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empirical studies.
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Individual metabolism, predator–prey relationships, and the role of biodiversity are major factors

underlying the dynamics of food webs and their response to environmental variability. Despite their

crucial, complementary and interacting influences, they are usually not considered simultaneously in

current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their

interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate

a mathematical model of the size-structured dynamics of marine communities which integrates

mechanistically individual, population and community levels. The model represents the transfer of

energy generated in both time and size by an infinite number of interacting fish species spanning from

very small to very large species. It is based on standard individual level assumptions of the Dynamic

Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based

predation and competition for food. Resting on the inter-specific body-size scaling relationships of the

DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary

solutions of the model as well as the transient solutions arising when environmental signals

(e.g. variability of primary production and temperature) propagate through the ecosystem are studied

using numerical simulations. It is shown that in the absence of density-dependent feedback processes,

the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-

dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing

stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-

linear stationary spectrum matches well with empirical studies. When oscillations of primary
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production are simulated, the model predicts that the variability propagates along the spectrum in a

given frequency-dependent size range before decreasing for larger sizes. At the species level, the

simulations show that small and large species dominate the community successively (small species

being more abundant at small sizes and large species being more abundant at large sizes) and that the

total biomass of a species decreases with its maximal size which again corroborates empirical studies.

Our results indicate that the simultaneous consideration of individual growth and reproduction, size-

structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing

process allow realistic community structure and dynamics to emerge without any arbitrary prescrip-

tion. As a logical consequence of our model construction and a basis for future studies, we define the

function F as the relative contribution of each species to the total biomass of the ecosystem, for any

given size. We argue that this function is a measure of the functional role of biodiversity characterizing

the impact of the structure of the community (its species composition) on its function (the relative

proportions of losses, dissipation and biological work).

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Marine ecosystems are submitted to strong anthropogenic
pressures, directly through the effects of fisheries, pollutions
and ocean acidification and indirectly through the effects of
climate changes and their interaction with natural climate varia-
bility. Understanding and predicting those effects and their
potential consequences on the services that ecosystems provide
to humanity is of major and urgent importance. Amongst the
major impediments that should be overcome to answer this need,
the links between individual energetic, population dynamics and
the functional role of biological diversity at the community level
are of critical importance. Addressing those issues requires to link
individual, population and community into a unique mechanistic
framework. Current efforts to model marine ecosystems can be
schematically classified into two categories. First, species based
models (e.g. Polovina, 1984; Walters et al., 1997; Pauly et al.,
2000; Fulton et al., 2004) where a large number of unstructured
species/populations interact through prescribed predator–prey
relationships and are represented with no explicit consideration
of the physiology and life history of individuals. They thus neglect
important phenomenon such as the importance of size in con-
trolling metabolism (Gillooly et al., 2001), predator–prey interac-
tions (Shin and Cury, 2004) and life-history omnivory (i.e. diet
changes when organisms grow) (Walters and Kitchell, 2001;
Abrams, 2011; Hartvig et al., 2011). Second, size-spectrum models
where size rather than taxonomic identity is considered as the
major determinant of trophic interactions and metabolism along
which the ecosystem dynamics is projected ‘‘from bacteria to
whales’’ disregarding the metabolic and physiological differences
between species (e.g. Platt and Denman, 1978; Silvert and Platt,
1978, 1980; Dickie et al., 1987; Cushing, 1992; Platt and Denman,
1997; Arino et al., 2004; Benoit and Rochet, 2004; Maury et al.,
2007a, 2007b; Blanchard et al., 2009). Most previous attempts to
derive size spectrum from mass balance equations were based on
mean rates. They were thus neglecting the diversity of life
histories in the community (Arino et al., 2004; Benoit and
Rochet, 2004; Maury et al., 2007a, 2007b; Blanchard et al.,
2009). A few recent studies have attempted to integrate life history
differences between species into size-spectrum models at a steady
state (Thygesen et al., 2005; Andersen and Beyer, 2006; Andersen
et al., 2009) or dynamically (Shin and Cury, 2004; Hartvig et al.,
2011) but based on empirical allometric arguments.

In the present paper, we use a trait-based approach (Andersen

and Beyer, 2006; Bruggeman and Kooijman, 2007; Follows et al.,

2007) to derive mechanistically the dynamic size-spectrum of

a generic marine community of consumer organisms from the

Dynamic Energy Budget (Kooijman, 2000, 2010; Nisbet et al.,

2000; Sousa et al., 2010) of species-specific individuals. This

implies three steps. First, a generic DEB model is expressed to

describe the bioenergetics of any individual of any given species
all along its life cycle. In the framework of the DEB theory,
maximum size captures mechanistically most of the inter-
specific differences of metabolism and life history (Kooijman,
1986). This allows all the parameters of the individual model
to be expressed as simple functions of the maximum size of the
considered species. Second, the corresponding physiologically
structured species-specific population dynamics model (Metz
and Dieckman, 1986; Tuljapurkar and Caswell, 1997; De Roos,
1997; Kooi and Kelpin, 2003; Nisbet and Mc Cauley, 2010) is
derived from the individual model and simplified. Maximum
species size is considered to be a continuous variable so that the
population dynamics of all the possible species in the community
can be expressed with the same population model and species-
specific populations can be related to each other through oppor-
tunistic size-based trophic interactions. Finally, the system is
integrated both analytically and numerically along the maximum
size dimension to infer the emerging dynamics of the community.
The stationary solutions of the model as well as the transient
solutions arising when environmental signals (e.g. variability of
primary production and temperature) propagate through the
ecosystem are studied using numerical simulations.
2. Methods

Ecosystems include producers (autotrophic organisms) which
convert solar energy and mineral nutrients into biomass, con-
sumers (heterotrophic organisms) which gain energy solely by
predation and decomposers which gain energy by turning dead
organic material back into mineral nutrients. The present study
focuses on consumers. Decomposers are ignored and primary
producers, which are not the subject of the paper but are needed
to provide food to the consumers, are treated non-mechanistically
as a simple ‘‘source term’’.

2.1. Population dynamics of producers

Producers are represented roughly, avoiding an explicit mod-
eling of their growth and reproduction. For that purpose, the
dynamics of their total biomass (expressed in term of energy) is
simply assumed to follow a logistic equation distributed over the
range of structural volume of producers [V0, V1] according to a
power law with a constant exponent �1 (e.g. Sheldon et al.,
1972). Accordingly, the size-dependent dynamics of producers is
expressed as follows:
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Table 1
formulation of the DEB powers used in the present study as a function of the state

variables E and V and the primary DEB parameters (cf. Table 1) (from Kooijman,

2000).

Fluxes (J s�1) Formulation

Ingestion _pk
X ¼ f _p

k
Xmgf

kV2=3

Assimilation _pk
A ¼ kX _p

k
X ¼ f _p

k
Am
gf kV2=3

Catabolic _pk
C ¼

½E�

½Ek
G �þk½E�

Ek
G

h i
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þ _pM

� �
V

� �
Structural maintenance _pk
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with
_
x

p

t,V (J cm�3 m�3) being the distribution function of the
energy content of the producer population at time tA ½0, þ1�,
volume of structure V, in 1 m3 of seawater, Gp

t (J m�3) being the
total energy content of the producer population at time t in 1 m3

of seawater, V0 and V1 being respectively the minimum and the
maximum structural volume of producers, _rp (s�1) being the
growth rate of the producer population, pcct (J m�3) being a time-
dependent forcing function representing the producers carrying
capacity which is either constant or sinusoidal and _l

p

t,V (s�1)
being the predatory mortality rate affecting producers at time t

and structural volume V (see Eq. (13) and Appendix D for the
expression of predatory mortality).

2.2. Dynamic energy budget of consumer organisms at the

individual level

2.2.1. Energy fluxes

The Dynamic Energy Budget (DEB) theory (e.g. Kooijman,
2000, 2010) describes mechanistically the physiological processes
involved in the acquisition and use of energy by individual
organisms. The energetics of individuals are represented using
three state variables: energy stored in the reserve compartment E

(J), structural volume V (cm3) and energy stored in the reproduc-
tive buffer ER (J). Energy fluxes between those compartments are
made explicit through the use of powers _p (J s�1) (see Fig. 1).
For any given individual of species k, energy in food is ingested
ð _pk

XÞ and assimilated ð _pk
AÞ by organisms before being stocked into

reserves. Reserves are mobilized ( _pk
C) and a fixed fraction k of the

energy utilized from reserves is allocated to growth of structural
material ( _pk

G) and somatic maintenance ( _pk
M), the remaining

fraction 1�k being devoted to maturity maintenance ( _pk
J ) and

development or reproduction ( _pk
R). Only a fraction kR of the

energy in ER is turned into eggs reserve.
Table 1 provides the mathematical formulation of all the basic

DEB powers as a function of the state variables E and V and the
primary DEB parameters defined in Table 1. By convention, [ ]
stands for volumetric concentrations and { } for surface-specific
concentrations so that [E]¼E/V and _pk

X ¼ _pk
X

n o
V2=3for instance

(Kooijman, 2000). All the rates have a dot like _r to indicate the
dimension ‘‘per time’’.

Maturity is supposed to occur after a fixed investment into
development. If the maturity maintenance rate is equal to the
structural maintenance rate ( _pk

M¼ _p
k
J ), as assumed here, this

implies that the structural volume at puberty is proportional to
the species-specific maximal structural volume Vk

m as Vk
p ¼ apVk

m

with ap being a constant independent of the species k (Kooijman,
2010).
Fig. 1. State variables (black compartments) and energy fluxes (arrows) involved

in the bioenergetics of any individual organism of species k in the framework of

the DEB theory (see text for details).
2.2.2. Temperature effect on physiological rates

Due to its major importance in controlling chemical reactions,
temperature strongly influences metabolic rates of living organ-
isms (Clarke and Johnston, 1999; Kooijman, 2000; Pörtner, 2002;
Clarke, 2004; Speakman, 2005). Despite its purely molecular
basis, the description of Arrhenius’s based on the van’t Hoff
equation fits well temperature effects on the physiological rates
of organisms at the individual, population and community levels
(Kooijman, 2000; Clarke and Fraser, 2004). Such effects are
especially important to take into account given that most marine
organisms are poikilotherms and hence their internal tempera-
ture varies dramatically according to changes in ambient water
temperature and metabolic activity. The Arrhenius equation does
not keep a mechanistic meaning at the individual level and
furthermore at the population and community levels (Clarke,
2004; Clarke and Fraser, 2004). However, it still provides a good
statistical description of temperature effects on metabolic rates,
even if purely chemical effects are altered by complex processes
acting at these scales (Clarke and Johnston, 1999; Gillooly et al.,
2001, 2002; Enquist et al., 2003; Clarke, 2004; Clarke and Fraser,
2004). In our model, the Arrhenius temperature-dependent
correction factor is used to correct the DEB primary parameters
representing metabolic rates (f _pk

Xmg and _pM

� �
) as well as the

probability of disease _z and the swimming speed. The Arrhenius
factor is expressed as follows:

_rðTÞ ¼ _rðTref Þe
TA

Tref
�

TA
T

� �
ð2Þ

with _r being the temperature-dependent rate, T being the
temperature (K), Tref (K), the reference temperature and TA (K), a
parameter (the ‘‘Arrhenius temperature’’ which equals Ea the
activation energy divided by R the gas constant).
2.3. From one individual to a population of consumers

In this section we derive mechanistically a DEB based physio-
logically structured population dynamics model (Metz and
Dieckman, 1986; Tuljapurkar and Caswell, 1997; De Roos, 1997;
Kooi and Kelpin, 2003; Nisbet and Mc Cauley, 2010) for any given
consumer species k from the individual DEB presented in Section
2.2. Such models link the individual level (i-level) to the popula-
tion level (p-level) and hence enable to explicitly include the
diversity of individual physiological states into the population
dynamics. The bio-ecological processes considered are predation,
mortality, ingestion, assimilation, storage into reserves and use of
energy for maintenance, growth, development and reproduction.
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2.3.1. Definitions

A given species k is characterized by its maximal structural
volume Vk

m (cm3) at food saturation which is, for simplifying the
notations, noted k. kA ½Vkmin

m , Vkmax
m � with Vkmin

m and Vkmax
m being

the maximal structural volume of respectively the smallest and
the largest species in the considered community. The structural
volume at birth (hatching) of species k is noted Vk

b (cm3). We
neglect the embryonic phase so that, for any given species k, the
structural volume V (cm3) belongs to ½Vk

b, k�. The structural
volume is supposed to be proportional to the cubed length of
organisms V ¼ ðdlÞ3 with d being a constant shape parameter
which we assume to be species-independent in a given commu-
nity. The energy in the reserve compartment of species k belongs
to ½0, Ek

m� with Ek
m ¼ k Ek

m

h i
, Ek

m

h i
being the maximal energy

density in the reserve compartment of species k (Kooijman, 2000).
The population level state variable (p-state) considered here is

xk
t,E,V (J cm�3 J�1 cm�3 m�3), the distribution function of the total

(including both reserve and structure) energy content of species k, at
time tA ½0, þ1�, energy in the reserve compartment E, volume of
structure V, in 1 m3 of seawater. xk

t,E,V is a density with respect to
species-specific maximum structural volume, reserve energy, struc-
tural volume and seawater volume. Therefore, the total quantity of
energy (J) contained by the species [k, kþdk] in the range of
structural volume [V1, V2] per m3 of seawater at time t is given byZ V2

V1

Z Ek
m

0
xk

t,E,V dEdV dk ð3Þ

From xk
t,E,V one can define Nk

t,E,V (cm�3 J�1 cm�3 m�3), the
distribution function of the number of individuals of species k in
terms of species-specific maximum structural volume, reserve
energy and structural volume (t, k, E, V) in 1 m3 of seawater, with

xk
t,E,V ¼ ðEþdcVÞNk

t,E,V ð4Þ

d being the density of structural biomass (g cm�3) and c being
the energy content of one unit of structural biomass (J g�1) which
are both supposed to be constant in time according to the strong
homeostasis hypothesis (Kooijman, 2000).

2.3.2. Dynamics for one consumer population

Strictly, a physiologically structured population model based on
the unstructured DEB theory should consider at least five dimensions
(the dimensions of the i-state vector) plus time (Kooi and Kelpin,
2003): structural volume, amount of energy in the reserve compart-
ment, amount of energy invested into maturation, amount of energy
stored in the reproductive buffer and amount of reactive oxydative
substances (ROS) in the cells which are responsible for ageing and
control aging mortality. However, for the sake of simplicity, we make
strong assumptions to limit the number of dimensions of the
physiological space to one plus time. These assumptions are:
(1)
 The assumption that the embryo stage (eggþyolk larvae) can
be neglected i.e. that organisms start their life as juveniles
(feeding larvae) which start feeding immediately after birth
and the assumption that the transition from juveniles to
adults (puberty) occurs at fixed sizes proportional to the
species-specific maximum sizes. Those assumptions allow to
remove from the physiological space the amount of energy
invested in maturation which, in the DEB framework, is
responsible for lifestage transitions;
(2)
 The assumption that spawning occurs continuously in time
after puberty and that the energy allocated to reproduction is
immediately turned into juveniles without being stored
allows to remove the reproductive buffer from the physio-
logical space;
(3)
 The assumption that the ageing mortality rate, which actually
depends on the feeding and temperature history of indivi-
duals, can be replaced by a mean species-specific ageing
mortality curve allows to remove the amount of ROS from
the physiological space.
Given those assumptions, the number of dimensions of the
physiological space is reduced to two (E and V) and the basic
equation used to describe the population dynamics (i.e. the
fluxes of individuals of species k through the reserve energy/
structural volume space) combines two transport terms for
representing the reserve dynamics and the structural growth
process and four sink terms for predatory, ageing, starvation
and disease mortality processes. It is written as follows
for any species k in the domain ½0,Ek

m� � ½Vb,k� assuming given
initial conditions at t¼0 and a Dirichlet boundary condi-
tion in V¼Vb to consider the reproductive input into the
population:

@tN
k
t,E,V ¼�@V ð _gk

t,E,V Nk
t,E,V Þ�@Eð _Zk

t,E,V Nk
t,E,V Þ�ð

_l
k

t,E,Vþ _a
k
t,E,Vþ _s

k
t,E,Vþ _z

k
t,E,V ÞN

k
t,E,V

Nk
0,E,V ¼Nk,0

E,V

_gk
t,E,Vb

Nk
t,E,Vb
¼ _rk

t,E

8>>><
>>>:

ð5Þ

where _g (cm3 s�1) is the growth rate of structural volume, _Z
(J s�1) is the rate of change of reserves, _l (s�1) is the
mortality rate due to predation, _a (s�1) is the ageing mortal-
ity, _s (s�1) is the starvation mortality rate and _z (s�1) is the
disease mortality rate, _r (cm�3 J�1 m�3 s�1) is the reproduc-
tive input and Nk,0

E,V the initial state of the system. For all those
coefficients, the subscripts k, t, E and V refer respectively to
species (maximum structural volume), time, energy in the
reserves and volume of structure. Making the extra assump-
tion that
(4)
 the dynamics of the reserve pool is fast compared to the
dynamics of structure and mortality (see Appendix A for the
mathematical details about this assumption and its conse-
quences and Appendix B for an analysis of its validity) implies
that, at the time scale relevant for population dynamics, the
reserve density is always in or near equilibrium. This enables
to reduce the reserve energy density distribution to a dirac
distribution located on its equilibrium value which equals the
scaled functional response times the maximum energy density
in the reserves ([E]*¼ f[Em]). This allows the removal of the
transport term representing the reserve dynamics from Eq. (5).
Removing E* from the subscripts for clarity, this leads to the
following equation of evolution (see Appendix A for its derivation):

@tN
k
t,V ¼�@V ð _gNk

t,V Þ�ð
_l

k

t,Vþ _a
k
t,Vþ _s

k
t,Vþ _z

k
t,V ÞN

k
t,V

Nk
0,V ¼Nk,0

V

_gVb
Nk

t,Vb
¼ _rðNk

Þ

8>>><
>>>: ð6Þ

Eq. (6) is then expressed in term of energy (see Appendix C for
the detailed calculations). This leads to

@tx
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t,Vx
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0,V ¼ x0

V

_gk
t,Vb

xk
t,Vb
¼ _rk
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The derivation of explicit expressions for all the coefficients of
Eq. (7) ( _g, _l, _a, _s, _z, _r) is provided in the six sub-sections below.



Fig. 2. Selectivity function su,w versus prey length and predator length.
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2.3.2.1. The predation process: calculation of _l
k

t,V and _l
p

t,V . Predation
is supposed to be opportunistic and controlled by the ratio of sizes
between organisms (all organisms can be potentially predators and
preys at the same time, depending on their relative size) and the
availability of preys to predators which is supposed to be propor-
tional to their level of local spatial aggregation.

To calculate the quantity of food available to a predator from
the density of prey, the size-based constraint on predation is first
specified. For that purpose, the selectivity su,wA[0,1] is defined as
the probability that a consumer organism of structural volume u

eats an encountered organism of structural volume w. Assuming
that predation can occur if the ratio of predator length over prey
length is comprised between two r1 and r2 extreme values, su,w is
a normalized function expressed as the product of two sigmoid
functions which account for the limitation of ingestion when
preys are either too small or too large (Fig. 2, see Appendix D for
the equation of selectivity):

The second constraint on predation, the local level of spatial
aggregation of prey, is then specified and linked to the density of
prey. Most pelagic organisms exhibit schooling (fish) or swarming
(zooplankton) behaviors. It has been shown both theoretically (Vicsek
et al., 1995; Czirok and Vicsek, 2000; Tu, 2000) and empirically
(Becco et al., 2006) that such aggregative structures appear above a
critical organisms density and are not sustained below this threshold.
Hence, pelagic populations exhibit phase transitions when this
threshold is reached, like many physical systems. This macroscopic
phenomenon results from complex auto-organization processes
which are beyond the scope of the present work. Here, we assume
that schooling/swarming has important consequences on the preda-
tion process by allowing prey availability to predators to increase
suddenly when prey density reaches a critical level and dense aggre-
gations such as schools and swarms appear.

Assuming that schools are strictly size- and species-specific
(Fréon and Misund, 1999) and appear when the biomass con-
tained in a volume proportional to the structural body volume
reaches a size- and species-independent constant (Makris et al.,
2009), the probability of schooling ps is expressed as follows:

psk
t,V ¼

ðVxk
t,V Þ

b

ðVxk
t,V Þ

b
þsbcrit

ð8Þ
With scrit (J J�1 m�3 m�3) being the biomass density thresh-
old above which the probability of schooling is larger than 0.5 and
b a constant parameter characterizing the shape of the threshold
function.

Given those size- and aggregation-based constraints, the energy
content pt,u (J m�3) of all the prey available (schooled) and selected
by predators of structural volume u is expressed as follows:

pt,u ¼

Z Vkmax
m

v ¼ V
kmin
b

su,v

Z Vkmax
m

k ¼ v
psk

t,vx
k
t,vdk

" #
dvþ

Z V1

V0

su,v
_
x

p

t,vdv ð9Þ

A scaled size-dependent Holling type II functional response
without predator interference is assumed. It is calculated as
follows for a species k predator of structural volume u:

f k
t,u ¼

pt,u

_ck=uwþpt,u

, Rþ��!
f

0;1½½ ð10Þ

with _ck being a constant parameter (searching rate-1) (J s�1) and
uw the volume of water explored by a predator of structural
volume u per unit of time (m3 s�1) (which is supposed to be
proportional to its swimming speed which is proportional to body
length – Froese and Pauly, 2000 – hence w is taken equal to 1/3).

According to the DEB theory, the individual assimilation rate
is proportional to the scaled functional response and body sur-
face: _pk

A ¼ kX _p
k
X ¼ f _p

k
Am
gf kV2=3 (Table 1). It follows that Ek

t,udk du dt

(J m�3), the total amount of energy preyed by all predators of
species comprised in the range [k, kþdk] and structural volume
comprised in the range [u, uþdu] at time t during dt in 1 m3 of
water, is expressed as

Ek
t,udk du dt¼Nk

t,u
_pk

X dk du dt

¼Nk
t,u

f _pk
Amg

kX
f k

t,uu1=3 dk du dt

¼
xk

t,u

dcuþEk
t,u

f _pk
Amg

kX
f k

t,uu2=3 dk du dt

¼
f _pk

Amg

kX

f k
t,ux

k
t,uu�1=3

dcþ f k
t,u½E

k
m�

du dk dt ð11Þ

According to the hypothesis of opportunistic predation (preys
of a given weight are eaten in proportion to their selected
available biomass relatively to the biomass of all possible preys
available), the total amount of energy E=q

t,=w dq dw dt (J m�3)
preyed by all predators on both all consumer preys of species
[q, qþdq] and all producer organisms in the range of structural
volume [w, wþdw] at time t during dt in 1 m3 of water can be
calculated (see Appendix D for the details of this calculation) and
is used to derive the expression of the instantaneous mortality
rate exerted by all predators on species q and structural volume w

preys at time t:

_l
q

t,w ¼
E=q

t,=w

xq
t,w

¼
psq

t,w

kX

Z Vkmax
m

k ¼ Vb

Z k

u ¼ Vb

f _pk
Amgx

k
t,uu�1=3su,w

ck�1=3dc
uw þðdcþ Ek

m

h i
Þpt,u

2
64

3
75du dk

ð12Þ

and the instantaneous mortality rate exerted by all predators on
producer organisms of structural volume w at time t:

_l
p

t,w ¼
E=p

t,=w
_
x

p

t,w

¼
1

kX

Z Vkmax
m

k ¼ Vb

Z k

u ¼ Vb

f _pk
Amgx

k
t,uu�1=3su,w

ck1=3dc
uw þðdcþ Ek

m

h i
Þpt,u

2
64

3
75du dk ð13Þ

2.3.2.2. The growth process: calculation of _gk
t,V . The growth in

length cannot be negative for most marine organisms which



O. Maury, J.-C. Poggiale / Journal of Theoretical Biology 324 (2013) 52–71 57
have an exo- or an endo-skeleton such as vertebrates, most
molluscs, crustaceans, etc. Since the shape parameter d is sup-
posed to be constant (V¼(dl)3), the growth of structural volume
cannot be negative either (see the paragraph on starvation
mortality for the treatment of mass conservation). Using the
assumption of fast dynamics of the reserves compared to
the dynamics of the structure, the instantaneous growth rate of
structural volume can therefore be expressed as

_gk
t,V ¼

½ _pk
G�
þ

½EG�
¼

kf _pk
Amgf

k
t,V V2=3

�½ _pM �V

kf k
t,V ½E

k
m�þ½EG�

" #þ
ð14Þ

with [x]þ being the function defined by
½x�þ ¼ x if xZ0

½x�þ ¼ 0 if xo0

(
and

all the DEB parameters being defined Table 2.
2.3.2.3. The reproduction process: calculation of _rk
t . For a given

species, all size larger than the species-specific size at puberty of
both sex are supposed to reproduce permanently but only female
sexual products are considered in the reproductive flux. As for the
expression of the growth rate and because the contribution to
reproduction cannot be negative, the function [ ]þ is used to
express the reproductive input into the system (see the paragraph
on starvation mortality for the treatment of mass conservation and
the supplementary materials for more details)

_rk
t ¼ ð1�MeggÞfkR

Z k

Vk
p

Nk
t,V ½ _p

k
R�
þdV ð15Þ
Table 2
Designation, dimension, value and source of the parameters used for numerical simula

Parameter Designation

DEB parameters

f _pk
Amg

Maximum surface-specific assimilation rate

½Ek
m�

Maximum reserve density

n Energy conductance

_pM

� �
Maintenance rate

EG½ � Volume specific cost of growth

Vk
p

Structural volume at puberty

k Fraction of the utilized energy which is allocated to growth and somatic

maintenance

kR fraction of the energy in the gonads which is turned into eggs
€ha

Ageing acceleration

kX Assimilation efficiency

TA Arrhenius temperature

d Shape coefficient

Other parameters
_c searching rate�1 of the functional response

r1 Mean minimum ratio of predator length over prey length

r2 Mean maximum ratio of predator length over prey length

a1 Variability of the minimum ratio of predator length over prey length

a2 Variability of the minimum ratio of predator length over prey length

scrit biomass density threshold above which the probability of schooling is la

than 0.5

b shape of the probability of schooling function.
_z maximum mortality rate due to disease

j sex-ratio (mean proportion of females)

Megg fraction of the spawned eggs which are not fertilized

d density of biomass

c energy content of biomass
_r p Growth rate of the producer population

pcct Carrying capacity of the producer population
with fA ½0,1� being the sex-ratio in the population supposed to be
independent of size, Megg A ½0;1� being the fraction of the spawned
eggs which are not fertilized, kR being the fraction of the energy in
the gonads which is turned into eggs.

After development, Eq. (15) gives

_rk
t ¼ ð1�MeggÞfkRð1�kÞ

Z k

Vk
p

xk
t,V

ðf k
t,V ½E

k
m�þdcÞ

 

�
f k

t,V ½E
k
m�ð½EG�nV�1=3

þ½ _pM�Þ

½EG�þkf k
t,V ½E

k
m�

�
½ _pM �V

k
p

kV

" #þ1AdV ð16Þ

with n¼ f _pk
Amg=½E

k
m�, the energy conductance (cm s�1) which is

independent of species (Kooijman, 2000).

2.3.2.4. The starvation mortality: calculation of _sk
t,V . When star-

vation occurs, i.e. when the food ration is not sufficient to meet
organism’s needs, growth and/or reproduction cease and struc-
tural materials of the body are lysed and used for maintaining the
most important physiological functions necessary for survival
(Kooijman, 2000). The starvation process leads to a quick weak-
ening of organisms which increases mortality. At the ecosystem
level, starvation is a net dissipation of energy. To conserve the
mass in a consistent way when growth and/or reproduction
cease due to insufficient food intake (cf. Eqs. (14) and (16)), it is
considered that the quantity of energy which is needed for
maintenance but which cannot be provided by food intake is
removed from the ecosystem (Maury et al., 2007a). In this
perspective, starvation acts as a mortality term at the level of
tions.

Dimension Value Source

J m�2 s�1
af _p Amg

k1=3

af _p Amg
¼ 22:5 J cm�3 d�1

8<
:

Kooijman (2010)

J m�3
a½Em �k

1=3

a½Em � ¼ 1125 J cm�4

(
Kooijman (2010)

cm s�1
n¼ f _pk

Amg=½E
k
m� ¼ 0:02 cm d�1 Kooijman (2010)

J m�3 s�1 18 J cm�3 d�1 Kooijman (2010)

J m�3 2800 J cm�3 Kooijman (2010)

m3 apk

ap ¼ 0:38

(
Derived from Kooijman

(2010)

/ 0.8 Derived from Kooijman

(2010)

/ 0.95 Kooijman, 2010

s�2 10�8d�2 Present study

/ 0.8 Maury et al. (2007a)

/ 8000 Maury et al. (2007a)

/ 0.2466 Present study

J s�1 1020 Present study

/ 3 Maury et al. (2007a)

/ 30 Maury et al. (2007a)

/ 3 Maury et al. (2007a)

/ 0.3 Maury et al. (2007a)

rger J J�1 m�3 m�3 1022 Present study

/ 3 Present study

s�1 0.05 d�1 Present study

/ 0.5 Present study

/ 0 Present study

kg m�3 1 g cm�3 /

J kg�1 4.103 J g�1 Kooijman (2010)

s�1 0.5 d�1 Present study

J m�3 1027 J m�3 Present study
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the ecosystem and the starvation mortality coefficient can be
expressed as follows using Eqs. (14) and (16):

_sk
t,V ¼

Nk
t,V

xk
t,V

ð½� _pk
G�
þ þ½� _pk

R�
þ Þ

¼
1

ðf k
t,V ½E

k
m�þdcÞ

EG½ �
½ _pM��kf _p

k
Amgf

k
t,V V�1=3

½EG�þkf k
t,V ½E

k
m�

" #þ0
@

þð1�kÞ
½ _pM �V

k
p

kV
�

f k
t,V ½E

k
m�ð½EG�nV�1=3

þ½ _pM �Þ

½EG�þkf k
t,V ½E

k
m�

" #þ1A ð17Þ

2.3.2.5. The disease mortality: calculation of _zk
t,V . Infectious dise-

ases, either caused by viral, bacterial, protozoan and fungal
pathogens or by metazoan parasites, are important components
of the ecology of wild marine animals and can have a dramatic
negative impact on natural populations (Levy and Wood, 1992).
Epizootic are common and often lead to massive mortality levels,
causing major losses in populations. It is generally accepted that
the prevalence of disease is linked to the spatial density of
individuals in a population (Moyle and Cech, 2004; Ogut and
Reno, 2004). In the present study we hypothesize that disease
mortality acts as a density-dependent phenomenon regulating
population densities and stabilizing the overall ecosystem
dynamics. In this perspective, we assume that the prevalence of
disease and the associated mortality are both proportional to the
probability of schooling

_zk
t,V ¼ _z psk

t,V ð18Þ

with _z (s�1) being a parameter standing for the maximum
mortality rate due to disease which is reached when the
probability of schooling is one.

2.3.2.6. The ageing mortality: calculation of _ak
t,V . In the framework

of the DEB theory, the ageing mortality is assumed to be
proportional to the amount of cellular damages. Such damages
accumulate at a rate proportional to the amount of DNA lesions
which increases at a rate proportional to the intra-cellular
concentration of reactive oydative substances (ROS) which is
proportional to the respiration rate not associated to assimi-
lation (Kooijman, 2000, 2001, 2010; van Leeuwen et al., 2010).
Consequently, the low metabolic rate of large organisms explains
that they exhibit much longer life span than small organisms (e.g.,
Speakman, 2005).

Given this simple set of mechanisms, Kooijman (2000) shows
that the ageing mortality (the so-called ‘‘hazard rate’’) can be
expressed as follows:

ak
t ¼

€ha

Vt

Z t1 ¼ t

t1 ¼ 0
Vt1

dt1�Vbtþ
½ _pM�

½EG�

Z t1 ¼ t

t1 ¼ 0

Z t2 ¼ t1

t2 ¼ 0
Vt2

dt2dt1

� �
ð19Þ

With €ha, the ageing acceleration (s�2).
Assuming that the functional response f k

t,V can be replaced by
its mean value f

k
during the time interval [0, t], the mean time

taken by an individual of species k to reach size (structural
volume) V can be calculated and is used in Eq. (19) to estimate
the mean size-dependant ageing mortality rate for species k at
size (structural volume) V. Appendix D provides the explicit
expression of ak

V and more details about its derivation.

2.4. From population to community

In this section we use the inter-specific scaling rules of the DEB
theory to derive the dynamics of the consumer’s community by
integrating explicitly the species-specific physiologically struc-
tured population dynamics model derived in Section 2.3. over all
possible species. The resulting model links the population level
(p-level) to the community level (c-level) and explicitly incorpo-
rates the diversity of life histories (species) in the community
dynamics.

2.4.1. Definitions

To consider the dynamics at the scale of the whole community,
we define the aggregated state variable

zt,E,V ¼

Z Vkmax
m

V
xk

t,E,V dk ð20Þ

which is the distribution function of the total energy content of
the consumer community including all the possible species
(including both reserve and structure of all the species)
(J J�1 cm�3 m�3) at (t, E, V) in 1 m3 of seawater. zt,E,V is indepen-
dent of k, it is a density with respect to reserve energy, structural
volume and seawater volume. Hence, the total quantity of energy
contained by all consumer species in the range of structural
weight [V1, V2] per m3 of seawater is given by

Z V2

V1

Z k Ek
m

� �
0

zt,E,V dEdV ð21Þ

zt,E,V can easily be converted into the more usual ‘‘normalized
biomass size-spectrum’’ using d and c assuming that they are
both constant parameters over species and sizes.

2.4.2. Dynamics

The dynamics of all the possible species in the community have
to be integrated to derive the dynamics of the community. In this
perspective, assuming that there is an infinite number of potential
life histories (species) in the community, Eq. (7) can be integrated
over the range of species larger than V. Using the properties of

extensive DEB parameters (Kooijman, 2000) to express f _pk
Amg, ½Em�

k,

_ck and Vk
p as functions of the species-specific asymptotic structural

volume ðf _pk
Amg ¼ af _pAmg

k1=3; ½Ek
m� ¼ a Em½ �k

1=3; _ck
¼ a _c k1=3; Vk

p ¼ apkÞ,

the dynamics of the whole consumer community can be expressed
as follows (see Appendix E for more details about the derivation of
this equation):

@zt,V

@t
¼�

@
R Vkmax

m

V
_gk

t,Vx
k
t,V dk

@V
þdc

Z Vkmax
m

V

_gk
t,Vx

k
t,V

Vðdcþ f k
t,Va Em½ �k

1=3
Þ

 !
dk

þa Em½ �

Z Vkmax
m

V

V
@f k

t,V

@V þ f k
t,V

� �
_gk

t,V k1=3xk
t,V

Vðdcþ f k
t,Va Em½ �k

1=3
Þ

0
BB@

1
CCAdk

�

Z Vkmax
m

V
ð _l

k

t,Vþ _a
k
t,Vþ _s

k
t,Vþ _z

k
t,V Þx

k
t,V dk ð22Þ

Let us now define the function Fk
t,V so that

xk
t,V ¼ zt,VF

k
t,VR Vkmax

m

V Fk
t,V dk¼ 1

8<
: ð23Þ

The function Fk
t,V expresses the relative contribution of each

species k to the total energy content of the ecosystem, for any
given structural volume V. Eq. (22) can be expressed using Fk

t,V to
let the c-level aggregated variable zt,V appear instead of the
p-level local variablesxk

t,V

@zt,V

@t
¼�

@ zt,V

R Vkmax
m

V
_gk

t,VF
k
t,V dk

� �
@V

þdczt,V

Z Vkmax
m

V

_gk
t,VF

k
t,V

V dcþ f k
t,Va Em½ �k

1=3
� �

0
@

1
Adk
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þa Em½ �zt,V

Z Vkmax
m

V

V
@f k

t,V

@V þ f k
t,V

� �
_gk

t,V k1=3Fk
t,V

V dcþ f k
t,Va Em½ �k

1=3
� �

0
BB@

1
CCAdk

�zt,V

Z Vkmax
m

V
Fk

t,V
_l

k

t,Vþ _a
k
t,Vþ _s

k
t,Vþ _z

k
t,V

� �
dk ð24Þ

With

f k1

t,V ¼

R Vkmax
m

v ¼ 0 su,vzt,v

R Vkmax
m

v psk
t,vF

k
t,vdk

h i
dvþ

R V1

V0
su,v
_
x

p

t,vdv

a _c k1=3
1

uw þ
R Vkmax

m

v ¼ 0 su,vzt,v

R Vkmax
m

v psk
t,vF

k
t,vdk

h i
dvþ

R V1

V0
su,v
_
x

p

t,vdv

ð24Þ

Eq. (24) provides the dynamics of the entire community,
integrating the dynamics of every possible single species without
making them explicit. An analytical resolution of Eq. (24) is out of
reach at present but numerical approximations can be envisioned,
using parametric or non-parametric (such as B-splines which
would be fitted to empirical data) approximations of the
unknown Fk

t,V function.

2.5. Numerical approximation

Being coupled, the dynamics of producers and the dynamics of
consumers are integrated simultaneously at the p-level. A time-
splitting method is used for that purpose. Eq. (1), which repre-
sents the dynamics of producers, is first integrated numerically
using a first order in time semi-implicit scheme (see Appendix F).
Semi-implicit numerical schemes improve the stability of the
numerical approximation compared to fully explicit methods. Eq.
(7) is then integrated numerically forward in time along the
species dimension (the maximum structural volume k) and the
structural volume V dimension. The same discretization based
on 100 logarithmically distributed size classes is used for both
dimensions (see Appendix F). A first order upwind finite differ-
ence scheme is used for approximating the advection term of
Eq. (7) along the V dimension (see Appendix F. All the integrals
used in Eq. (F1) and in the calculation of the coefficients of
Eq. (F3) are evaluated using simple first order approximations asZ b

a
xdx�

Xi bð Þ

i að Þ

xidxi ð25Þ

Most of the parameters used in the model are DEB para-
meters which have a clear physiological significance and are well
Fig. 3. Stationary size spectrum in numbers (numerical abundance) for the 100 indiv
documented in the literature. Other parameters come from both
experimental and theoretical studies. For some secondary para-
meters however, such as pcct, the carrying and rt, the growth rate
of producers biomass, values have been fixed arbitrarily to obtain
realistic results. Parameters values used in the simulations are
provided in Table 2 with the corresponding references.

2.6. Simulation experiments

All the numerical experiments are conducted using the refer-
ence values of the parameters given in Table 2. In a first set of
simulations with stable environmental conditions, the existence
of a linear steady state is tested by running the models during 100
years for an arbitrary set of 100 species covering the whole range
of possible maximum sizes from 1 mm to 2 m.

In a second set of simulations, the non-stationary behavior
of the model is studied in the case of environmental variability.
For that purpose, sinusoidal oscillations of the carrying capacity
of primary producers (100% amplitude) or temperature (10 1C
amplitude) are simulated, with 1 and 5 year periodicity.
3. Results

3.1. Steady state

In stable environmental conditions (constant primary produc-
tion and constant temperature), both the numerical abundance
and the biomass of the community converge from any positive
initial distribution to a stationary state characterized by non-
linear log–log size-spectra (Figs. 3 and 4). For individual species,
the spectra in abundance (or biomass) are slightly decreasing
(or slightly increasing) until a critical size above which they
decrease steadily for a given size range before decreasing sharply
for the largest sizes due to the slowdown of growth and the
increase of ageing mortality for the largest sizes close to the
asymptotic length. The species size-spectra exhibit lower abun-
dance/biomass and the change of slope occur at larger sizes for
larger species. At the level of the community, the size spectra are
slightly curved (with a very slight increase for the biomass
spectra) until 0.45 cm and then exhibit a quasi-linear section in
the range 10�2

�1 m before a rapid decrease for large sizes
(Figs. 3 and 4).

Fig. 5(a–f) provides the reader with the species-dependent
ageing, probability of schooling, predatory and disease mortality
idual species considered (thin lines) and for the community (thick crossed line);



Fig. 5. Stationary solution of the model as a function of body length for all the species considered. From left to right and top to bottom: (a) ageing mortality; (b) probability

of schooling (c) predatory mortality; (d) disease mortality; (e) structural growth rate; and (f) reproductive output.

Fig. 4. Stationary size spectrum in biomass for the 100 individual species considered (thin lines) and for the community (thick crossed line);
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rates as well as the structural growth rate and the reproductive
output per size classes at steady state. At steady state, the log–log
ageing mortality curve (Fig. 5a) exhibits a characteristic increas-
ing shape which is the same for all species with low values at
small sizes and larger values at large sizes. Compared to small
species, large species have lower ageing mortalities at small sizes
and higher at large sizes. The species-specific size-dependant
probability of schooling (Fig. 5b) is dome shaped with maximum
values above 0.5 occurring for sizes in the range 1.5–3 cm and
species having maximum length in between 10 and 40 cm. The
log–log predatory mortality curve at steady state (Fig. 5c) is dome
shaped for individual species and exhibit high values for small
species only. At the community level, the predation mortality is
maximal at 1.5 cm and decreases sharply above. The disease
mortality curves (Fig. 5d) are also dome shaped for individual
species. They reach high values for medium to large size species,
in a narrow range of size which increases with the ultimate size.
Fig. 6. Stationary body size spectrum for the 100 individual species considered (thin

Fig. 7. StationaryF, functions. Each line represents, for a given str
The structural growth rate as a function of organism size is dome
shaped for every species, reaching a maximum for intermediate to
large sizes and then decreasing down to zero for length equal to
L1 (Fig. 5e). The log–log contribution of each size class to egg
production (Rt) at steady state (Fig. 5f) exhibit a decreasing trend
with a downward curvature for sizes above 1.4 m. Large species
reproduce at larger sizes and produce less egg than small species.

When the reference values of the parameters (Table 1) are
used, the slope of the quasi-linear section of the stationary
biomass length-spectrum equals �3.45 which is equivalent to a
slope equal to �1.15 for the structural volume-spectrum (Fig. 6).

The stationary F function emerging from our simulation is
provided Fig. 7. It represents the frequency distribution of species
(maximal structural volume) for every size (structural volume) in
the community. As such, it characterizes the structure of the
community in term of the relative contribution of the various
species. The F function is a dome-shaped function which equals
gray lines), the community (thick black line) and fitted power law (dashed line).

uctural volume, the frequency distribution of each species k.
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zero for every species with a maximal structural volume smaller
than the structural volume considered and with a long tail slowly
decreasing to zero for large species. It is narrow for small sizes
and more flattened and stretched for large sizes. The F function is
truncated at the largest maximal structural volume considered.

Fig. 8 provides the total biomass (size integrated), the biomass
of juveniles and the reproductive input (a) and the total biomass
and eggs biomass per egg production (b) for every life history
(maximal structural volume) considered. It shows that the total
biomass, biomass of eggs and egg production are non-linearly
decreasing with the size of the species considered (Fig. 8a).
Fig. 8. (a) species-specific density of total biomass, 1 mm biomass and eggs production

biomass relative to egg production

Fig. 9. Biomass size spectrum of the community in oscillatory environmental conditio

period and 100% amplitude; (b) oscillation of temperature with a 1 year period and 10 1

and (d) oscillation of temperature with a 5 year period and 10 1C amplitude.
However, the total biomass by unit of egg produced is a decreas-
ing function of the maximal size while the total biomass per egg
production increases faster and faster with maximal size (Fig. 8b).

3.2. Non-stationary dynamics

Sinusoidal oscillations of the carrying capacity of producers
have been simulated around the mean level considered pre-
viously, considering two characteristic periods: 1 year and 5
years. Those oscillations generate bumps propagating along the
community size-spectrum while flattening when moving from
as a function of maximal length and (b) species-specific total biomass and 1 mm

ns. From left to right and top to bottom: (a) oscillation of producers with a 1 year

C amplitude; (c) oscillation of producers with a 5 year period and 100% amplitude;
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small to large sizes (Fig. 9a and b). The variability of the
community spectrum is maximal over a given range of size and
then it declines until a critical size where the oscillations
disappear and the spectrum is quasi-stationary. Both the range
of variable sizes and the critical size above which there is no more
variability depend on the periodicity of the oscillations of produ-
cers, the critical size being around 30 cm for yearly oscillations
and 100 cm for 5 years oscillations.
4. Discussion

4.1. Linking individual metabolism, population dynamics and

community diversity

The dynamics of marine communities emerges from complex
interactions between individual metabolisms, food web processes
and life history diversity in the community. Understanding the
response of communities to environmental variability requires a
framework which relates and integrates the various processes
involved, at the individual, population and community levels.
To our knowledge, our study constitutes the first attempt to
derive mechanistically the dynamic size-spectrum of a diversified
aquatic community including an infinitely large number of inter-
acting species covering a broad range of life histories from the
Dynamic Energy Budget of individual organisms. Our model is
strictly based on the DEB theory. As such, it integrates mechan-
istically the following biological processes:
�
 surface-dependent food intake,

�
 distinction between reserve and structure,

�
 allocation of energy from reserves to growth and reproduc-

tion/development,

�
 volume-specific somatic and maturity maintenance,

�
 ageing mortality,

�
 starvation mortality,

�
 life history diversity through inter-specific scaling rules of

maximum surface-specific assimilation rates, maximum reserve
energy densities, structural volumes at puberty and birth, half
saturation constants of the Holling functional response,

�
 temperature-dependence of physiological rates.

Furthermore, a set of important ecological processes are also
integrated in the model:
�
 size-structured opportunistic trophic interactions where pro-
ducers are potential prey and where all consumer species are
potentially prey and predator simultaneously depending on
the predator/prey size ratios (Jennings et al., 2001; Jennings
et al., 2002; Shin and Cury, 2004; Maury et al., 2007a),

�
 predators competition for preys,

Finally, density-dependent processes are hypothesized to sta-
bilize the model:
�
 density-dependent schooling probability,

�
 schooling-dependent availability of prey,

�
 schooling-dependent disease mortality.
We believe that accounting for those key biological and
ecological processes simultaneously while keeping the functional
complexity limited is a necessary step toward the development of
the next generation of ecosystem models which will have to
embody a high degree of mechanistic details, ecological realism,
generality and theoretical consistency to ultimately achieve reli-
able predictive capabilities (Maury, 2010). Furthermore, all the
biological and ecological processes considered are tight together
and the model keeps a reasonable number of parameters. Besides,
the strong mechanistic basis of the model and its individual
level bases give a biological and ecological meaning to variables
and parameters and hence allow for empirical testing and
interpretation.

4.2. Unstable oscillations and the need for density-dependent

feedbacks

In the absence of density-dependent regulation, the model
exhibits unstable behavior with the propagation of traveling
waves along the size dimension at both the species and commu-
nity levels (not shown). This is not surprising since such unstable
oscillations have been shown to be a likely behavior of simpler
non-linear size-spectra models (Arino et al., 2004; Datta et al.,
2011; Hartvig et al., 2011). From a biological point of view, those
instabilities are linked to the existence of delayed feedbacks such
as the ‘‘predator pit’’ effect (Bakun, 2006, 2009). Since small short-
lived prey species have a shorter life cycle and hence vary more
rapidly than larger long-lived predator species, any increase of
their abundance results in a temporary decrease of the predatory
mortality they undergo. Once a critical threshold is reached, the
predatory mortality becomes negligible and the short lived prey
species populations grow exponentially until the long-lived pre-
dator species have grown sufficiently to exert again a predatory
control and lower the prey species abundance again. Then the
opposite effect takes place and the predatory mortality that short
lived prey species undergo increases suddenly as their abundance
decreases (this is the ‘‘predator pit’’ in which prey populations
fall) leading to the exhaustion of their populations. This ‘‘predator
pit’’ effect is likely to generate oscillations which might be further
enhanced by cultivation effect (Walters and Kitchell, 2001; Bakun
and Weeks, 2006; Vergnon et al., 2009). The cultivation effect is
due to the fact that prey species often consume the eggs and
larvae of their predators thus exerting a control on their popula-
tions which might contribute to out of phase oscillations between
predator and prey.

Though not necessarily unrealistic in highly variable systems
such as upwelling systems, unstable oscillations are generally
not observed in reality where strong density-dependent pro-
cesses must be acting to explain the stability of community
size spectra (e.g. Jennings, 2005). In the present study we propose
that density-dependent schooling associated with schooling-
dependent availability of prey and disease mortality could play
a strong stabilizing role in marine ecosystems. Including those
processes in our simulations indeed allows to stabilize the system
and to obtain realistic and interpretable steady state solutions.
However, schooling is likely not the only important density-
dependent phenomenon affecting marine populations and other
feedbacks are probably playing an important role in nature.
Amongst those feedbacks, spatial effects are likely important.
The ability of top predators to move quickly toward areas with
higher prey density is indeed dramatically increasing their fora-
ging efficiency which probably enhances their importance as
regulatory factors (e.g. Moloney et al., 2010). As a matter of fact,
top predators are large and mobile and they cover broad spatial
ranges with potentially extensive movements and migrations to
find the highest prey concentrations in the ocean (Fonteneau
et al., 2008; Weimerskirch et al., 2004; Block et al., 2003). Because
they occupy the highest position in food webs, top predators exert
high predation levels (Bax, 1998; Essington et al., 2002) leading to
a strong top-down control on their prey: they harvest the crests
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and dampen the high frequency pulses and oscillations exhibited
by lower levels (Moloney et al., 2010). Having wide distributional
ranges and exhibiting extensive migrations, they also prey on
different and asynchronous regional ecosystems potentially inshore
and offshore (Young et al., 2001) or epipelagic and mesopelagic
(Potier et al., 2007; Ménard et al., 2007). By preying on many
different ecosystems, top predators have the ability to emancipate
from local prey variations and they probably act as strong
stabilizing factors, regulating the variability of lower levels and
increasing the stability of the whole ecosystem (Moloney et al.,
2010). The non-spatialized 0-D analysis presented here does
not allow an explicit representation of those spatial processes.
They should however not be underestimated and they should be
included in future studies (Maury, 2010).

4.3. The density-dependence of schooling

In our model, schooling is used to obtain stable, non-
oscillatory stationary solutions. We assume that aggregative
behavior, which is a prominent feature of marine organisms, only
leads to schooling when the density of size- and species-specific
biomass is sufficient. Below this critical biomass density, schools
are not sustainable and organisms are assumed to be dispersed.
Schooling is the result of complex auto-organization phenomenon
(Gautrais et al., 2008) and the existence of a clear density-
dependent transition phase between dispersed and schooled fish
distribution has been demonstrated both empirically (Becco et al.,
2006) and theoretically (Vicsek et al., 1995; Czirok and Vicsek,
2000; Tu, 2000) and observed in the field (Makris et al., 2009).
Given that the size-dependent density of biomass of a species
depends on its ultimate length (Figs. 3 and 4) and that the critical
biomass density at which schooling occurs is assumed to be a
constant, the species-specific size-dependent probability of
schooling is also dependent of maximum length (Fig. 5b). This
corroborates the common observation that small individuals of
small species most of the time form schools while small indivi-
duals of large species such as tunas remain dispersed and are
extremely rarely observed (Fonteneau com. pers.). In the same
perspective, Fréon and Misund (1999) report that northern
anchovies (Engraulis mordax) (Lm�25 cm) acquire the physio-
logical ability to school at 10–15 mm, Atlantic menhaden
(Brevoortia tyrannus) (Lm�50 cm) at 22–25 mm and Atlantic
herring (Clupea harengus) (Lm�45 cm) at 35–40 mm. Large
fish such as skipjack tuna (Katsuwonus pelamis) (Lm�110 cm)
or yellowfin tuna (Thunnus albacares) (Lm�180 cm) appear in
commercial purse seine fisheries targeting free swimming schools
respectively at 20 cm and 30 cm, thus indicating that below
those sizes, tunas are mostly dispersed and escape predators
and commercial purse-seiners (e.g. ICCAT, 2009). Our simulation
results provide a consistent explanation for those various hetero-
geneous observations. They furthermore show that species with a
maximum size around 10 cm reach the highest probabilities of
schooling while very large and very small species never reach
high probabilities of schooling (Fig. 5b).

4.4. Stationary solutions

When the carrying capacity of producers is kept constant, the
model converges toward a stationary size-spectrum independent
of initial conditions and quasi-linear in log–log with a slope �3.5
within a wide range of sizes (Fig. 6). This stationary solution is
obtained when the transport of individuals (in and out of each
size class) is exactly balanced by mortality. This corroborates
the results of previous theoretical studies showing that size-
structured predator–prey models admit a linear log–log size-
spectrum as a stationary solution (Silvert and Platt, 1980; Arino
et al., 2004; Benoit and Rochet, 2004; Maury et al., 2007a) as far as
the smallest and largest sizes are put apart (Shin and Cury, 2004;
Maury et al., 2007a). Furthermore, using our reference set of
parameters (Table 2), the slope of the quasi-linear section of the
spectrum matches fairly well the values reported in empirical
studies (e.g. MacPherson and Gordoa, 1996; Zhou and Huntley,
1997; Quiñones et al., 2003; Marquet et al., 2005). For the small
size classes of the fish community spectrum, the model departs
from the linear solution and is markedly curved. If smaller
communities of consumers such as copepods for instance were
considered in the analysis, their community size-spectrum would
likely fill the gap for small sizes, leading to a quasi-linear
spectrum at the scale of the ecosystem i.e. including small and
large communities.

The log–log spectrum also departs from the linear solution for
the largest sizes, where only the largest species remain and where
their biomass is substantially influenced by ageing mortality
which is no longer negligible (Fig. 5a). This curvature of the
community spectrum would be translated to larger sizes if larger
species were considered in the simulation (the largest species
considered here has a maximal body length of 2 m only).
Furthermore, Kooijman (2010) and Van Leeuwen et al. (2010)
improved the representation of ageing in the DEB theory allowing
for more flexibility of the ageing acceleration. Including this new
formulation in our model would increase the suddenness of the
increase of ageing mortality, thus modifying the curvature of the
community spectrum by increasing its steepness and shifting its
occurrence toward larger sizes. This would also increase the time
during which large species reproduce and hence increase (less
negative) the slope of the community spectrum by increasing the
abundance of large species.

In term of species-specific size distribution, the stationary
solution of the model, whether expressed in number or in
biomass (Figs. 3 and 4), clearly shows that small and large species
dominate the community successively, small species being more
abundant than large ones at small sizes and large species being
more abundant at large sizes. This has to be related to their
different life histories: large species have higher reproduction
rates than small ones (Kooijman, 2000) but they reach puberty at
such a larger size (proportional to their maximal length) that
despite their higher growth rate (Fig. 5e), they reproduce much
later that small species and hence have a much longer generation
time. The dependence of generation time on maximum size
explains that small species produce more eggs and are more
abundant than large one (Fig. 5f). Furthermore, our results predict
that the stationary species-specific total biomass decreases with
the maximal size of the species considered (Fig. 8a). This corro-
borates empirical observations (Blueweiss et al., 1978; Marquet
et al., 2005; Woodward et al., 2005; White et al., 2007) as well as
theoretical studies (Andersen and Beyer, 2006) which show that
the abundance of natural fish populations decreases with the
maximal size of the considered species. It should also be noted
that the biomass of eggs decreases faster than the total biomass
with the size of the species considered (Fig. 8a) and that the total
biomass per egg production increases with the size of the species
considered (Fig. 8b), demonstrating that large species are ‘‘stor-
ing’’ biomass more efficiently than small ones.

4.5. Non-stationary solutions

When oscillations of primary production are simulated, the
model predicts that the variability propagates along the spectrum
(Fig. 9a and c) in a given size range before decreasing for larger
sizes. The size range corresponding to the maximum amplitude of
the relative energy density, that we call the ‘‘resonant range’’, is
frequency dependent, it depends on the period of the primary
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production oscillations. High frequency oscillations of primary
production lead to a ‘‘resonant range’’ limited to small sizes
whereas low frequency oscillations lead to a ‘‘resonant range’’
also reaching larger sizes.

Small species feed on producers or on very close size ranges.
They furthermore grow and die very quickly (their characteristic
time – the time needed to reach the size of puberty – is shorter
than the period of phytoplankton oscillations – 1 year-) so that
they can adapt very rapidly to changes and track primary
production variability. In consequence, they oscillate more or less
in phase with producers (Fig. 9a): they are bottom-up controlled
by primary production oscillations. When the maximum body
size increases, the characteristic time also increases. When the
characteristic time exceeds the period of phytoplankton oscilla-
tions, the system leaves the ‘‘resonant range’’. Furthermore,
organisms larger than the ‘‘resonant range’’ can feed on a wide
range of prey size covering several out of phase oscillations. They
are emancipated from the temporary disappearance of a certain
size range of their prey since they can compensate by reporting
their predation effort on abundant size classes: they are not
influenced by bottom-up effects of phytoplankton high frequency
oscillations.

Oscillations of the size spectrum have been reported by
various authors (Jiménez et al., 1989; Edvardsen et al., 2002;
Fossheim et al., 2005). For instance, Fossheim et al. (2005,
Figure 5) observed oscillations for small sizes (up to 1 mm) of
zooplankton size spectrum recorded with an Optical Plankton
Counter (OPC). Given their frequency and the very fast growth
rate of zooplankton, those oscillations could be linked to nyctim-
eral oscillations of the zooplankton feeding activity.

4.6. Is the F function a measure of functional diversity at the

community level?

When attempting to aggregate the full species-based model
into a model of the community size-spectrum which does not
include an explicit representation of the species level (see Section
2.4), an undetermined function Fk

t,V appears in the calculations.
The function Fk

t,V is an emergent property of the system con-
sidered. It expresses the relative contribution of each species k to
the total energy content (biomass) of the ecosystem, for any given
structural volume V. When the system is in a stationary state, Fk

t,V

is also stationary (Fig. 7) and clearly shows that the range of
species contributing most to the biomass of a size class changes
dramatically with the size class considered. The function Fk

t,V

admits a maximum with respect to the maximal volume. At a
given structural volume, the most abundant species belong to a
range of maximal sizes which translates toward large species
(more large species and less small species) when the structural
volume considered increases. Given that small and large species
do not have the same metabolic parameters, the function Fk

t,V

characterizes the speed and dispersion of energy flow along the
size dimension and the relative proportions of losses (mortalities),
dissipation (maintenance and other dissipative processes of the
metabolism) and biological work (growth and reproduction) at
the community level. Any change of the function Fk

t,V implies
changes of those emergent metabolic properties at the commu-
nity level. Consequently, the Fk

t,V function can be considered as a
measure of the functional role of biodiversity characterizing the
impact of the structure of the community (its species composi-
tion) on its function (the various energy fluxes).

The Fk
t,V function is unknown but it could be approached

either using parametric or non-parametric (such as B-splines)
approximations fitted to numerical simulations using the full
species-based model. This is straightforward when the system
is in a steady state. However, when it is not, in the case of
environmental fluctuations for instance, the Fk
t,V function

becomes time-dependent (not shown), expressing the fact that
small species are quicker to adapt to environmental changes than
large species. In this non-stationary case, the behavior of the Fk

t,V

function would need to be studied in more details. This would
include further theoretical and numerical studies as well as
empirical studies in the field.
5. Conclusion

In this paper we attempt to link the bio-energetic and life
history of species-specific individuals to the size-structured
dynamics of their populations and the dynamics of their commu-
nity which includes an infinite number of interacting populations.
The numerical results presented here indicate that the simulta-
neous consideration of individual growth and reproduction, size-
structured trophic interactions, the diversity of life-history traits
and a density-dependent stabilizing process allow realistic com-
munity structure and dynamics to emerge without any arbitrary
prescription. Dealing explicitly with all the possible species in a
community would not be possible without the generality of the
DEB theory which captures the diversity of all the possible living
forms on earth in a single mechanistic framework (Kooijman,
2010; Sousa et al., 2010). It furthermore explains the inter-
specific scaling relationships of life history parameters which
are commonly observed in nature and demonstrates that they are
due to the fact that some DEB parameters are constant amongst
species while some others are proportional to the maximum
volumetric length of the species considered. This allows repre-
senting the energetic and major life history traits of all possible
species in a community with the same set of unspecific taxa-
dependent DEB parameters. The existence of such scaling para-
meters which are independent of the species considered is a
fundamental property of the DEB theory. They emphasize the
fundamental importance of the size of the species and imply that
functional (in terms of energetic and life history) biodiversity has
actually far less degrees of freedom that one would expect given
the high number of possible species. This major finding might
open the way to a mechanistic understanding of biodiversity and
ecosystems dynamics. The present paper attempts to walk a step
in that direction.
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Appendix A. Model reduction

Quantities characteristic of the processes considered are used
to adimensionalize the model. Through this classical process, fast
and slow dynamics appear. They are characterized by a small
parameter e. We then derive a reduced model passing to the
limit e¼0.
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The full model is given by Eq. (5.) which is rewritten below for
convenience:

@tN
k
t,E,V ¼�@V ðgk

t,E,V Nk
t,E,V Þ�@EðZk

t,E,V Nk
t,E,V Þ

�ðlk
t,E,Vþak

t,E,Vþsk
t,E,Vþzk

t,E,V ÞN
k
t,E,V

Nk
0,E,V ¼Nk,0

E,V

gk
t,E,Vb

Nk
t,E,Vb
¼ rk

t,E

8>>>>>><
>>>>>>:

ðA1Þ

In what follows the letter S refers to characteristic scales (for
instance SV for the structural volume scale). For a variable with
dimension, e.g. V, the notation ~V refers to the adimensionalized
variable.

Let us define the characteristic scales V ¼ SV
~V in the structural

volume dimension, E¼ SE
~E in the reserve dimension, k¼ Sk

~k in
the species dimension and t¼ St

~t for time. Let us also define for
the density of population abundance N a new adimentionalized
state variable so that

NðV ,E,tÞ ¼ SN
~Nð ~V , ~E, ~tÞ ðA2Þ

All the processes involved in the dynamic of the system are also
adimentionalized as follows:
�
 Structural growth:

_g ¼ Sg ~g ðA3Þ
�
 Reserve dynamics:

_Z ¼ SZ ~Z ðA4Þ
�
 Mortality:

_lþ _aþ _sþ _z ¼ SMð
~lþ ~aþ ~sþ ~zÞ ðA5Þ
�
 Newborn input:

_r ¼ SR ~r ðA6Þ

The density function ~N
~k
~t , ~E , ~V follows:

@~t
~N
~k
~t , ~E , ~V ¼�

StSg
SV
ð ~g ~N

~k
~t , ~E , ~V Þ�

St SZ
SE
@ ~E ð ~Z ~N

~k
~t , ~E , ~V Þ

�StSM
~l
~k
~t , ~E , ~V þ ~a

~k
~t , ~E , ~V þ

~s
~k
~t , ~E , ~V þ

~z
~k
~t , ~E , ~V

� �
~N
~k
~t , ~E , ~V

~N
~k

0, ~E , ~V ¼
~N
~k ,0
~E , ~V

8>>>>>><
>>>>>>:

ðA7Þ

To introduce scale differences in the characteristic dimensions,
let us define a small parameter 9e9{1 and assume that

Sg=SV

SZ=SE
¼ e ðA8Þ

St ¼
SV

Sg
ðA9Þ

StSM ¼ e ðA10Þ

SR

SZ
¼ e ðA11Þ

Using those assumptions, Eq. (A7) can be rewritten as follows:

@~t
~N
~k
~t , ~E , ~V ¼�@ ~V ð ~g ~N

~k
~t , ~E , ~V Þ�

1

e @ ~E ð
~Z ~N

~k
~t , ~E , ~V Þ

�e ~l
~k
~t , ~E , ~V þ ~a

~k
~t , ~E , ~V þ

~s
~k
~t , ~E , ~V þ

~z
~k
~t , ~E , ~V

� �
~N
~k
~t , ~E , ~V ðA12Þ
Multiplying both sides of Eq. (A12) by e and taking e¼ 0 leads to

@ ~E ð ~Z ~N
~k
~t , ~E , ~V Þ ¼ 0 ðA13Þ

which is equivalent to

~Z ~N
~k
~t , ~E , ~V ¼ c~t , ~V ðA14Þ

with c a constant independent of ~E

_Z ¼ V
d E½ �

dt
þ

E

V

dV

dt

) ~Z ¼ SE

SV

Sg
SZ

~V
d½ ~E�

d~t
þ

SE

SV

Sg
SZ

~E
~V

d ~V

d~t
¼ e ~V

d½ ~E�

d~t
þ
~E
~V

d ~V

d~t

 !
ðA15Þ

Taking e¼ 0 leads to ~Z ¼ 0 so that c¼0.

Since ~Z is always strictly positive except when ~E ¼ ~E
n

andR ~Em
~E ¼ 0

~N
~k
~t , ~E , ~V d ~E40, Eq. (A14) implies that ~N

~k
~t , ~E , ~V is always null

except for ~E ¼ ~E
n

so that the density function ~N
~k
~t , ~E , ~V is proportional

to a dirac function in ~E
n

~N
~k
~t , ~E , ~V ¼ dð ~E� ~E

n

Þ

Z ~Em

~E ¼ 0

~N
~k
~t , ~E , ~V d ~E ðA16Þ

Let us now define the new state variable of the reduced model
by integrating Eq. (A7.) on ð0, ~EmÞ

N ~t , ~V ¼

Z ~Em

0

~N
~k
~t , ~E , ~V d ~E ðA17Þ

Let us also define the average of any variable along the reserve
profile as

g ¼

R ~Em

0
~gð ~EÞdð ~E� ~E

n
Þd ~ER ~Em

0 dð ~E� ~E
n

Þd ~E
¼ ~gð ~E

n
Þ ðA18Þ

Using this notation, we integrate Eq. (A7) over ð0, ~EmÞ in order
to derive an equation of evolution for N
�
 Time derivative term:Z ~Em

0
@~t
~N
~k
~t , ~E , ~V d ~E ¼ @~t N

~k
~t , ~V ðA19Þ
�
 Structural growth terms:Z ~Em

0
@ ~V ð ~g ~N

~k
~t , ~E , ~V Þd

~E ¼ @ ~V ðgN
~k
~t , ~V Þ ðA20Þ
�
 Mortality terms:Z ~Em

0

~l
~k
~t , ~E , ~V þ ~a

~k
~t , ~E , ~V þ

~s
~k
~t , ~E , ~V þ

~z
~k
~t , ~E , ~V

� �
~N
~k
~t , ~E , ~V d ~E

¼ l
~k
~t , ~V þa

~k
~t , ~V þs

~k
~t , ~V þz

~k
~t , ~V

� �
N
~k
~t , ~V ðA21Þ
�
 Recruitment term:Z ~Em

0

~g ~V b

~N
~k
~t , ~E , ~V b

d ~E ¼ g ~V N
~k
~t , ~V b

ðA22Þ
�
 Thanks to the Neuman boundary condition on ~E and to the
scaling assumptions, the advection term in E vanishes.
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The reduced model for the new state variable N finally reads

@~t N
~k
~t , ~V ¼�@ ~V gV N

~k
~t , ~V

� �
�e l

~k
~t , ~V þa

~k
~t , ~V þs

~k
~t , ~V þz

~k
~t , ~V

� �
N
~k
~t , ~V

N
~k

0, ~V ¼N
~k ,0
~V

g ~V b
N
~k

t, ~V b
¼ erðN ~kÞ

8>>>>>><
>>>>>>:

ðA23Þ

which is easily put back into dimensional form and results in the
following model:

@tN
k
t,En ,V ¼�@V _gNk

t,En ,V

� �
� _l

k

t,En ,Vþ _a
k
t,En ,Vþ _s

k
t,En ,Vþ _z

k
t,En ,V

� �
Nk

t,En ,V

Nk
0,En ,V ¼Nk,0

En ,V

_gVb
Nk

t,En ,Vb
¼ _r Nk
� �

8>>>>><
>>>>>:

ðA24Þ

Appendix B. Validity of scaling assumptions

We have to verify that Sg=SV

SZ=SE
¼ e with 9e9{1 is an acceptable

assumption. For that purpose, let us define the characteristic
dimensions for energy in the reserve compartment and for struc-
tural volume as the maximum value that they can possibly take:

SE ¼ ½Em�Vm

SV ¼ Vm

(
ðB1Þ

Let us now define Sg as the maximum growth rate that a given
species can experiment as a function of f and e. Simple calcula-
tions show that _g is maximized for

Vmax _g ¼
2kf _pAm

ge

3½ _pM �

� �3

ðB2Þ
Fig. B1. e¼ ðSg=SV Þ=ðSZ=SEÞ is plotted as a function of the scaled energy density in the

0.025 cm (red line), ]0.025 cm, 50 cm[ (green lines) to 50 cm (blue line) (with the shap

(For interpretation of the references to color in this figure legend, the reader is referre
so that:

Sg ¼
k _n½Em�eV1=3

max _g�½ _pM�Vmax _g

k½Em�eþ½EG�
¼
ka _pAm½ �

V1=3
m eV1=3

max _g�½ _pM �Vmax _g

ka Em½ �V
1=3
m eþ½EG�

ðB3Þ

Let us now define SZ as the rate of reserve change _Z at V¼Vm. It
holds that

_Z ¼ dE

dt
¼ V

d½E�

dt
þ

E

V

dV

dt
ðB4Þ

so that at V¼Vm we have

SZ ¼ Vm
d½E�

dt
¼ V1=3

m
_pAm

� 	
ðf�eÞ ¼ Vmaf _pAmg

ðf�eÞ ðB5Þ

Given Eqs. (B1), (B3) and (B5), we can express the ratio

Sg=SV

SZ=SE
¼

½Em�

Vma _pAmf g
ðf�eÞ

k _na Em½ �V
�2=3
m eV1=3

maxgV
� _pM

� �
V�1

m VmaxgV

ka Em½ �V
1=3
m eþ EG½ �

 !

ðB6Þ

and calculate it for various values of e and f (Fig. B1).
Given the scaling assumptions made and the orders of magni-

tude chosen for the characteristic dimensions, it is clear from
(Fig. B1) that 9e9{1 (i.e. 9e9o0:1) is not always verified (except
when f¼0). However, 9e9o0:1 is verified over a substantial
domain when organisms are far from equilibrium (e{f or ecf ).
Conversely, when organisms are close to equilibrium (i.e. when
e� f ), the assumption 9e9{0:1 is no more verified but this is not
problematic since the reserve compartment is already close to
equilibrium where the density function ~N ~t , ~E , ~V is proportional to a
dirac function in ~E

n

(cf. Eq. (A16)). The problematic domain is the
intermediate one, when the reserve compartment of organisms is
neither close to equilibrium, neither far from it. It this case, the
reserves e for 100 different species characterized by their Lm value ranging from

e parameter d¼ 0:25, this allows to cover a range of sizes 0:1 cmoL1o200 cm).

d to the web version of this article.)
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slow/fast approximation proposed might not be valid, especially
for larger organisms. It has to be noted that since the reserve
compartment spontaneously tends to equilibrium and hence
tends to get out of the problematic domain, the mis-
approximation is only transitory. This makes the problem related
to the frequency (and amplitude) of environmental variability.
Further work would be needed to study this problem in detail and
compare the behavior of the full and the reduce model in different
environmental variability conditions. This goes far beyond the
present study.
Appendix C. From numbers to energy

Eq. (6) can be expressed in term of energy using Nk
t,E,V ¼

xk
t,E,V=ðEþdcVÞ:

@
xk
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Simple calculations lead to
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Appendix D. Parameterizations of population rates

The predation process: calculation of lk
t,V

The function su,w is a normalized function expressed as the
product of two sigmoid functions which account for the limitation
of ingestion when preys are either too small or too large (Maury
et al., 2007a):

su,w ¼ 1þea1 r1�
u
wð Þ

1=3

 �� ��1

1� 1þea2 r2�
u
wð Þ

1=3

 �� ��1

 !

Rþn2
��!

s
�0;1½ ðD1Þ

with r1, r2, a1 and a2, being constant positive parameters
characterizing both the half saturation and the flatness of the
sigmoid functions.

To calculate the predatory mortality, the amount of preyed
energy Ek=q

t,u=wdk du dq dw dt (J m�3) that predators of species
[k, kþdk] in the range of structural volume [u, uþdu] take from
prey of species [q, qþdq] in the range of structural volume
[w, wþdw] at time t during dt is expressed as follows, based on
Eq. (11):

Ek=q
t,u=w dk du dq dw dt¼ Ek

t,u dk du dt
su,wpsq

t,wx
q
t,w dq dw

pt,u

¼
f _pk

Amg

kX
xk

t,uu�1=3 f k
t,u

dcþ f k
t,u½E

k
m�

su,wpsq
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q
t,wdw

pt,u
dk du dq dt

¼
f _pk

Amg

kX
xk

t,uu�1=3 su,wpsq
t,wx

q
t,wdw

_ckdc=uwþðdcþ½Ek
m�Þpt,u

dk du dq dt ðD2Þ

In the same way, the amount of preyed energy
Ek=p

t,u=wdk du dw dt (J m�3) that predators of species [k, kþdk] in
the range of structural volume [u, uþdu] take from producer
organisms in the range of structural volume [w, wþdw] at time t
during dt is expressed as follows:

Ek=p
t,u=w dk du dw dt¼

_pk
Am

n o
kX

xk
t,uu�1=3 su,w

_
x

p

t,wdw

_ckdc=uwþðdcþ½Ek
m�Þpt,u

dk du dt

ðD3Þ

Given those equations, the total amount of energy preyed by
all predators on all preys of species [q, qþdq] in the range of
structural volume [w, wþdw] at time t during dt in 1 m3 of water
is then calculated by integration:

E=q
t,=w dq dw dt¼

Z Vkmax
m

k ¼ Vb

Z k

u ¼ Vb

Ek=q
t,u=wdu dk dq dw dt

¼
psq
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m
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Z k
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pt,u

2
64

3
75du dk dq dw dt ðD4Þ

And the total amount of energy preyed by all predators on all
consumer organisms in the range of structural volume [w, wþdw]
at time t during dt in 1 m3 of water is

E=p
t,=w dw dt¼

_
x

p

t,w

kX

Z Vkmax
m

k ¼ Vb

Z k

u ¼ Vb

_pk
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m

h i
Þpt,u

2
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3
75du dk dw dt

ðD5Þ

Given this equation, the calculation of the instantaneous
mortality rates (Eqs. (12) and (13)) is straightforward.

The ageing mortality: calculation of ak
t,V :

Replacing the functional response f k
t,V by its mean value f

during the time interval [0, t], Eq. (14) can be integrated to
estimate the mean structural volume Vt at age t:

Vk
t ¼

k _pk
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n o
f� kf _pk
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� �
e
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0
BB@

1
CCA

3

ðD6Þ

This formula is inverted to estimate the mean time taken by an
individual of species k to reach size (structural volume) V:

tk
V ¼
�3ðkf ½Em�

kþ½EG�Þ

½ _pM �
ln

kf _pk
Amgf�½ _pM�V

1=3

kf _pk
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1=3
egg

 !
ðD7Þ

This is in turn substituted in Eq. (19) to estimate the mean
ageing mortality rate for species k at size (structural volume) V

ak
V ¼

€ha
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which, after integration, gives:
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with

a¼ kf _pk
Amgf
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b¼ V1=3
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Appendix E. From one consumer species to an infinitely
diversified community of consumers

Eq. (7) can be integrated over the range of species larger than V
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we have
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This is used to obtain Eq. (22).
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Appendix F. Numerical approximations
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Numerical approximation of Eq. (1)
A semi-implicit approximation of Eq. (1) is derived as follows:
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�
 Numerical approximation of Eq. (7)
Fish communities encompass very different species covering a
large range of potential sizes ranging approximately from the
mean size of fish eggs (10�3 m, 10�8 kg) to the maximum size
of the largest fish predator (4 m and more than 650 kg for
giant bluefin tuna or swordfish for instance). To account
accurately for growth and predation processes over such a
large range of size (structural volume) would require approx-
imating numerically the model with an extremely small
resolution over an extremely large number of size intervals.
Alternately, a base a log scale can be used to ensure that
processes are considered at the proper resolution whatever
the size of organisms is while keeping a limited number of
weight classes. Using such a size-based log scale can be done
by defining

$¼
lnðl�bÞ

lnðaÞ �g¼
lnða�1=3V1=3

�bÞ
lnðaÞ �g3V ¼ aða$þgþbÞ3

ðF2:Þ

with l the organisms length, a and b being fixed parameters
and $¼ 1,2,3,:::,nf g. To be able to choose easily the grid
characteristics, the parameters b and g are expressed in terms
of lmin and lmax respectively which are fixed so that the grid
depends only on a In the present theoretical study, we
arbitrarily decided to focus on large consumer organisms
such as fish ranging from 1 mm to 2 m. Accordingly, a is set
at 1.04 which corresponds to grid cells varying from 1.5 mm
for the smallest size class to 75 mm for the largest class. An
irregular grid is derived calculating structural volume steps
dVi so that each grid point Vi is placed at the middle of its
associated grid cell.
The model is integrated numerically along 100 length/struc-
tural volume classes from lmin¼10�5 m to lmax¼2 m. For the
sake of simplicity, producers are supposed to include phyto-
plankton and zooplankton. Their biomass is assumed to be
distributed over structural volume according to a power law
with a constant exponent �1 and to range from 10�4 m to
2�10�3 m so that there is a slight overlap with the consumer
size range.
The system is solved over the species dimension k by solving
Eq. (7) for the 100 ‘‘numerical species’’ of the k discretization,
at each time step. All of this is done as follows:
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