the equilibrium X [ Va

fits the purposes of the modeller. Consider for instance a situ-

ation where the model outputs X have to match some

experimental data within some given tolerance. That specific

part of the outputs can be classified as behaviour, a concept

coined by [24] or as an admissible region as defined in [25].

In our case, there exists a condition that we will call the

b-condition, which delimits a part Vb , Va that matches

the purposes of the modeller (figure 1).

Similar to the a-condition, each equilibrium X [ Vb has

been obtained from P [ Lb, the b-conditioned part of the

parameter domain. In the following, we wish to use the prop-

erties of the parameter vectors belonging to Lb to create a

model with less parameters, and thus simpler.
2.2. Construction of the regression tree
In order to study the relation between Vb and Lb, we start by

randomly sampling the space of parameters L and use the

map M1 to associate an output X to an input P, for a given

X0. As discussed before, some values of X are not realistic.

We keep only the a-conditioned part of the random sample

to form the sample F ¼ fðPk; XkÞ; k ¼ 1; . . . ; rg of size r,

formed with the parameter vectors Pk ¼ ðpk
1; . . . ;pk

j ;

. . . ;pk
mÞ;pk

j [ La
j and its associated output vectors Xk [ Va.

We now define how regression trees are built and why

they are of interest for simplification purposes. Regression

trees are statistical models concerned with the prediction of

a response variable using a set of explanatory variables. As

said in the introduction, we focus only on the classification

capabilities provided by the tree structured model. Here the

response variable is X [Va. The explanatory variables are

constituted with the vector of parameters P [ La.
Starting with sample F, a multivariate regression tree is

constructed by recursive partitioning of the parameter space

L, which determines subsets (classes) of V for which the

values of X are the most homogeneous. The homogeneity

of each class is measured using a deviance criterion. The

formulation of the deviance has to be chosen relative to the

nature of the outputs.

A multivariate regression tree is constructed by iteratively

splitting the classes in order to maximize the decrease of the

deviance. See appendix A for an explanation of the splitting

procedure used here. The tree is grown until a quantitative

termination criterion is reached. At the end of the construc-

tion, we obtain a binary tree containing q terminal classes,

and a nested sequence of splitting conditions appears on

the predictive variables.

Our goal here is to use this conditional classification given

by the tree to enlighten links between the state variable and

the parameter space.

The structure of the obtained tree may not properly rep-

resent the distribution of Va. Indeed, two phenomena can

appear: first, if another tree is obtained by changing the

size of the sample, r, the tree is not robust. Second, if a

different tree is obtained with another sample of size r, the

tree is unstable. The stability of a given tree is directly

linked to the nature of the analysed outputs distribution,

whereas robustness is associated with the representativeness

of the sample itself, and thus the value of r. Breiman et al. [22]

advise the use of a sample of size r ¼ 10n, with n the

dimension of the state variable space, to obtain a robust tree.
2.3. Analysis of the regression tree
A tree is built using a sample (discrete form) of a domain

(continuous form). Hereafter, we will directly refer to the

domains V and L, even though we are dealing with samples.

Let us take the example of a tree obtained from a model

with n ¼ 6 variables and m ¼ 10 parameters, as shown in

figure 2, where eight final classes have been obtained. In

this example, we assume that the b-condition is fulfilled by

the classes Vb ¼
S8

i¼5 Va;i. The way to define the b-situation

will be discussed within the practical approach. Here, the

system has 10 parameters, and the b-conditioned part of

the outputs is reached after three splits of the parameter

space, more precisely, after having applied restrictions on

three parameter ranges (La
5 ;L

a
3 ;L

a
9 ). Those restrictions

http://rsif.royalsocietypublishing.org/
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define a new parameter domain, denoted LS, which is the

smallest m-orthotope containing Lb (figure 1):

LS ¼
Ym
j¼1

L
b
j ; with Lb , LS , L:

Under those restrictions, values for the seven other

parameters can therefore be freely chosen within their

respective a-conditioned ranges.

Thus, on the basis of the results given by the tree, we may

simplify the model. Indeed by conveniently choosing the

value for the parameters kept free by the tree regression,

i.e. within LS, we can end up with a simpler model. By

fixing relations between parameters implied in the same

type of processes, we will decrease the number of parameters.

Two cases can be distinguished: (i) the general case in which

we define one parameter as a function of another,

p j1 ¼ f ðp j2Þ; j� [ ½1;m�; (ii) the particular case in which we

define that two parameters are replaced by a new one,

p js ¼ p j1 ¼ p j2=j1 ; j� [ ½1;m�. Again, this freedom of choice

highly depends on the respect of the restricted range for the

parameter enlightened by the tree. For example, owing to

the parameter range restriction provided by the tree, we

have La
5 ¼ ½0; h� and L

b
5 ¼ ½b; h�.

After simplification, we get a model MS and using the

same type of notations as before, we have

MS;1 : LS1 � fX0g ! VbS ; X0 [ Rn;

where

LS1 ¼
Yms

j¼1

L
b
j ; with Lb , LS , L

with LS1 the parameter domain of MS, X0 the initial vector, ms

the number of parameters and VbS the state variable output.

Defining LS1 as a Cartesian product is a requirement

because we need to associate with each parameter a
continuous range of values to maintain the exportability of

the model. The relevance of such an approximation is depen-

dent on the size of Lb > LS; this remark will be discussed

further. Similarly, the validity of the chosen simplification

depends on the size of VbS > Vb. Roughly, the method fol-

lows the steps summarized in figure 3.
3. An example: the mesopelagic layer in
marine systems

It is not rare in theoretical ecology to encounter numerical

and computational issues. By giving an example of how to

simplify a model using our method, we will try to show

the commonly encountered problems and how to avoid, or

at least minimize, them.

3.1. A model to simplify
As an example, the method has been applied to simplify a

model of the mesopelagic ecosystem. This ecosystem plays

a strong role in the global carbon cycle because it is where

a large part of biomineralization made by bacteria occurs

[26]. However, a lot of questions concerning the carbon

cycle in this ecosystem are still unanswered [27]. Here, we

aim at understanding the bacterial contribution to the

carbon cycle through dissolved (DOC) and particulate

(POC) organic carbon uptakes. We have chosen to represent

such a system following the dynamic energy budget (DEB)

theory [28,29]. DEB theory describes the rates at which an

organism acquires resources from the environment and sub-

sequently uses the nutrients and energy for production and

maintenance. Thus, this theory gives us a framework that,

in addition to being general and easily adaptable, fits our

interest for bacterial metabolism. Indeed, it has given good

results in representing physiological behaviour of prokariotic

http://rsif.royalsocietypublishing.org/
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Figure 4. Schematic of M. This four-dimensional model represents a three-
compartment trophic web. Two substrates, P and D, are both assimilated by
bacteria. That latter compartment is divided in two types of biomass: the
structure, MV, and the reserve, ME ¼ mE MV . That biomass type distinction is
made following the DEB theory [28,29]. Flux and compartment definitions
are given in table 1.

Table 1. Compartment and flux definitions for M;MS;MS2 .

symbol interpretation unit

MV bacteria structure biomass mmolC m23

mE bacteria reserve density mmolC mmolC21

m23

D dissolved organic carbon

density

mmolC m23

P particular organic carbon

density

mmolC m23

JE flux of P entering the system mmolC m23 d21

JB flux of P leaving the system mmolC m23 d21

JDiss flux of D from P dissolution mmolC m23 d21

JAgg flux of P from D aggregation mmolC m23d21

JD flux of D assimilated by the

bacteria compartment

mmolC m23 d21

JP flux of P captured by the

bacteria compartment

mmolC m23 d21

Jm flux of D from the bacteria

compartment mortality

mmolC m23 d21

JR flux of D from P catabolization mmolC m23 d21
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organisms [5,30–32]. We here work at the scale of a bacterial

cell, where only three trophic compartments can be ident-

ified: the particulate matter itself, the dissolved matter and

the bacteria compartment. The model is not spatialized;

thus, the particulate matter enters and exits the system

through two different fluxes. At such a scale, data are very

hard to acquire and are usually extrapolated from larger

scales. Nevertheless, qualifying which process is primordial

at the very beginning of the bacterial carbon remineralization

in a deep marine ecosystem is mandatory. Thus, the model

used here is very conceptual and our result analysis will be

qualitative. Thereby, we focus on bacteria following a DEB

model, called M, representing the dynamics of a three-

compartment trophic web as represented in figure 4. The

dynamics of the carbon mass within the system is given by

the following system of ODEs:

dP
dt
¼ cEMw � cMPþ aP;DD� aD;PP� jPmP

Pþ KP
MV;

dD
dt
¼ mMB þ ð1� yAÞ

jPmP
Pþ KP

MV �
jDmD

Dþ KD
MV

�aP;DDþ aD;PP;
dMV

dt
¼ kmE � jM

mE þ 1
yV;E

MV � mMV

and
dmE

dt
¼ jDmD

Dþ KD
þ yA

jPmP
Pþ KP

� kmE � rBmE � mmE:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:1Þ

Parameter ranges and definitions are given in tables 1 and 2.

Other compartments could have been added to the model if

we had chosen to work on a larger scale. However, because

our purpose is the understanding of the remineralization of

carbon (i.e. the use of P and D) by bacteria, such a simple

model appears to be a good first step towards that objective.

3.2. Building the tree
In this example, it is considered that bacteria, dissolved and

particular organic carbon coexist, which means that state

variables representing them have to keep strictly positive

values: it is the a-condition of the system. We are not looking

at the dynamics of the system but rather at its equilibrium
states for a given X0, denoted:

X ¼ ðP1;D1;MV;1;mE;1Þ:

Since the state space has four dimensions, we should need a

minimum of r ¼ 104 equilibrium points fulfilling the a-con-

dition: 8i [ ½1; r�;Xi;1 [ �0:01; 10½4.

That condition comes from field observations [33] that

somehow characterize the mesopelagic ecosystem. To

obtain robust results, and to study the stability of the tree,

we first take a value of r much larger than recommended

by Breiman et al. [22], which creates a finer grid in this

four-dimensional space. Also, in order to enhance the hetero-

geneous distribution nature of the sample and exhibit the

different classes more easily, we have chosen to use log-trans-

formed outputs, log(Va þ 1), to build the tree. We have

selected such a transformation function for its inner proper-

ties and monotonic nature. Any other transformation that

respects the original distribution structure but leads the algor-

ithm to be more efficient could be used. We then launch the

binary regression tree algorithm on the modified sample. We

have here used the R-part package of the software R64

[35,36]. The setting options are: (i) no final classes containing

less than r/30 points; (ii) no split for class containing less than

r/10 points; and (iii) no split if the deviance of the new

buckets decreases less than 1 per cent.

Let us remember that those criteria are deeply important,

because splitting parameters determine the shape of the tree.

We obtain the tree presented in figure 5.

One of the obtained classes, Va,4, presents an interesting

distribution of the state variables: high and almost equal

values for P and D, low values of MV and high values for

mE. It is a meaningful pattern because it drives us to think

of an ecosystem with a high level of resource but also a

high level of maintenance, from a DEB point of view.

http://rsif.royalsocietypublishing.org/
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Figure 5. We obtain a tree with four final classes. For each class, the distribution of outputs is given using with boxplots. We have included the distribution of
MB ¼ MV�ðmE þ 1Þ, the total biomass, because it is interesting biological information commonly measured. Indeed, we see that MB has approximately the same
distribution in Va,4 and Va,3, but that of MV and mE greatly differs from one class to the other. Such a pattern of the distribution underlines the heterogeneity of
the outputs given by the model M.

Table 2. Parameter ranges and definitions for M taken and calculated from [26,32 – 34].

parameter range interpretation unit

k 0.5 – 0-9 turnover rate of reserves day21

jM 0 – 1 specific maintenance rate mmolC mmolC21 d21

yV,E 0.01 – 1 yield of structure from reserves mmolC mmolC21

m 0.05 – 1 mortality rate day21

Mw 0 – 10 biomass of the epipelagic compartment mmolC m23

cE 0 – 1 sinking rate of P within the epipelagic layer d21

cM 0 – 1 sinking rate of P within the mesopelagic layer d21

aP,D 0 – 1.2 coagulation rate of D d21

aD,P 0 – 1.2 dissolution rate of P d21

yA 0 – 1 yield of reserves from P mmolC mmolC21

KP 2 – 3.5 half saturation constant for P uptake mmolC m23

KD 2 – 3.5 half saturation constant for D uptake mmolC m23

jDm 2 – 7 maximum specific D uptake rate mmolC mmolC21 d21

jPm 2 – 7 maximum specific P uptake rate mmolC mmolC21 d21
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Figure 6. A boxplot representation of Lb. Each parameter only reaches a specific range of values under the b-condition. It appears that three couples of
parameters reach very close ranges of values: cM and cE, aP,D and aD,P, KP and KD.

Table 3. Parameter ranges and definitions for MS.

parameter range unit

k 0.5 – 0.9 day21

jM 0 – 1 mmolC mmolC21 d21

yV,E 0.01 – 1 mmolC mmolC21

mb 0.23 – 1 day21

Mw 0 – 10 mmolC m23

cs 0.42 – 1 day21

as 0 – 1.2 day21

yA 0 – 1 mmolC mmolC21

K 2 – 3.5 mmolC m23
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Indeed, by analytically solving the equation dMv/dt ¼ 0,

we see that mE,1 can be expressed using other parameters

such that mE;1 ¼ ð jMyV;E � mÞ=yV;Eðk � mÞ. Thus, at the equi-

librium state, mE,1 (the reserve density) increases with jM (the

specific maintenance rate). Because Va,4 exhibits a high mE,1

and considering the range of the other parameters within the

equation, especially m, jM has to be high. Such a result draws

the interest because it appears coherent when compared with

some data acquired at a much larger scale [37]. It leads us to

define Va,4 as the class fulfilling the b-condition, and rewrite

Va,4 ¼ Vb. Although supported by ecological arguments, the

choice is here mainly methodological and has to be seen as a

b-condition defined over a qualitative stylized fact. The defi-

nition of the b-condition is one of the major challenges of the

method and must be done accurately.

s

jDm 4.34 – 7 mmolC mmolC21 d21

jPm 2 – 7 mmolC mmolC21 d21
3.3. A particular case: the equalization of parameters
After having selected the class that fulfils the b-condition, Vb,

we analyse its associated parameter range, Lb
1 � � � � � L

b
14, as

represented in figure 6.

Because for any set of parameters chosen in Lb the

b-condition will be respected, a good way to simplify

the model is to equalize the parameters with really close

distributions. To keep a mechanistic approach, only par-

ameters with the same unit and representing the same

kind of phenomenon are able to be equalized two by two.

Here, three couples of parameters describe same ranges of

values: (i) cM and cE; (ii) aP,D and aD,P; (iii) KP and KD. We

now define three parameters instead of six by saying:

(i) cs ¼ cM ¼ cE; (ii) as ¼ aP;D ¼ aD;P; (iii) Ks ¼ KP ¼ KD.

The model M is then rewritten in a simpler form as MS:

dP
dt
¼ csðMw � PÞ þ asðD� PÞ �MV

jPmP
Pþ Ks

;

dD
dt
¼ mMB þ ð1� yAÞ

jPmP
Pþ Ks

MV �
jDmD

Dþ Ks
MV þ asðP�DÞ;

dMV

dt
¼MV

kmE � jM
mE þ 1

yV;E

� mMV
and
dmE

dt
¼ jDmD

Dþ Ks
þ yA

jPmP
Pþ Ks

� kmE � rBmE � mmE;

and we define the parameter range for the new model, LS1 , as

given in table 3. This new model respects the same mechan-

istic approach as the original one, but has only 11 instead of

14 parameters.
3.4. The general case: pj1

b ¼ f(pj2

b)
We have seen that parameters involved in similar processes

in different compartments can be directly equalized to sim-

plify the model. However, for other couples of such types

of parameters, such as jDm and jPm, a direct equalization is

impossible (figure 6). Nevertheless, by looking closer at the

range of these parameters, a correlation may sometimes

appear, leading to another kind of simplification.

If we want to keep decreasing the number of parameters,

the only way to simplify the model using such a property of

the range is to define a relation where no new parameter

http://rsif.royalsocietypublishing.org/
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Figure 7. (a) A boxplot representation of the distribution of jDm, jPm and the simplification regression. (b) A quantile – quantile plot of jDm and jPm distribution. The
grey line represents the regression which has led to the simplification equation. It appears clear that a linear model links the distribution of jDm and jPm.

Table 4. Parameter ranges and definitions for MS2 .

parameter range unit

k 0.5 – 0.9 day21

jM 0 – 1 mmolC mmolC21 d21

yV,E 0.01 – 1 mmolC mmolC21

mb 0.23 – 1 day21

Mw 0 – 10 mmolC m23

cs 0.42 – 1 day21

as 0 – 1.2 day21

yA 0 – 1 mmolC mmolC21

Ks 2 – 3.5 mmolC m23

jPm 2 – 7 mmolC mmolC21 d21
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appears. A classical linear regression shows here that the two

parameters can be related by a first-order equation:

jDm ¼ f ð jPmÞ ¼ 0:5378jPm þ 3:24:

Figure 7 shows details of that regression. Note here that these

numerical values result from internal properties of the model

as well as from specific definitions of both the a- and

b-conditions. The model MS is then rewritten as MS2 :

dP
dt
¼ csðMw � PÞ þ asðD� PÞ �MV

jPmP
Pþ Ks

;

dD
dt
¼ mMB þ ð1� yAÞ

jPmP
Pþ Ks

Mv

ð0:5378jPm þ 3:24ÞD
Dþ Ks

MV þ asðP�DÞ;

dMV

dt
¼MV

kmE � jM
mE þ 1

yV;E

� mMV

and
dmE

dt
¼ ð0:5378jPm þ 3:24ÞD

Dþ Ks
þ yA

jPmP
Pþ Ks

� kmE

� rBmE � mmE;

and, as previously, we define the parameter range for the

new model, LS2 , as given in table 4.

Again, this new model respects the same mechanistic

approach as the original one, but has only 10 instead of

14 parameters.

If we consider that MS2 is the model that best fits our

expectations, then the simplification has enlightened that

some assumptions are not supported by the data/obser-

vations: (i) there is no change of density for the POC

through the mesopelagic layer since cM and cE have been

replaced by a unique parameter; (ii) there is no differentiation

between the coagulation rate of the DOC and the dissolution

rate of the POC, indeed aP,D and aD,P have been replaced by a

unique parameter; and (iii) KP and KD have been equalized as

the bacteria affinity for the DOC and the POC is the same, but

their assimilation process is quantitatively different because

JPm has been expressed as a function of JDm. Note again

that, even though some of the primary assumptions have

been left, the global approach stays mechanistic, and the

structure of the model is not affected.
4. Discussion
Starting from a given stationary model, it has been shown in

the previous sections how to build a tree that allows one to

sort the model outputs with criteria defined by critical

values of some parameters. The statement of the b-condition

restricts the model output range as well as the parameter

range. Under those conditions, it has been shown that simpli-

fied models could be derived. Unfortunately, building the

tree is not straightforward, which is why inner difficulties

of the method will be discussed in the following section. In

the example used in this paper, two simplified models have

been obtained and their ability to act as an alternative to

the complete model will be assessed in what follows.

Beyond the specific results concerning the reduction of the

number of parameters, we discuss how this reduction can

be used in usual model applications.
4.1. Determining the b-condition
A critical point of the method lies in the choice of the b-con-

dition. The way the condition is expressed is essential

because it determines the required number of final and inter-

mediate classes, and thus the way the tree is built. The more

restrictive the b-condition is, i.e. VVa � VVb with Vi the

http://rsif.royalsocietypublishing.org/
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volume of the domain i, the greater the restriction of par-

ameters is likely to be, leading the modeller to build a large

and complex tree, highly dependent of the sampling. Thus,

a good b-condition has to be reached (i.e. isolated by the

tree regression) after a few splits. Furthermore, even if that

latter condition is fulfilled, the isolated class Vb has to

occupy a non-negligible part of Va otherwise some primary

model assumptions should be questioned: (i) the parameter

domain is too large, La has to be reduced and (ii) the

model structure itself is not adapted to the purpose of the

modeller since too many restrictions on the parameters are

necessary to fit the b-condition, even with a reduced La.

The b-condition can be seen as a measure of the con-

straints supplied by the data. It is important to underline

that data play a key role when defining the b-condition,

especially when that latter is quantifiable. Thus, it is the

nature of data, albeit weighted by the expectations of the

modeller, which determines the b-condition. It is important

to see that, by determining the b-condition, the modeller

actually determines the complexity of the final model. If the

model is expected to be highly predictive, the b-condition

will be highly restrictive. Whereas, for a model with a more

explicative interest, the b-condition will probably be less

restrictive, allowing the model to make quantitative but not

qualitative mistakes. Such a difference explains why, with

this last kind of model, simplifications will be more easily

applicable, thanks to wider parameter ranges. In our

example, the isolation of Vb has been straightforward;

unfortunately it is not the general case.

4.2. Isolating the b-conditioned part of V
The isolation of the b-conditioned part of V in one of the final

classes of the tree has to be seen as the event that will stop the

construction of the tree. First, it is important to quantitatively

define when Vb can be considered as isolated. In most cases,

it is up to the modeller. Indeed, because we use a sample of

the output space, any empirical criterion that satisfies the

modeller’s needs can be chosen. For example, by saying

that if 90 per cent of a given class fulfil the b-condition,

then Vb has been successfully isolated.

Secondly, it is possible that where Vb has not been

entirely isolated in one class, the next split will separate Vb

in two sub-classes, making impossible its meaningful iso-

lation. Such a phenomenon could occur when the structure

of the distribution of Vb is not closely related to the V one.

By using a transformation function on V, which enhances

the heterogeneity of the distribution, that effect could be par-

tially minimized. However, the use of such a function has to

be taken into account when defining the splitting criteria

based on the deviance decrease. Indeed, it will be greatly

affected by a quantitative change of the output distribution.

That is why, in addition to the previous cited methods,

changing the measure of the deviance itself could bring a

solution. Eventually, it could be possible that, despite many

efforts, Vb would not be properly isolated in one class.

When confronted with such a situation, being sure of

having well-sampled V is essential to ensure a good represen-

tation of its distribution.

4.3. On the choice of the size of the sample, r
Four classes are obtained on the sample of size much larger

than 104. We do not know if such a size for the sample is
large enough to guarantee the stability of the selected tree.

As written before, a sample of the order of 104 should

be large enough. However, the robustness of the obtained

tree also depends on the number of final classes. For example,

a tree with the highest number of final classes, r, is both

unstable and non-robust because intrinsically dependent

on the sample. Thus, the minimum sample size advised

by Breiman et al. [22] can only be seen as an order of magni-

tude: larger samples will be required for a high number of

final classes. We highlight the fact that the number of final

classes depends on the used algorithm and its tuning.

Indeed, the choice of the building parameters is a key step

to build a robust and stable tree that will properly fit the

modeller’s needs.

This order of magnitude depends on the required number

of final classes. We here choose to work with a seven class tree

and look more closely at the influence of the size of the sample

on the structure of the obtained tree. The results are shown in

figure 8. Such results comfort us in choosing a larger sample

than previously recommended, of at least r ¼ 10nþ1, to build

the regression tree. Eventually, the minimum size of the

sample is directly determined by: (i) the nature of the state

variable distribution since heterogeneous distributions, even

poorly sampled, are more easily classified; (ii) the requested

number of final classes, because high numbers of final classes

are deeply linked to the sample itself, it appears reasonable

to select a tree where the number of points per class is, at

least, equal to r/30, which limits its complexity; and (iii) the

number of parameters. A large number of parameters

increases the number of possible splits, resulting in an increase

of the sample size r to ensure the stability of the tree. We want

to emphasize that the size of the sample is crucial in con-

structing the tree. Indeed, using a non-stable tree highly

compromises the efficiency of the presented method.
4.4. Density function of the model output
We first discuss the comparison of the distributions of the

different model outputs. The presented results have been

obtained as follows: we first sample L, LS and LS2 using

a quasi-random method to optimize computation time.

Then, for the three models, we determine the asymptotic be-

haviour for each sampled parameter set by solving the

steady-state equation using a Newton–Raphson method.

Results are presented in figure 9. We can see that the results

for the simplified models are satisfying because the distri-

butions for ðP1;D1;MV;1;mE;1Þ are conserved. Moreover,

if we consider the pattern described by the b-condition

(high and almost equal value for P and D, low value of

MV and high value for mE), we can measure the good per-

formance of the simplified models for which mE,1/MV,1 is

even higher than for the original model. Because a simpli-

fied model will only be acceptable for a purpose that fits the

defined b-condition, it turns out that from a general model

fulfilling the a-condition, several simplified models can be

obtained using several b-conditions. To summarize, the sim-

plified models obtained with the method can be seen as

local approximations of the global model, for a given b-

condition.

When several simplified models are derived with the

method depicted in this paper, the simplest is not necessarily

the most appropriate. Among the list of simplified models

obtained with the method, let us call MS� the best simplified

http://rsif.royalsocietypublishing.org/
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model according to a given criterion. Several approaches

are possible using different criteria (Akaike information cri-

terion, Schwarz criterion, etc.), the choice depending on the

nature of the outputs of the model and on the b-condition

(see [38] for a description of those criteria). For instance,

if the method presented in [20,21] does not allow one to

build simplified models, it is likely to be of great help

when searching MS� among several possibilities. Such quan-

titative selection methods are meaningful with a quantitative

definition of the b-condition. Nevertheless, for qualitative
b-conditions, the choice of MS� should be also balanced by

non-computational arguments.
4.5. Parameter estimation
The present method has another benefit in the estimation of

model parameter values from measured output data. This

operation is made easier with a simplified rather than a com-

plex model. Usually, the values of the searched parameters

are provided by the minimization of a cost function

http://rsif.royalsocietypublishing.org/


noisy data 
s.d. = 0.05original 

noisy data
s.d. = 0.1

de
ns

ity

M

MS

MS2

4

3

2

1

0

yV,E yV,E yV,E

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure 10. 100 parameter estimations have been carried out using a hybrid method of optimization (L-BFGS-B þ SAAN [40,41]) for a time series of 80 values
reaching the asymptotic state X1ðP1 ¼ 1:81; D1 ¼ 1:34;MV;1 ¼ 1:69;mE;1 ¼ 4:93Þ. The density of the optimized parameters is here represented for yV,E, a
hardly measurable parameter. Also, the original dataset has been noised following a normal law with a standard deviation of successively 0.05 and 0.1. For each of
those noised datasets, parameter estimations have also been made. The original value of the parameter that has given the studied dataset is denoted by the vertical
dashed line. It appears that the estimation is more robust for MS2 (dotted line) as we observed higher density value for the dominant modality (3.5 at �yV,E ¼

0.27) whereas the original value ( yV,E ¼ 0.34) is recovered using M (solid line) and MS (dashed line). Adding noise to the dataset randomly leads to different, more
or less robust, estimations for M and MS while MS2 ones stay equally robust around the same value.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120613

11

 on February 11, 2013rsif.royalsocietypublishing.orgDownloaded from 
representing the error between the model outputs and

measured data. It appears that the higher the number of par-

ameters is, the more complex the cost function will be

because its degrees of freedom are increased. When the cost

function is highly complex, its minimization is made difficult

and leads one sometimes to choose a local rather than the

global minimum of the cost function, thus providing a set

of parameters that is not optimal. In decreasing the number

of parameters, the method directly decreases the number of

degrees of freedom of the cost function, and its complexity,

which is highly interesting from a computational point of

view. As an example, let us consider a situation where 10

values per parameter are chosen; so a total of 10m simulations

with m parameters. Let us assume that one simulation takes

reasonably 1026 seconds; it will take more than 3 years to esti-

mate the cost function of an m ¼ 14 parameters model,

whereas 30 h would be sufficient with m ¼ 11 parameters.

In order to perform a parameter estimation in our example,

artificial data have been generated using the model M (see

equations (3.1)) that have been integrated until reaching the

asymptotic state. For each state variable, the last 80 values have

been considered as a set of data. That time series has been used

to build a cost function based on the sum of the squares of the

errors. Parameter estimation has been done using a hybrid

method of optimization mixing both a stochastic (simulated

annealing) and a deterministic (Newton’s method) search. The

parameters of the three models (the original model and the sim-

plified ones) have been estimated to compare the ability of all

models to retrieve the original parameter set. Results are pre-

sented in figures 10 and 11. The yield parameter, yV,E, has been
chosen as an example since its estimation has practical interests:

it is a non-measurable parameter that is usually estimated from

other parameters (for a method of parameter estimation in

DEB theory, see [29,39]). Figure 10 shows that only one of the sim-

plified models, MS, is able to recover the original value of that

parameter. However, for a modeller who does not know a
priori the value of a parameter, the robustness of the estimation

is what matters. The use of the second simplified model, MS2 ,

leads to a more robust estimation since we observe higher density

values for the dominant modality, whereas the original value is

recovered using M and MS. In this case, MS2 represents the best

alternative to M. Eventually, let us underline the complex

nature of the cost function, which has trapped the estimation

method into local minima, very close to 0.

4.6. Comparison with other simplification and reduction
methods

Since this method tackles a very important question, several

publications have already proposed some approaches. It is

important to underline what is original in the presented

method. In Apri et al. [25], the authors propose a simplifica-

tion method very similar in principle to the present one.

More particularly, their concept of the admissible region is

close to our definition of the b-condition. They also analyse

the parameter ranges associated with that specific region to

define possible simplifications. In the presented method, we

aim at simplifying the model without affecting the nature

of its structure; by only gathering parameters that are implied

in the same process and by taking care to not change original
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formulations. Thus, a mechanistic model will stay mechanis-

tic. The same methodological divergence appears when

comparing our work with some other systematic simplifica-

tion methods [12,14,18]. Eventually, we underline how far

the classification given by a regression tree approach is

useful to understand how some parameters shape the distri-

bution of the outputs. The method presented in this paper

can thus be seen as some kind of parameter sensitivity

analysis of a model with the purpose of simplifying it.

Finally, one methodological point remains to be mentioned.

Once the b-condition has been determined, attention must be

paid to the most efficient way to tune the tree-building algor-

ithm. Indeed, as said before, defining when the tree has

efficiently isolated Vb is not a trivial part in the application of

the method. The difficulty here lies in the measure of the

deviance between a mother-class and its two daughters.

Indeed, if it appears tempting to classify V until Vb is efficiently

isolated, one would not have to forget that a classification with-

out a control on the rate of the decrease of the deviance is

hardly meaningful. Such a control is fundamental because with-

out a stopping criterion based on the deviance measurement,

the algorithm could end up creating classes among almost

homogeneous distribution of outputs. Also, both La and Va

will vary depending on the formulation of the model. Both

the deviance measure and the tree building parameter values

may change to obtain a meaningful classification. Examples of

other kinds of deviance measurement are given in [42].
5. Conclusion and perspectives
Complex models are usually intractable from a mathematical

point of view. Thus, it appears difficult to isolate the part of

such a complex model that is actually responsible for its
dynamical behaviour. This task is not easy to reach, although

it would obviously be of great help for modellers of complex

systems. The method presented in this article does not fully

reach this goal, but is a first step towards it. Indeed, in the

case of models with asymptotically stable states, the

method described here establishes an explicit relation

between the model outputs and the subsets of the parameter

space leading to these outputs.

The method thus has several direct benefits. It simplifies

the model by reducing the number of parameters, which

leads to less parameter estimations, a great advantage when

thinking of estimations obtained from experiments and/or

field observations. Parameter optimization is made easier

and can be sometimes more robust. Such a benefit is mean-

ingful especially for non-measurable parameters. When

some parameters cannot be estimated in the simplified

model chosen through a quantitative selection method

(Akaike, least squares, etc.), the choice of the simplified

model must be done by making the balance between a selec-

tion based on qualitative interests (e.g. loss of a non-

measurable parameter, more robust parameter estimation)

and quantitative criteria. Finally, it allows a quantitative

evaluation of the model capacity to reach its objectives.

Indeed, as said previously, the size of Vb has to be quite

large compared with that of Va; otherwise some parts of

the M model have to be reconsidered. It is noticeable that

the method has only been tested for steady-state models.

However, by construction, an extension to more complex

dynamics is possible. Indeed, the only difference for the

application of the method will lie in the splitting criterion

used in the tree construction algorithm. If we here used the

Euclidean distance between steady-state outputs in the state

variable space for evaluating the deviance criteria, comparing

two sets of aperiodic curves deserves another approach, as
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discussed in [42]. In the case of other types of attractors (limit

cycles or even more complex attractors), the use of the

Haussdorf distance in the phase space could be used to

evaluate the deviance.

Another issue appears when thinking about the classifi-

cation tree method itself. It is currently based on an

orthogonal structure of the hyperplanes used to split the

parameter domain. It is not correct to approximate a highly

non-convex Lb with an m-orthotope. Oblique splits, also

known as linear combination splits, as described in [43]

could have improved the method in such a case since their

polytopial structure would allow one to maximize Lb > LS.

Nonetheless, using them to create a tree will lead the model-

ler to express some parameters as a function of others

without controlling that they are still involved in the same

type of processes. Thus, oblique splits would affect the

structure of the model and that is why they are not of interest

from our point of view.

Also, the question of the exportability of the simplified

model arises. It is important to underline that the obtained

simplified model, once validated, only makes sense when

used to give the same kind of outputs as Vb. Again, the sim-

plified model has to be seen as an approximation of the

general one for a given b-condition. Thus, in the presented

simplification example, it would be meaningless to work

with the transitory phase of MS or MS2 since only the asymp-

totic phase of the dynamics has been used for the tree

construction. It appears clear that our approach highly

depends on the definition of the a- and b-conditions, which

determine both the domain on which the tree will be built

and the possible degree of simplification applicable to the

original model. Thus, being able to quantify the effect of

the definition of those two conditions on the simplification

capabilities of our approach is definitely a topic for future

investigations.
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tive comments that helped improve the manuscript. The PhD
scholarship for Y.E. came from the French Ministry of Research and
Education. The authors thank Claude Manté, Christian Tamburini,
Mehdi Boutrif and Starrlight Augustine for fruitful discussions
during the work.
Appendix A
In this work, the deviance formulation for each class p of the

tree is

R̂ð pÞ ¼
X
Xk[p

k Xk � �Xp k2;

where �Xp is the average of the observations of X belonging to

region p, with k : k the usual norm in Rn. Starting with the

whole sample F, let us consider a splitting variable pj and

a threshold s on this variable. We then define the region p1

for which pj � s, p1 ¼ fXk¼1;...;rjpj � sg, and the region p2

for which pj . s, p2 ¼ fXk¼1;...;rjpj . sg, such that p ¼ p1 <

p2 and p1 > p2 ¼ ø. The within class sum of squares can be

calculated in each of these parts of m-orthotopes:

R̂ð p1Þ ¼
X

Xk[p1

k Xk � �X p1
k2

and R̂ð p2Þ ¼
X

Xk[p2

k Xk � �X p2
k2 :

For any split s belonging to the set S of all candidate

splits, p is subdivided into p1 and p2, and the variation in

deviance is given by

DR̂ðs; pÞ ¼ R̂ð pÞ � ½R̂ð p1Þ þ R̂ð p2Þ�:

The selected split s* of p into p1 and p2 is the split that

most decreases R̂ð p1Þ þ R̂ð p2Þ such that

DR̂ðs�; pÞ ¼ max
s[S

DR̂ðs; pÞ:

The decrease in R̂ð pÞ when splitting a region p into p1 and

p2 is guaranteed because the following property is verified for

any p:

R̂ð pÞ ¼ R̂ð p1Þ þ R̂ð p2Þ þ
r1r2

r1 þ r2
k �X p1

� �X p2
k2

with r1 and r2 the number of observations respectively in

p1 and p2. This property arising from the decomposition of

the inertia and the Huyghens theorem is verified because

the criterion R̂ð pÞ is a sum of squared distances.
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