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� The functional response is modified with density-dependent dispersal of predators.

� Emergence of a Holling type III functional response at global scale.
� Stabilization of the predator–prey model in eutrophic environment.
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a b s t r a c t

Accurate parametrization of functional terms in model equations is of great importance for reproducing
the dynamics of real food webs. Constructing models over large spatial and temporal scales using
mathematical expressions obtained based on microcosm experiments can be erroneous. Here, using a
generic spatial predator–prey model, we show that scaling up the microscale functional response of a
predator can result in qualitative alterations of functional response on macroscales. In particular, a global
functional response of sigmoid type (Holling type III) can emerge as a result of non-linear averaging of
non-sigmoid local responses (Holling type I or II). We demonstrate that alteration between the local and
the global response in the model is a result of the interplay between density-dependent dispersal of the
predator across the habitat and heterogeneity of the environment. Using the method of aggregation of
variables, we analytically derive the mathematical formulation of the global functional response as a
function of the total amount of prey in the system, and reveal the key parameters which control the
emergence of a Holling type III global response. We argue that this mechanism by which a global Holling
type III emerges from a local Holling type II response has not been reported in the literature yet: in
particular, Holling type III can emerge in the case of a fixed gradient of resource distribution across the
habitat, which would be impossible in priorly suggested mechanisms. As a case study, we consider the
interaction between phytoplankton and zooplankton grazers in the water column; and we show that the
emergence of a Holling type III global response can allow for the efficient top-down regulation of primary
producers and stabilization of planktonic ecosystems under eutrophic conditions.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Construction of advanced models of population dynamics requires
accurate parameterization of model functions such as growth rates,
predation, closure terms, etc. Traditionally, laboratory experiments
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play a pivotal role when deciding which concrete mathematical
formulation to choose to describe the given species and what should
be the realistic range of parameters (Luckinbill, 1974; Costantino et al.,
1997; Hansen et al., 1997; Fussmann et al., 2000). A major difficulty
arises, however, when one wishes to understand the dynamics of the
same species on a scale much larger than those of the initial settings
(e.g. community or ecosystem levels). Since local interactions between
species are often non-linear, it would be insufficient to construct a
macroscale model by simply substituting the effective population sizes
into a microscale model: one needs to properly incorporate effects of
species aggregation, heterogeneity of the environment, patterns of
movement behavior, etc., which cannot be observed in small size
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laboratory microscosms and mesocosms (Levin, 1992; Gubbins and
Gilligan, 1997; Englund and Leonardsson, 2008; Carlotti and Poggiale,
2010; Arditi and Ginzburg, 2012). Thus, the question of howwe should
modify the initial microscale models to be able to reproduce interac-
tions on a macroscale level remains in the focus in theoretical ecology
(Chesson, 1998; Hastings, 2010).

Interestingly enough, dynamics of complex spatially extended
ecosystems can be often understood using simpler (reduced) models
operating with some integral characteristics, for instance, the popula-
tion sizes of species (Morozov and Poggiale, 2012). There exist various
methods of reducing spatially explicit models such as the aggregation
of variables method, scale transition theory and the modified mean-
field approach (Chesson, 1998; Iwasa et al., 1987, 1989; Morale et al.,
2005; Auger et al., 2008b; Pascual et al., 2011). In reduced models
operating on macroscales the terms standing for predation ought to
be substantially modified to include the effect of spatial heterogene-
ity and dispersal of organisms (Gubbins and Gilligan, 1997; Poggiale,
1998; Auger et al., 2000; Pascual et al., 2011), so when constructing a
predator–prey model in terms of global variables, accurately scaling
up the predator functional response becomes a key issue (Englund
and Leonardsson, 2008). It has been shown that scaling up the
functional response can result not only in quantitative changes but
also in qualitative changes including alteration of the Holling type
(Michalski et al., 1997; Poggiale, 1998; Morozov and Arashkevich,
2008; Morozov, 2010). It is not surprising that such an alteration of
the functional response can completely modify the key properties of
the resultant ecosystem models, such as stability and species persis-
tence (Poggiale, 1998).

In this paper, we extend previous studies on scaling up the
functional response of predators in a spatially heterogeneous
environment. In particular, we investigate the conditions for the
emergence of a global functional response of a sigmoid type (Holling
type III) as a result of the non-linear averaging of a non-sigmoid
(Holling type II) local response. We suggest a novel mechanism for
the emergence of a Holling type III global response which can be
observed even for a constant gradient of resource distribution across
the system—this differs from previous works in which the emer-
gence of a sigmoidal response required a self-adjusted dynamical
gradient of resource distribution. Mathematically, we consider a
generic predator–prey model in a patchy environment connected by
migration, where the local functional response is assumed to be
non-sigmoid. Using the method of aggregation of variables we
analytically derive the expression for the predator functional
response on the macroscale, and demonstrate that for small prey
densities, the clearance rate is an increasing function of the total
amount of prey, clearly indicating a type III response. We then show
that stabilization of the predator–prey interactions in the model is
possible for large values of the prey carrying capacity, which would
be impossible at the local scale with a non-sigmoid response.

As a case study, we investigate the interaction between phyto-
plankton and zooplankton grazers in the water column, which can be
considered as a chain of patches connected by turbulent vertical
diffusion and active migration of foragers. In many planktonic
ecosystems, successful grazing control of phytoplankton growth by
herbivores is possible despite a high nutrient supply in the water
(Cullen et al., 1992; Armstrong, 1994). However, a large body of
experimental work shows that the grazing of zooplankton herbivores
is better described by a Holling type I or II (DeMott, 1982; Hirst and
Bunker, 2003; Jeschke et al., 2004). Thus, when we implement
laboratory-based parameterizations of the functional response in
food-web macroscale models with eutrophication, the grazers would
not be able to control the population of the prey/primary producers
(Oaten and Murdoch, 1975; Scheffer and de Boer, 1995; Fussmann
and Blasius, 2005). The results of this paper show that the global
functional response of zooplankton herbivores in the whole water
column can be of Holling type III, which will provide an extra degree
of stability in models and may explain the control of some plankton
bloom initiation in eutrophic waters.

The paper is organized as follows. In Section 2 we introduce the
general modeling framework of predator–prey interactions in a patchy
environment, describe the local predator–prey interactions and the
migration patterns between patches. In Section 3, using the aggrega-
tion of variables method we derive the expression for the global
functional response and show the emergence of a Holling type III
global response, then considering the predator–prey model on macro-
scale we show stabilization of the system which would be impossible
on the local scale (microscale). In Section 4, we compare the mechan-
ism by which the predator functional response is altered and the
ecosystem stabilized to those mechanisms reported in earlier works,
and we conclude by discussing the limitations of our study.
2. General modeling framework

2.1. The predator–prey model in a patchy environment

We consider predator–prey interactions in a patchy environ-
ment, where patches are connected via continuous migration of
species. We denote by xiðτÞ and yiðτÞ the density of prey and
predator respectively in patch i at time τ; thus, the vectors xðτÞ and
yðτÞ represent the partitioning of species among the patches. The
model equations read as follows:

dx
dτ

¼Mxx þ εF x; yð Þ ð1aÞ

dy
dτ

¼My xð Þy þ εH x; yð Þ ð1bÞ

where the functions Fðx; yÞ andHðx;yÞ describe growth and predation
processes and Mx and My are the migration matrices, for prey and
predator respectively; the elements dij and d′ij of the matrices Mx and
My respectively are the per capita migration rate from patch j to patch
i. The dimensionless coefficient ε⪡1 is introduced to take into account
the slow scale of population dynamics compared to the fast migration
scale, thus ε can be interpreted as the time scaling parameter. We
consider the following parameterizations for the functions Fi and Hi:

Fi ¼ Fi xi; yi
� �¼ rixi 1� xi

ki

� �
� axi
bþ xi

yi;

Hi ¼Hi xi; yi
� �¼ eaxi

bþ xi
yi�μiyi:

In each patch, the growth of the prey population is described by a
standard logistic function, the parameters ri and ki being the intrinsic
growth rate and the carrying capacity respectively. The local predation
is described using a hyperbolic function, the disc-equation (Holling,
1959), which is of type II. The predators increase their biomass by
consuming prey, with a conversion factor e, and die naturally at a
constant rate μi.

2.2. Application of the aggregation of variables method

In the case, where migration of species between patches is a fast
process compared to the population dynamics (ε⪡1), we can reduce
the initial model (1) using the aggregation of variables method. The
method of aggregation of variables has beenwidely used in population
and community dynamics (see Auger et al., 2008a,b, 2012 for a review
of developments and applications). Let us for the sake of simplicity
consider that the patches form a chain in space; this can model a
sequence of horizontal layers along the vertical water column in
planktonic ecosystems. Thus, for each patch individuals of both species
are allowed to migrate to the neighboring patches only. We should
emphasize that the method can also be applied to the more general
situation where patches are connected by long-jump dispersal.
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Moreover, we assume that the prey migration rates are constant
(density-independent migration) while the predator migration rates
are prey dependent. The mathematical parameterization of the pre-
dator migration rates will be provided in Section 2.3.

The migration matrices for prey and predator become respectively

Mx ¼

�d21 d12 0 … … 0
d21 �d12�d32 d23 ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ dn�1n�2 �dn�2n�1�dnn�1 dn�1n

0 … … 0 dnn�1 �dn�1n

0
BBBBBBBBB@

1
CCCCCCCCCA
;

and

My ¼

�d′21 d′12 0 … … 0
d′21 �d′12�d′32 d′23 ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ d′n�1n�2 �d′n�2n�1�d′nn�1 d′n�1n

0 … … 0 d′nn�1 �d′n�1n

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where dij are constant and d′ij ¼ d′ijðxjÞ are functions of the local prey
density.

Let us denote by x and y the total amount of preys and
predators in the system: x¼∑n

i ¼ 1xi and y¼∑n
i ¼ 1yi. In order to

apply the aggregation method, let us introduce the frequencies of
prey and predator defined by ui ¼ xi=x and vi ¼ yi=y respectively;
these numbers represent the proportion of species in each patch.
We obtain the following slow-fast system:

dui

dτ
¼ ∑

iþ1

j ¼ i�1
j4 0; j≠i

dijuj� ∑
iþ1

j ¼ i�1
j4 0; j≠i

djiui þ εFi ui; vi; x; yð Þ

�uiε ∑
n

j ¼ 1
Fjðuj; vj; x; yÞ

" #
; i¼ 1;…;n�1;

dvi
dτ

¼ ∑
iþ1

j ¼ i�1
j4 0; j≠i

d′ijvj� ∑
iþ1

j ¼ i�1
j4 0; j≠i

d′jivi þ εHi ui; vi; x; yð Þ

�viε ∑
n

j ¼ 1
Hjðuj; vj; x; yÞ

" #
; i¼ 1;…;n�1;

dx
dτ

¼ ε ∑
n

i ¼ 1
Fiðui; vi; x; yÞ

" #
;

dy
dτ

¼ ε ∑
n

i ¼ 1
Hiðui; vi; x; yÞ

" #
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

The method consists first in setting ε¼ 0 in (2) and computing
the equilibrium of the remaining system written in terms of the
state variables ðu1;…;un�1; v1;…; vn�1; x; yÞ. For ε¼ 0, the global
variables x and y are constant and the fast variables ui and vi reach
a steady state un

i and vni ðxÞ. Note that the frequencies of the
predator population at equilibrium depend on x because the
migration matrix of the predator depends on the prey densities
on the different patches. Since it can be shown that the fast steady
state ðun

i ; v
n

i ðxÞÞ is always asymptotically stable in our model, the
second step of the method consists in replacing the fast variables
ui and vi by their equilibrium values in the equations of the global
(slow) state variables x and y. Using the fact that xi ¼ uix and
yi ¼ viy the global-scale system reads

dx
dτ

¼ ε ∑
n

i ¼ 1
riun

i x 1�un

i x
ki

� �
� aun

i x
bþ un

i x
vni xð Þy

" #
;

dy
dτ

¼ ε ∑
n

i ¼ 1

eaun

i x
bþ un

i x
vni xð Þy�μiv

n

i xð Þy
" #

;

8>>>>><
>>>>>:
We then get the following reduced (or aggregated) model:

dx
dt

¼ rx 1�x
K

� �
�G xð Þyþ O εð Þ;

dy
dt

¼ eG xð Þy�μyþ O εð Þ;

8>><
>>: ð3Þ

where t ¼ ετ and the global parameters r, K and μ that respectively
represent the global intrinsic growth rate, the global carrying
capacity and the global natural predator mortality are functions of
the local parameters

r¼ ∑
n

i ¼ 1
un

i ri;

K ¼ r

∑n
i ¼ 1

riun2
i

ki

;

μ¼ ∑
n

i ¼ 1
viðxÞnμi:

Finally, the general expression of the global-scale functional
response, considering a density-dependent predator migration
reads

GðxÞ ¼ ∑
n

i ¼ 1
gðun

i xÞvni ðxÞ:

The global functional response is thus given by the sum of all the
local functional responses multiplied by the proportion of pre-
dators in each patch at the equilibrium. Since we consider that the
predation process in each patch is represented by a type II
functional response, we obtain the following global functional
response expression:

G xð Þ ¼ ∑
n

i ¼ 1

aiun

i x
bi þ un

i x
vni xð Þ; ð4Þ

where un

i and vni ðxÞ are the proportions of prey and predator
populations in patch i at the fast equilibrium. In the case we are
able to compute the values of un

i and vni ðxÞ we can derive the
analytical expression for the functional response G(x) and follow
possible alteration of Holling type.
2.3. Parameterizing the density-dependent predator migration

To proceed further with analytical derivation of the global
functional response G(x) we need to provide a specific mathema-
tical expression for the migration rates of predators (recall that we
consider the prey migration to be density independent). Since
active dispersal is often energetically costly for animals, we
assume that in the case where the resource level in the patch is
high it would be preferable to avoid leaving this patch, whereas
when the resource is locally scarce it would be beneficial to leave
the given patch and start searching in other patches. Therefore, we
consider that the rate at which the predator leaves a given patch is
a decreasing function of local prey biomass. In the case that the
food density in the patch is low, the predator leaves the patch at a
constant rate. The simplest possible parametrization of this
scenario is the following (cf. Ives, 1992):

d′ij xj
� �¼ 1

αijxj þ γij
;

where positive parameters αij determine the strength of the prey-
dependent component of the migration term. The parameters γij
describe the prey-independent component of migration due to
random displacement between the patches.
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In the aggregated model, we replace xj by un

j x, then the
predator displacement rates become

d′ij ¼
1

αijun

j xþ γij

Finally, we consider that the habitat is heterogeneous, in
particular, some patches are safer for the predator than the others.
Thus in the case the food is scarce in the system, the predators will
migrate towards less dangerous parts of the habitat. For instance,
since near the surface the risk of zooplankton consumption by
visual predators (e.g. fish) is larger compared to the deep and dark
layers, zooplankton grazers should stay in the deepest patches
during periods of low phytoplankton levels in the system (Bollens
and Frost, 1989; Ohman, 1990; Lampert, 1992). This signifies that
in the model we have the following hierarchy γi;iþ14γi;i�1 for the
coefficients describing the prey-independent (random) compo-
nent of migration of predators. We consider that the safest patch is
patch n, corresponding to the deepest and darkest layer of the
water column.
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Fig. 1. Alteration of Holling types between the local and the global functional
responses in the predator–prey model with fast migration ðϵ⪡1Þ. (A) The shape of
the local and the global functional responses. (B) Clearance rates for the local and
the global functional responses. The model parameters are ri ¼ 0:8; ki ¼ 500;
e¼0.5; μi ¼ 0:05; a¼ 2; b¼10; α1 ¼ 4; α2 ¼ 4; α3 ¼ 4; γ1 ¼ 0:5; γ2 ¼ 0:5; γ3 ¼ 3;
d12 ¼ 0:3; d21 ¼ 0:1; d23 ¼ 0:9; d32 ¼ 0:3. An increase in clearance rate, for low
amount of prey density, indicates a global response of the Holling type III.
3. Results

In this section we show the emergence of a Holling type III or
sigmoid functional response in the predator–prey system at the
global scale as a result of non-linear averaging of the Holling type
II local responses. This emergence leads to the stabilization of the
system dynamics in eutrophic conditions, which would be impos-
sible with a type II predation function.

3.1. Emergence of a Holling type III global functional response

For the sake of simplicity, we consider here a three-patches
system; however, in Section 3.3 we shall briefly discuss how our
findings will depend on the number of patches. For the three-
patches model, the predator migration rates are given by

d′21 ¼
1

α1x1 þ γ1
¼ 1

α1un

1xþ γ1
d′12 ¼

1
α2x2 þ γ2

¼ 1
α2un

2xþ γ2

d′32 ¼
1

α2x2 þ γ2
¼ 1

α2un

2xþ γ2
d′23 ¼

1
α3x3 þ γ3

¼ 1
α3un

3xþ γ3

where α1 ¼ α21, α2 ¼ α12 ¼ α32, α3 ¼ α23 and γ1 ¼ γ21, γ2 ¼ γ12 ¼ γ32,
γ3 ¼ γ23 are positive constants, and γ234γ21. The functions vi(x), as
well as the values of un

i , are obtained by using the equations
Mxu¼ 0, Myv¼ 0 together with the relations ∑3

i ¼ 1u
n

i ¼ 1 and
∑3

i ¼ 1v
n

i ¼ 1, where u and v are the vectors of frequencies.
When we implement expression (4) for the global functional

response G(x), we find that the emergence of Holling type III
becomes possible: an example of such alteration of the type of
response is shown in Fig. 1A, where we plot both the global and
local functional responses for the indicated set of parameters.
The main difference between types II and III functional responses
lies in the shape for low prey densities, and one can see from the
graph that for a small amount of prey x in the system, the
functional response exhibits a self-accelerating increase (which
is faster than linear), indicating a type III response. This can also be
understood as the fact that G″ð0Þo0 for type II functional
response, while G″ð0Þ≥0 for type III. To demonstrate more accu-
rately that we indeed have a sigmoid functional response, we also
plotted the clearance rate as a function of food density (see
Fig. 1B). The clearance rate g is defined by GðxÞ ¼ xgðxÞ (Chow-
Fraser and Sprules, 1992), and its behavior can indicate which
Holling type response we actually have. In particular, an increase
in g for low prey density indicates a Holling type III response,
whereas a decrease indicates a Holling type II response (Morozov,
2010). From Fig. 1B one can see that for the global response the
function g(x) is increasing at small values of x, whereas for the
local response g(x) is always decreasing.

To investigate the conditions for which the type of the func-
tional response can be altered, we have derived an analytical
expression for G″ðxÞ (see Appendix A) and investigated the sign of
G″ðxÞ for small values of x. Note that the condition G″ðxÞ40 is
mathematically equivalent to g′40 (see proof in Appendix A).
We undertook extensive numerical simulations of the analytical
expression of G″ðxÞ by varying model parameters, and we found
that G″ð0Þ40 within large range of parameters: in particular, in
the case where γ1 and γ2 are smaller than γ3 (Fig. A in Electronic
Supplementary Material (ESM) for details). We also proved analy-
tically that for γ1⪡γ3 and γ2⪡γ3 and when the saturation b of the
local functional response occurs for a large prey density we always
have emergence of a type III functional response (see Appendix A).
The latter condition models the biologically meaningful scenario
in which the predators tend to move towards deeper layers to
avoid their own predators when food in the surface layers is
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scarce. However, in the case that γ1 becomes greater than γ3, the
value of G″ð0Þ is always negative, which signifies that the global
scale functional response remains of type II (see Fig. B in ESM for
details). Moreover, the emergence of a sigmoid functional
response is impossible in the case that all un

i are the same. Thus,
spatial heterogeneity due to both the existence of a stable super-
critical gradient in the prey distribution across the habitat (i.e.
different un

i ) and unevenness of living conditions for the predator
in different patches (different values of γi;iþ1 and γi;i�1), are
necessary for the emergence of a type III global response.

Insights into the mechanism of the emergence of a global
sigmoid response can be given by looking at Fig. 2, in which we
show the evolution of frequencies un

i and vni as functions of the
total biomass of prey x (which holds on the timescale of popula-
tion dynamics). At low densities of prey across the patches the
predators are mostly localized in patch 3, which is the safest in the
habitat. This is a result of the preferential migration of predators
towards the safest patch (n¼3), as described by the model
assuming γn�1;n4γi;i�1. Since prey migration is fast and performed
at a constant rate, the gradient of the distribution of prey is
constant (on the timescale of population dynamics), with the
density of prey being the lowest in patch n. As a result, most of the
predators are exposed to a prey density which is smaller than the
average density over the habitat. When the total biomass of prey
increases, the food-dependent migration of predators starts play-
ing a role as the predators leave the safest patch n and migrate to
other patches, where the food is more abundant (see Fig. 2). This
causes a faster than linear increase in the overall intake rate per
predator G(x), thus resulting in the emergence of Holling type III
global response. At high prey densities in each patch, the effect of
saturation starts playing a role and we have a saturated global
functional response.

3.2. Stabilization of predator–prey interactions in eutrophic
environment

The emergence of a Holling type III response on the global scale
translates itself into dumping and suppressing predator–prey
oscillations even for large values of the carrying capacity corre-
sponding to a high degree of eutrophication in the system (in
particular, in the case the value of K tends to infinity). One can see
from Fig. 3A (constructed for the same values of parameters as
Fig. 1) that the local densities of prey and predator in each patch
tend to a stable equilibrium. Fig. 3B shows the phase plane of the
system in terms of the total biomass of species x and y for both the
aggregated and complete model (ε¼ 0:05). One can see that for
small ε the aggregated and complete models show close patterns
of dynamics. Note that in the case of fast migration of species
one can analytically prove the stabilization in the aggregated
model (3), which is actually a standard Rosenzweig–MacArthur
model with a Holling Type III functional response (Brauer and
Castillo-Chavez, 2000). In Appendix B we show that the fact that
the clearance rate g is an increasing function of prey density in the
vicinity of the stationary state can guarantee a stable coexistence
of prey and its predator for large values of the carrying capacity K.
Suppression of oscillations can be possible even for an unlimited
carrying capacity of prey, i.e. K-1. On the contrary, in the case
where the patches are not connected by migration, large values of
K would result in system destabilization and high-amplitude
oscillations of species densities, finally resulting in extinction of
species, which is a well known behavior for a Holling type II
functional response (Rosenzweig, 1971).

We should emphasize that the stabilization of the system
via predator–prey interactions can only be possible for prey-
dependent migration of the predator, and cannot be observed for
constant migration rates. This fact can be seen directly from the
expression for the global functional response (4). The frequencies
of prey and predator ui ¼ xi=x and vi ¼ yi=y are proportional to the
total amount of species x and y, and the global functional response
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Fig. 4. The global functional response (A) and the clearance rate (B) for the system
of n ¼ 6, 8 and 10 patches. The model parameters are a¼2; b¼10; α12 ¼ αnn�1 ¼ 4;
γ12 ¼ γnn�1 ¼ 0:5 and for i¼2,…,n�1: αii�1 ¼ 4; αiiþ1 ¼ 4; γii�1 ¼ 0:5; γiiþ1 ¼ 3.
d12 ¼ d65 ¼ d87 ¼ d109 ¼ 0:3 and for i¼ 2;…;n�1: dii�1 ¼ 0:1; diiþ1 ¼ 0:2. By increas-
ing the number of patches the global dynamics of the predator–prey system
evolves towards increased stability.
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will be given by a sum of weighted local functional responses,
where the weights are constant determined by the predator
migration rates. A finite sum of local responses of Holling type II
with constant weights will result in a global response of the same
type of response (Holling type II) which cannot allow for stabiliza-
tion (see Appendix B). As such, for large values of the carrying
capacity K, persistence in the system becomes impossible since the
densities of species through the cycle will regularly take extremely
small values. Finally, we should mention that stabilization in
the system with large K is possible only in the case where the
equilibrium prey density is located in the region where the
clearance rate g(x) is increasing, which in the model signifies that
the attack rate a and the conversion factor e should be sufficiently
large in order to simulate a high predation pressure and reduce the
density of prey.

3.3. Impact of the number of patches: a matter of spatial scale

We here briefly address the role of spatial scale and the size of
the habitat on the emergence of a global Holling type III functional
response in the system and stabilization of the population
dynamics. We model expansion in the habitat size by increasing
the number of patches n, i.e. adding new patches to the initial
chain of patches.

We found that under the same assumptions on the migration
rates of prey and predator (see Section 2.3) and considering fast
migration rates ε⪡1, qualitatively similar results would hold as in
the case with n¼3. Namely, the behavior of the clearance rate
indicates the emergence of a Holling type III global response
(G″ð0Þ40) and the stabilization of the entire system for large
carrying capacities. This fact can be proven analytically in the same
way as for n¼3 but would result in more cumbersome expres-
sions. In Fig. 4A and B we plot the global functional response and
the global clearance rate for habitats of different sizes consisting of
n¼6, 8 and 10 patches. We found that by increasing the number
of patches (keeping the patch size constant) the global dynamics
of the predator–prey system evolves more towards stability.
Indeed, the inflection point of the functional response is shifted
to higher prey densities when the habitat is expanded by increas-
ing the number of patches. The same holds true for the evolution
of the clearance rate slope: the range of prey density where the
clearance rate is an increasing function of x becomes wider when n
increases, resulting in stabilization of the whole system. Thus, for a
large habitat one should expect more efficient top-down control,
provided that the assumption of a fast movement of predators and
prey across the whole habitat is still satisfied.
4. Discussion and conclusions

In this paper, we emphasize the importance of scaling up the
local or microscale predator functional response when modeling
food webs on larger spatial scales. We show that a Holling type III
functional response can emerge on a global macroscale level from
local Holling type II responses, which would have drastic con-
sequences for stability of ecosystems. We also show that increas-
ing the size of the habitat would enhance the emergence of the
Holling type III response (see Fig. 4).

Although in earlier theoretical works the possibility of the
emergence of a Holling type III on a global scale was demonstrated
(Nachman, 2006; Morozov and Arashkevich, 2008; Morozov, 2010),
in this paper we suggest a novel ecologically important scenario
which has not yet been reported. In particular, the emergence of a
Holling type III response in model (1) is possible for constant relative
densities of prey across the patches, i.e. for constant frequencies
ui ¼ xi=x, whereas in Morozov and Arashkevich (2008), Morozov
(2010) the key requirement ensuring the emergence of a type III
response of zooplankton grazing on phytoplankton was that the
phytoplankton densities should vary with changes in the total
amount of phytoplankton x: it was assumed that an increase in x
would result in a larger degree of heterogeneity in the phytoplankton
distribution across patches, which would eventually cause displace-
ment of zooplankters into patches with higher food abundance and
feeding there. In those models an important assumption was made
concerning the existence of strong self-shading of phytoplankton in
the water column. However, this mechanism might not work in the
case of intensive vertical mixing, which would smooth the vertical
gradient in the distribution of phytoplankton (Yoshiyama and
Nakajima, 2002, 2006). Moreover, a pronounced self shading in the
water column is observed mostly for well-developed phytoplankton
bloom, and is less pronounced in periods between blooms (Raymont,
1980; Ohman, 1990; Morozov and Arashkevich, 2008). On the other
hand, the scenario for the emergence of a type III response suggested
in the current paper can cover the above mentioned cases, and
explain efficient grazing control in plankton communities with
eutrophication.

In model (1) the self-acceleration of the global food intake rate
is due to the fact that the spatial distribution of predators follows
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the relative abundance of food with an increase of the total
amount of food. When the food is scarce the distribution of
predators shows more aggregation towards the safest patches,
where the proportion of food is the lowest. On the contrary, in
Morozov and Arashkevich (2008), Morozov (2010) the spatial
distribution of predators was assumed to be homogeneous at
low total amount of food, and the self-acceleration of the global
food intake rate was due to increasing unevenness in the distribu-
tion of predators across patches with an increase of the total
amount of food.

The fact that the spatial gradient of prey or resource distribu-
tion can be fixed suggests some other real-world case studies
where the given mechanism of the emergence of a type III
response may be observed. In particular, one can apply the paper
findings to those planktonic ecosystems with strong vertical
turbulent mixing in the euphotic zone above the thermocline
(Deuser, 1987; Venrick, 1993; Law, 2000). In these systems, the
distribution of phytoplankton above the thermocline can be close
to homogeneous despite pronounced heterogeneity of the light
intensity and nutrient concentration (Yoshiyama and Nakajima,
2002, 2006). In this case, patch n corresponding to the lowest
density of prey (phytoplankton) will be located below the thermo-
cline, with the other patches being in the upper mixed layer. For
instance, if we consider the migration rate of prey d21 ¼ 0:3 in
Fig. 2 and keep the other parameters the same, we obtain un

1≈u
n

2,
which can mimic homogeneous distribution of phytoplankton
above the thermocline.

Our findings can contribute to a resolution of the ‘paradox of
enrichment’ in plankton communities (Rosenzweig, 1971, 1972;
Gilpin, 1972; Scheffer and de Boer, 1995; McCauley et al., 1999).
This paradox occurs in a generic predator–prey model when an
increase in the carrying capacity of the ecosystem results in
predator–prey system destabilization; enrichment of the system
will lead to cyclic oscillations of large amplitude causing species
extinction (Gilpin, 1972; Rosenzweig, 1971; Yodzis and Innes,
1992). However, even if the paradox of enrichment can be
obtained in the theoretical models and laboratory experiments
(Fussmann et al., 2000), a large number of field data contradict
these predictions, suggesting some unknown mechanisms of
robust top-down control (Abrams and Walters, 1996; McCauley
et al., 1999; Genkai-Kato and Yamamura, 2000). Several mechan-
isms have been proposed to explain the discrepancy between
theory and observation, such as spatial heterogeneity (Jansen,
1995; McLaughlin and Roughgarden, 1991; Petrovskii et al.,
2004; Poggiale et al., 2008; Scheffer and de Boer, 1995), an Allee
effect in the prey population (Boukal et al., 2007; Kent et al., 2003),
a feeding threshold for predators (Bontje et al., 2009) and the
introduction of vulnerable and invulnerable classes of prey
(Abrams and Walters, 1996). In this paper we show that the
paradox of enrichment can be solved simply by increasing the
scale of observation: destabilization can indeed be observed on
laboratory scales as in Fussmann et al. (2000) but still not
observed on global scales.

Finally, we should mention that the mechanism reported here
of a Holling type III global response emergence might have its
limitations as well. The emergence of a type III response is only
possible for systems satisfy several biological assumptions made
throughout the study. For instance, the use of the aggregation of
variables method needs the identification of two different tem-
poral scales, and we assume here that population dynamics is slow
compared to migration process. Moreover, we consider that the
predator migration rate depends on prey density in the habitat,
but also that when the food is scarce the predator will migrate to
the safest patches. We also implicitly make the assumption that
the prey spatial distribution in the habitat is heterogeneous. This
type of scenario is often observed in planktonic ecosystems, which
thus constitute a perfect case study for the model developed in
this paper. The results obtained can still be potentially applied to
other ecosystems provided all the above assumptions are satisfied.
However, for instance, this model could potentially apply to
ecosystems, where predators are highly mobile and have a refuge
from top predators, where the food in the refuge is scarce.

Finally, we should point out that at very high levels of food
availability there will be sufficient food in the safer patches that
the predator can be expected to move there to avoid high
predation (Pearre, 1979; Dini and Carpenter, 1992; Dagg et al.,
1997), and the parametrization of the prey-dependent migration
rate of predator that we consider here becomes invalid in this case.
For the global functional response this would signify a decrease of
G(x) at large values of x: as a result we should expect to have a
Holling type IV response (Andrews, 1968). We are planning to
extend the current work to include more realistic patterns of
predator migration.
Appendix A. Calculus of the second derivative of the global
functional response

Using the analytical expression for G(x) we can find the sign of
G″ð0Þ, and thus determine the type of the global functional
response. The general expression of the global functional response,
estimated from the aggregation of variables method, and con-
sidering a density-dependent predator migration reads

GðxÞ ¼ ∑
n

i ¼ 1
gðun

i xÞvni ðxÞ:

Its first derivative is equal to

G′ðxÞ ¼ ∑
n

i ¼ 1
un

i g′ðun

i xÞvni ðxÞ þ giðun

i xÞv′ni ðxÞ:

By differentiating a second time, we get the following second
derivative:

G″ðxÞ ¼ ∑
n

i ¼ 1
un2
i g″ðun

i xÞvni ðxÞ þ un

i g′iðun

i xÞv′ni ðxÞ þ un

i g′iðun

i xÞv′ni ðxÞ

þgiðun

i xÞv′′ni ðxÞ
¼ g″ðun

i xÞun2
i vni ðxÞ þ 2un

i g′iðun

i xÞv′ni ðxÞ þ giðun

i xÞv′′ni ðxÞ:

In the case of a three-patches predator–prey model and x¼0,
the second derivative reads

G″ð0Þ ¼ ∑
3

i ¼ 1
½g″ið0Þun2

i vni ð0Þ þ 2un

i g′ið0Þv′ni ð0Þ�:

Since we have considered that the local functional response is
type II we have

g xið Þ ¼ axi
bþ xi

;

g′ xið Þ ¼ ab
ðbþ xiÞ2

; g′ 0ð Þ ¼ a
b
40;

g″ xið Þ ¼ ab

ðbþ xiÞ2
; g″ 0ð Þ ¼ �2a

b2
o0:

The second derivative of the global functional response for x¼0
reads now

G″ 0ð Þ ¼�2a

b2
un2
1 v1 0ð Þ þ un2

2 vn2 0ð Þ þ un2
3 vn3 0ð Þ� 	

þ2a
b

un

1v
′n
1 ð0Þ þ un

2v
′n
2 ð0Þ þ un

3v
′n
3 ð0Þ

� 	
: ðA:1Þ
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The frequencies of species densities in the third patch can be
expressed as

un

3 ¼ 1�un

1�un

2;

vn3ðxÞ ¼ 1�vn1ðxÞ�vn2ðxÞ;
and thus

v′n3 ðxÞ ¼ �v′n1 ðxÞ�v′n2 ðxÞ;
the expression (A.1) can be rewritten

G″ 0ð Þ ¼ 2a
b

v′n1 0ð Þ 2un

1 þ un

2�1
� �þ v′n2 0ð Þ 2un

2 þ un

1�1
� �� 	

�2a

b2
un2
1 vn1 0ð Þ þ un2

2 vn2 0ð Þ þ ð1�un

1�un

2Þ2 1�vn1 0ð Þ�vn2 0ð Þ� �h i
:

ðA:2Þ
The values of vn1ðxÞ and vn2ðxÞ used in the example of the paper read

vn1 xð Þ ¼ α1un

1xþ γ1
αun

1xþ γ1 þ α2un

2xþ γ2 þ α3un

3xþ γ3
; vn1 0ð Þ ¼ γ1

γ1 þ γ2 þ γ3
;

vn2 xð Þ ¼ α2un

2xþ γ2
αun

1xþ γ1 þ α2un

2xþ γ2 þ α3un

3xþ γ3
; vn2 0ð Þ ¼ γ2

γ1 þ γ2 þ γ3
;

with the first derivatives

v′n1 xð Þ ¼ α1un

1ðγ2 þ γ3Þ�γ1ðα2un

2 þ α3un

3Þ
ðα1un

1xþ γ1 þ α2un

2xþ γ2 þ α3un

3xþ γ3Þ2
;

v′n1 0ð Þ ¼ α1un

1 γ2 þ γ3
� ��γ1ðα2un

2 þ α3un

3Þ
ðγ1 þ γ2 þ γ3Þ2

;

v′n2 xð Þ ¼ α2un

2 γ1 þ γ3
� ��γ2ðα1un

1 þ α3un

3Þ
ðα1un

1xþ γ1 þ α2un

2xþ γ2 þ α3un

3xþ γ3Þ2
;

v′n2 0ð Þ ¼ α2un

2ðγ1 þ γ3Þ�γ2ðα1un

1 þ α3un

3Þ
ðγ1 þ γ2 þ γ3Þ2

:

We finally get the following estimation of the global functional
response second-order derivative:

G″ 0ð Þ ¼ 2a
bðγ1 þ γ2 þ γ3Þ

α1un

1ðγ2 þ γ3Þ�γ1ðα2un

2 þ α3ð1�un

1�un

2ÞÞ
γ1 þ γ2 þ γ3

2un

1 þ un

2�1
� �


þ α2un

2ðγ1 þ γ3Þ�γ2ðα1un

1 þ α3ð1�un

1�un

2ÞÞ
γ1 þ γ2 þ γ3

2un

2 þ un

1�1
� �

�un2
1 γ1 þ un2

2 γ2 þ ð1�un
1�un

2Þ2γ3
b

�
: ðA:3Þ

The global functional response is a type III if

G″ 0ð Þ40⇒
α1un

1 γ2 þ γ3
� ��γ1ðα2un

2 þ α3ð1�un

1�un

2ÞÞ
γ1 þ γ2 þ γ3

2un

1 þ un

2�1
� �

þ α2un

2ðγ1 þ γ3Þ�γ2ðα1un

1 þ α3ð1�un

1�un

2ÞÞ
γ1 þ γ2 þ γ3

2un

2 þ un

1�1
� �

4
un2
1 γ1 þ un2

2 γ2 þ 1�un

1�un

2

� �2
γ3

b
: ðA:4Þ

For the particular case when γ1⪡γ3 and γ2⪡γ3, which is coherent
with the idea that for low amount of food in surface layers
predators tend to move toward deeper layers to avoid their own
predators, it is strongly likely that

α1un

1ðγ2 þ γ3Þ4γ1ðα2un

2 þ α3ð1�un

1�un

2ÞÞ
⇔α1un

1ðγ2 þ γ3Þ�γ1ðα2un

2 þ α3ð1�un

1�un

2ÞÞ40;

α2un

2ðγ1 þ γ3Þ4γ2ðα1un

1 þ α3ð1�un

1�un

2ÞÞ
⇔α2un

2ðγ1 þ γ3Þ�γ2ðα1un

1 þ α3ð1�un

1�un

2ÞÞ40;

in Eq. (A.3).
In that case, G″ð0Þ40 for instance if

2un

1 þ un

2�140⇔un

14un

3;

2un

2 þ un

1�140⇔un

24un

3;

and
b4
N
D
;

with

N¼ ðun2
1 γ1 þ un2

2 γ2 þ ð1�un

1�un

2Þ2γ3Þðγ1 þ γ2 þ γ3Þ
and

D¼ ½α1un

1ðγ2 þ γ3Þ�γ1ðα2un

2 þ α3ð1�un

1�un

2ÞÞ�ð2un

1 þ un

2�1Þ
þ½α2un

2ðγ1 þ γ3Þ�γ2ðα1un

1 þ α3ð1�un

1�un

2ÞÞ�ð2un

2 þ un

1�1Þ

Therefore, a sufficient condition to get a Holling type III global
functional response from local Holling type II responses reads

min un

1;u
n

2

� �
4un

3 and b4
N
D
:

Finally, let us consider the functional response GðxÞ ¼ gðxÞx,
with g(x) the clearance rate. It follows:

G′ðxÞ ¼ g′ðxÞxþ gðxÞ;
then

G″ðxÞ ¼ g″ðxÞxþ 2g′ðxÞ;
and

G″ð0Þ ¼ g′ð0Þ:
Thus the functional response is concave at the origin if and only if
the clearance rate increases at the origin.
Appendix B. Link between the clearance rate slope and the
predator–prey model stability

Let us consider the following predator–prey model:

dx
dt

¼ x f xð Þ�g xð Þyð Þ;
dy
dt

¼ eg xð Þx�mð Þy;

where x and y are the prey and predator densities respectively. f(x)
is the per capita growth rate and g(x) is the clearance rate. The
functional response is GðxÞ ¼ xgðxÞ.

ðxe; yeÞ is a positive equilibrium if it satisfies the set of equations

f ðxÞ�gðxÞy¼ 0;
egðxÞx�m¼ 0:

The Jacobian matrix at ðxe; yeÞ is

J ¼
f ′ðxeÞ�g′ðxeÞye �GðxeÞ

eG′ðxeÞye 0

 !

We assume that the functional response is an increasing
function of x thus the determinant of J is positive. The equilibrium
ðxe; yeÞ is thus stable if and only if the trace of J is negative

f ′ðxeÞ�g′ðxeÞyeo0:

Let us assume first that f ðxÞ ¼ r which corresponds to a linear
growth rate of the prey population. Then the previous condition is
equivalent to g′ðxeÞ40. Thus an equilibrium is stable if and only if
the clearance rate at equilibrium is increasing.

Now, let us assume that f ðxÞ ¼ rð1�ðx=KÞÞ, as in the present
paper, then the stability condition becomes

� r
K
�g′ xeð Þyeo0:

g′ðxeÞ40 is thus a sufficient condition of stability. However, for
large values of carrying capacity K (i.e. K-1), this condition of
stability becomes the necessary condition as well.
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Appendix C. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/j.jtbi.2013.07.011.
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