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Emergence of Population Growth Models:

Fast Migration and Slow Growth
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We present aggregation and emergence methods in large-scale dynamical systems with different
timescales. Aggregation corresponds to the reduction of the dimension of a dynamical system which
is replaced by a smaller model for a small number of global variables at a slow timescale. We study
the couplings between fast and slow dynamics leading to the emergence of global properties in the
aggregated model. First, we study the case of a single population in a patchy environment. Growth
rates are assumed to be linear on each patch. Individuals can migrate from one patch to another at
a fast timescale. We choose different density dependent migration processes. In each case, we use
aggregation methods to obtain the corresponding growth equation for the total density of the
population at a slow timescale. We look for particular density dependent migration processes leading
to an aggregated logistic-like equation. Second, we study the case of two interacting populations. A
particular choice of density dependent migrations leads to an aggregated competition model.
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Introduction

Modelling biological systems implies dealing with
systems involving a large number of variables.
Indeed, communities are sets of several interacting
populations. Many individuals of different ages or
in different physiological stages belong to these
populations. These individuals carry out several
activities during the day and visit different sites.
Thus, populations are divided into various sub-
populations corresponding to ages, stages, individ-
ual states or activities, phenotypes, genotypes,
spatial patches etc. Modelling ecological communi-
ties, we are faced with complexity, in particular
due to the structure of populations. The complexity
of biological systems is partly the result of the
large number of components involved in the
dynamics.

Facing this complexity, several approaches are

possible. A first possibility is to try and manage this
complexity. This means building a mathematical
model which describes the biological system in detail.
This leads to a family of models involving a large
number of equations and of coupled variables. The
complexity of the real system is included in the model.
However, few mathematical results are usually
available for these large models which are difficult to
handle. In many cases, one uses computer simulations
to look for particular solutions.

In a second type of model, most details are ignored.
For example, many models of ecological communities
deal only with a few variables. The structure of the
populations are neglected. Populations are considered
as entities and are described by a single variable, for
example the total population or density. This
simplification implies that the internal structure of the
population does not have an important effect on its
dynamics and that it can be neglected. It is an
approximation of the total system by a reduced
system. However, in many cases, the simplified model† Author to whom correspondence should be addressed.
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is defined and used and very few arguments are given
to justify the approximations and the simplifications
which are needed to obtain this model.

Our approach goes half way between the two types
of methods. Indeed, we start with a model which
includes many subpopulations and details. In this
way, we take into account the complexity of the initial
model. However, we use methods for simplifying and
reducing the dimensions of this large-scale model. In
order to succeed with this simplification, we focus
on particular dynamical systems involving two
timescales. Two main aspects seem important. The
first concerns aggregation or reduction methods,
(Iwasa et al., 1987, 1989; Gard, 1988; Gardner et al.,
1982). The second concerns the emergence of global
properties in the aggregated model.

The existence of different timescales makes it
possible to use perturbation methods to aggregate
systems of ODE’s which are composed of fast and
slow parts. Perturbation methods allow us to
aggregate large systems into a smaller system which
is described by a few global variables. The center
manifold theorem can be used for aggregation,
(Fenichel, 1971). For details, we refer to Auger &
Roussarie (1994), see also our previous contributions
(Auger, 1983, 1985, 1989, 1992, 1993; Auger &
Benoı̂t, 1993). In the present paper, a fast model
describing migration on spatial patches is coupled to
a slow growth model on each patch. Our aim is to
show that different scenarios for the fast migration
can lead to different growth models.

Growth of Single Population in a

Two-patch Environment

 

Presentation of the micro-model
We consider a single population of total density

n(t). This population is subdivided into subpopu-
lations ni(t), i=1, N where N is the number of
subpopulations. For example, individuals can move
on to different spatial patches or can be in different
states. The state vector is the following (n1(t),
n2(t), . . ., nN(t)). The following microsystem describes
the growth of the subpopulations:

o
dni

dt
= s

j

kijnj − s
k

kkini + ogi (n1, n2, . . ., nN ), (1)

kij is the rate of state change from state j to state i per
unit time, gi is a function of subpopulations and
describes the growth of the subpopulations. o is a

small parameter (o�1). The change of states takes
place at a fast timescale and the growth at a slow
timescale. The simplest case assumes linear growth
for subpopulations, i.e. linear g-functions so that
microsystem (1) becomes:

o
dni

dt
= s

j

kijnj − s
k

kkini + orini . (2)

In the case of two states only (for example two
spatial patches), system (2) reduces to two equations
(3):

o
dn1

dt
= k12n2 − k21n1 + or1n1,

o
dn2

dt
= k21n1 − k12n2 + or2n2. (3)

Figure 1 presents a diagram of this simple
two-patch system in which individuals can migrate
from patch 1 to patch 2 and vice versa at a fast
timescale.

The aggregated model

It must be noted that the fast part is conservative,
i.e. n(t)= n1(t)+ n2(t) is invariant for the migration
process. In order to aggregate this equation into a
single equation for the whole density n, perturbation
methods can be used (Hoppensteadt, 1966; Nayfeh,
1973; Tihonov, 1948). It is necessary to look for the
equilibrium of the fast part. This equilibrium
corresponds to o=0 in system (3):

k12n2 − k21n1 =0. (4)

When k-parameters are constant or functions of n,
the fast equilibrium can be characterized by the
equilibrium patch proportions of frequencies noted
n*1 = n1/n and n*2 = n2/n.

n*1 =
k12

k12 + k21
and n*2 =

k21

k12 + k21
, (5)

where the asterix denotes the equilibrium. It is then

F. 1. Individuals can go on two patches. k12 and k21 are the
migration rates which take place at a fast timescale.
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possible to aggregate model (3) into a single equation
for n:

dn
dt

= rn+O(o), (6)

with

r= r1n*1 + r2n*2 .

  

The simplest case occurs when the migration rates
k12 and k21 are constant. In this case, the overall
growth rate r is also constant leading to an
exponential growth model for the total population
n(t) for a sufficiently small o. One can imagine two
patches, a favorable patch 1 (rq 0) and an
unfavorable patch 2 (rQ 0). Now, we note −r2 for the
growth rate of the unfavorable patch 2 with r2 q 0. If
the total population lives on patch 1 (n*1 =1 and
n*2 =0), the population increases exponentially. If
the total population lives on patch 2(n*1 =0 and
n*2 =1), the population is decaying. An interesting
case occurs when the equilibrium subpopulations are
shared between the two patches. This occurs when (7)
holds:

r1n*1 − r2n*2 =0,

n*1 + n*2 =1. (7)

Solutions of (7) are the following:

n*1 =
r2

r1 + r2
, n*2 =

r1

r1 + r2
. (8)

When patch frequencies take these particular
values, (6) becomes:

dn
dt

=O(o). (9)

We need to calculate the first order term with
respect to o, see Auger & Roussarie (1994) for more
details. The calculation gives the following global
system:

dn
dt

= o0 r1r2

k12 + k211n+O(o2). (10)

This shows that it is not possible to have a constant
sized population with constant migration rates and
linear growth terms on each patch. The next section
will consider density-dependent migrations.

   

In this section, we shall investigate the effect of
density dependence on the growth of a single

population. Two cases can occur. First, the migration
rates depend on the total density (total density
dependence). Second, the migration rates depend on
the local density (local density dependence). In this
article, two patches are considered, a source (rq 0)
and a sink (rQ 0), (Pulliam, 1988). The source is a
patch on which food can be found and which it is
necessary to visit to get resources. For example, the
sink is a refuge where individuals rest but cannot
grow. It is assumed that each day animals must
leave their refuge to go to the source patch in order
to get resources. Thus, in our approach, the patches
are close to each other. It makes sense to consider
that the individuals react with respect to the total
density. In other cases, individuals can react with
respect to the local density on a particular patch
where they are. The next section studies an example
of total density and the following section an example
of local density.

Logistic type growth in the case of total density
dependence

Let us consider the previous example of two
patches, a favorable patch 1 (r1 q 0) and an
unfavorable patch 2 (−r2 Q 0). Furthermore, we
assume that migration from patch 1 to patch 2
is favoured at large densities. Individuals leave
patch 1 and go to patch 2 when the total population
is large:

k21 = an and k12 = constant. (11)

More general relationships would assume that
migration rates depend on patch subpopulations n1

and n2 rather than on the total density n. However,
assuming fast migrations implies that individuals
often change patches and, thus can make an estimate
of the total population to which they belong. Under
assumption (9), equilibrium patch frequencies can be
calculated:

n*1 =
k12

k12 + an
and n*2 =

an
k12 + an

. (12)

These patch frequencies are density dependent. At
small densities, individuals live on the favorable patch
1. At large densities, they migrate to the unfavorable
patch 2. The aggregated model for the total
population is given by eqn (6). In this case, one
obtains the following equation:

dn
dt

=
1

k12 + an
(r1k12 − r2an)n . (13)
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F. 2. b=1, r1 =1, K=40. Computer simulation of the
logistic-like model with two initial conditions.

Logistic type growth in the case of local density
dependence

Let us study a local density dependence example
still having two patches. Such as in the previous case,
we assume that migration from patch 1 to patch 2 is
favored at large densities on patch 1:

k21 = an1 and k12 = b=constant. (15)

Under assumption (15), equilibrium patch frequen-
cies can be calculated:

n*1 =
−b+(b2 +4abn)1/2

2an
and n*2 =1− n*1 . (16)

It can be checked that the frequencies remain
within the interval [0, 1]. It is necessary to compute
the equilibrium patch frequencies by looking at the
fixed points of the fast system. As the total density is
an invariant for the fast system, the equilibrium
frequencies (16) depend on n (see Appendix). n*1 (n)
tends to one when n tends to zero and it tends to
zero at large total densities. The aggregated model
for the total population is given by eqn (17). In this
case, a computation leads to the next aggregated
equation:

dn
dt

=
2r1n

1+
r2n
g

+01+
4an
b 1

1/2 01−
n
K1 (17)

where

g=
b(r1 + r2)

a
and K=

2r1g
2

(r2)2 .

Equation (17) also has two equilibrium points 0
and K. 0 is unstable and K is stable. The qualitative
behavior of this equation is similar to a logistic
equation.

Growth or decay

Let us consider the following growth equation:

dn
dt

= r(M− n)(n−K)n , (18)

where 0QMQK. There are three steady states, 0, M
and K. 0 is stable, M is unstable and K is stable
(Edelstein–Keshet, 1988). M corresponds to a
threshold population size. When the initial popu-
lation is smaller than M, the population tends to zero.
When the initial condition is larger than M, it tends
to the carrying capacity K. Let us try to find
particular fast migration systems leading to a similar

This equation can be rearranged in a simpler way:

dn
dt

=
r1

1+ bn 01−
n
K1n , (14)

where

b=
a

k12
and K=

r1k12

ar2
.

Equation (14) has two steady states 0 and K. 0 is
unstable and K is stable. The qualitative behavior of
the equation is similar to a logistic or a Gompertz
equation, (Edelstein-Keshet, 1988; Murray, 1989).
Interpretation is as follows: When the density n
increases, there is overcrowding on patch 1 and the
response of the population is migration towards an
unfavorable patch 2. This has the effect of stabilizing
the population which tends to a constant density K.
This regulation of the population was brought to light
by Pulliam (1988) in terms of sinks (unfavorable
habitats) and sources (favorable habitats). Our
example also shows, by use of a mathematical model,
that spatial heterogeneity coupled with density
dependence has an important effect on the overall
growth of the population and furthermore it can
stabilize the population size. Host-parasitoid models
in a discrete set of patches (Hassell et al., 1992)
have shown similar results. The Nicholson–Bailey
model for a single patch is unstable. Computer
simulations in a multi-patch system have shown that
as soon as the size of the array of patches becomes
large enough, the probability of extinction tends to
zero.

Figure 2 presents a Runge–Kutta computer
simulation of our logistic-like model (14), the total
model of two equations. Solutions exhibit a
logistic-like shape with a carrying capacity here equal
to K=40.
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threshold effect. Let us make the following choice for
migration rates:

If nQM

k21 = constant and k12 = an ,

If nqM
k21 = dn and k12 = constant. (19)

At low density, while n increases, migration from
patch 2 to 1 also increases. At large densities, the
inverse happens. Under these assumptions, the
equation for the growth of the overall population can
be divided into two parts:

If nQM

dn
dt

=
r2

1+ bn 0 n
M

−11n ,

If nqM

dn
dt

=
r1

1+ gn 01−
n
K1n , (20)

where

b=
a

k21
, M=

r2k21

ar1
, g=

d

k12
and K=

r1k12

dr2
.

Here, M is defined by the previous relationship. For
an initial population n(0) smaller than M, the first
eqn (20) holds (0 is stable and M is unstable), the
population decays to 0. For an initial population
larger than M, the second eqn (20) holds, (0 is
unstable, K is stable), the population tends to the
carrying capacity K. The qualitative behavior is
similar to the allee effect. Below a certain threshold,
the population cannot grow. Figure 3 presents a
Runge–Kutta computer simulation of eqn (20).

One could also apply the previous method to more
patches. Aggregation methods could be applied
leading to important reduction of the dimension of
the initial system.

Emergence: two possibilities

Conclusions drawn in this section are that we can
make population growth models of different kinds
emerge. The method can work in two opposing ways:

(i) A fast migration nonlinear model is chosen (or
assumed). Our method makes the corresponding slow
population growth model emerge. The solution is
unique. In this section, we have performed this way.

(ii) A slow population growth model is assumed
and one can look for a fast model which allows us to
aggregate it. The solution is generally not unique, i.e.
several fast processes can be suitable.

Now, we shall consider the case of two interacting
populations with migrations on spatial patches.

Structured Populations and

Interspecific Competition

In the classical Lotka-Volterra competition model,
the competition between two populations for the
same food source can lead to processes of coexistence
or of mutual exclusion (Edelstein-Keshet, 1988;
Gause, 1934; Murray, 1989). Most models of
competition do not take into account the structures of
the populations, for example on spatial patches. The
two populations are described as entities and the
model is built of two ordinary differential equations.
First of all, let us recall the main results of the
Lotka–Volterra model.

 –  

Let n1 and n2 be the populations of two competing
species 1 and 2 for the same food source. In the
Lotka–Volterra competition model, the competition
process is described by a set of two ordinary
differential equations:

dn1

dt
= r1n1[1− n1/K1 − b12n2/K1],

dn2

dt
= r2n2[1− n2/K2 − b21n1/K2], (21)

where r1, r2 are the linear growth rates, K1, K2 are the
carrying capacities respectively for species 1 and 2. b12

and b21 are parameters relative to the competition
effects between the two species. The parameters are
positive. It is usual to rewrite the model using new
variables (non-dimensionalisation):

du1

dt
= u1[1− u1 − a12u2],

du2

dt
= ru2[1− u2 − a21u1], (22)

F. 3. b= g=1, r1 = r2 =1, M=40, K=80. Computer
simulation of the logistic-like model with threshold.
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where

ui =
ni

Ki
, r=

r1

r2
, t= r1t and aij = bij

Kj

Ki
.

In this new form, the u-population variables are
normalized between 0 and 1 corresponding to the
interval [O, K] for real populations. There are four
possible steady-state points, the trivial point (0, 0), the
exclusion points (0, 1), (1, 0) and the coexistence point
(u*1 , u*2 ) with:

u*1 =
1− a12

1− a12a21
and u*2 =

1− a21

1− a12a21
, (23)

(0, 0) is always unstable. The stability of the other
steady-state points depends on the two important
parameters a12 and a21. A linear stability analysis
shows that:

Coexistence: when a12 and a21 are both smaller than
1, (u*1 , u*2 ) is located in the positive orthant and is the
only stable point.

Exclusion: when one of the two parameters a12 or
a21 is larger than one, either (1, 0) is stable and (0, 1)
is unstable or vice versa or still both are stable. In
these cases, one of the two populations becomes
extinct:

If a12 Q 1 and a21 q 1, population 2 becomes
extinct

If a12 q 1 and a21 Q 1, population 1 becomes
extinct.

If a12 q 1 and a21 q 1, either population 1 or
population 2 becomes extinct depending on the initial
position with respect to a separatrix.

  –-

 

Consider two populations subdivided into two
patch sub-populations. Let n1

1(t) and n1
2(t) be

population densities 1 respectively on patch 1 and 2
at time t. n2

1(t) and n2
2(t) are the same for population

2. First of all, similar to the case of a single species,
we assume a favorable patch 1 (r1

1 q 0 and r2
1 q 0) and

an unfavorable patch 2 (−r1
2 Q 0 and −r2

2 Q 0). Let
us consider the following equations:

o
dn1

1

dt
= k1

12n1
2 − k1

21n1
1 + or1

1n1
1 ,

o
dn1

2

dt
= k1

21n1
1 − k1

12n1
2 − or1

2n1
2 ,

o
dn2

1

dt
= k1

12n2
2 − k2

21n2
1 + or2

1n2
1 ,

o
dn2

2

dt
= k2

21n2
1 − k2

12n2
2 − or2

2n2
2 . (24)

ka
ik is a migration rate from patch k to patch i for

population a. The growth rate of population a on
patch i is written ra

i . The fast parts are conservative,
i.e. n1(t)= n1

1(t)+ n1
2(t) and n2(t)= n2

1(t)+ n2
2(t) are

invariant for the migration process. The equilibrium
of the fast part corresponds to o=0. Equilibrium
patch proportions or frequencies written na

k*= na
k /na

are the following:

na
1*=

ka
12

ka
12 + ka

21
and na

2*=
ka

21

ka
12 + ka

21
. (25)

The aggregated model is then composed of the two
following equations:

dn1

dt
= r1n1,

dn2

dt
= r2n2, (26)

with

r1 = r1
1n

1
1*− r1

2n
1
2* and r2 = r2

1n
2
1*− r2

2n
2
2*.

In the density independent case, both populations
follow an exponential growth curve because the
overall growth rates r1 and r2 are constant. Now,
similar to the case of a single population, let us
consider a density dependent case where the
migration rates are assumed as follows:

k1
21 = an1 + bn2 and k1

12 = constant,

k2
21 = gn1 + dn2 and k2

12 = constant, (27)

where a, b, g, d are positive constant. At large
densities, individuals of both species migrate increas-
ingly from the favorable patch 1 to the unfavorable
patch 2. Equilibrium patch frequencies are:

n1
1*=

k1
12

k1
12 + an1 + bn2 and n1

2*=
an1 + bn2

k1
12 + an1 + bn2,

n2
1*=

k2
12

k2
12 + gn1 + dn2 and n2

2*=
gn1 + dn2

k2
12 + gn1 + dn2.

(28)

The aggregated model for the total densities is
given by eqns (29):

dn1

dt
=

1
k1

12 + an1 + bn2 (r1
1k1

12 − ar1
2n1 − br1

2n2)n1,

dn2

dt
=

1
k2

12 + gn1 + dn2 (r2
1k2

12 − gr2
2n1 − dr2

2n2)n2. (29)
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F. 4. Computer simulation of the competition-like model.
Exclusion. All trajectories converge to (1, 0) which is stable node.
a= b=1, g= d=2, m= n=1, f=8=2, r1

1 = r2
1 =1,

k1
12 = k2

12 =1.

can result in coexistence or in mutual exclusion. The
competition model that we have obtained could be
considered as a kind of spatial competition model.

In this study, the migration rates depend on total
densities. One may also consider local density
dependent cases in which migration rates would
depend on local densities on each particular patch.
Such a case was studied for the growth of a single
population on two patches for which the resulting
aggregated model was of the same kind (qualitatively)
as in the case of a total density dependence. In this
contribution, we have limited our study mainly to
total density dependence. Local density dependence
will be investigated in more detail in further studies.

–-  

  - 

The method can be extended to two populations
subdivided in many patch subpopulations. Let n1

i (t)
and n2

i (t) be population densities 1 and 2 respectively
on patch i at time t, i belongs to [1, N]. N is the total
number of patches. Let us consider the following
equations:

o
dn1

i

dt
= s

j

(k1
ijn1

j − k1
jin1

i )+ or1
i n1

i ,

o
dn2

i

dt
= s

j

(k2
ijn2

j − k2
jin2

i )+ or2
i n2

i . (31)

ka
ik Is the migration rate from patch k to patch i for

population a. The growth rate of population a on
patch i is ra

i . Similarly to the previous case, the fast
parts are conservative, i.e.:

n1(t)= s
i

n1
i (t) and n2(t)= s

i

n2
i (t)

These equations can be rearranged in a simpler
way:

dn1

dt
=

r1
1k1

12

k1
12 + an1 + bn2 (1− mn1 − nn2)n1,

dn2

dt
=

r2
1k2

12

k2
12 + gn1 + dn2 (1−fn1 −8n2)n2, (30)

where m, n, f, c can be easily obtained. Except for the
denominators, lets say g, (which are always q 0), this
model is similar to the Lotka–Volterra competition
model which we have seen previously. It is easy to see
that the qualitative behavior of system (30) is the
same as the classical Lotka–Volterra competition
model without denominators. Indeed, for local
stability, one must calculate the Jacobian matrix at a
steady state. The supplementary denominators g have
no influence on its trace and determinant signs. It is
simply a positive multiplier. When calculating the
coefficients of the Jacobian matrix, we calculate
derivatives of ratios f /g which are equal to
(1/g2)(gf '− fg') and simplify to (1/g)f ' because f=0
at a steady state. As g is positive in the positive
orthant, signs of the trace and determinant of the
Jacobian matrix remain unchanged in respect to
functions f '. Thus, qualitative behaviours of the
aggregated model (30) and of the classical Lotka–
Volterra model are the same. Figures 4 and 5 present
numerical simulations of the competition-like model
in two cases, a case of exclusion and a case of
coexistence.

However, in case (30) competition must be
interpreted as the result of a repulsive effect between
individuals of the same and of the other population
on the favorable patch. At large densities, individuals
migrate to avoid overcrowding by both its own
population and the other population. Migration
causes them to leave the favorable patch to move to
an unfavorable patch. As we have seen, this process

F. 5. Computer simulation of the competition-like model.
Coexistence. All trajectories converge to a point in the positive
orthant which is a stable node. a= d=2, b= g=1, m=f=2,
n=8=1, r1

1 = r2
1 =1, k1

12 = k2
12 =1.
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F. 6. Branching migration graph for population a. We present
an example with five patches.

where a, b, g, d parameters are positive constant. The
significance of eqns (34) is similar to the two patch
case. At large densities, individuals migrate from the
favorable patch 1 to an unfavorable patch r. Under
these assumptions, substitution of expressions (34)
into the aggregated model (33) leads to a competition-
like model of the general form (30).

Conclusion

Many questions can be reconsidered in the frame of
emergence. For example, how can an individual
modify the stability of the population and community
to which it belongs? Conversely, how global
constraints influence the individual behavior at a fast
timescale? This contribution provides a simple model
for describing the coupled evolutions in the different
levels of organization of large-scale dynamical
systems. Here, we propose aggregation and emer-
gence processes which can take place in dynamical
systems involving multiple timescales. It also shows
how the coupling between fast and slow dynamics
going on at different levels is a real driving force for
the co-evolution of the system and of its subsystems.

The method can be extended to prey–predator
models and one can look for different migration
processes taking into account repulsive or aggregative
behaviours of the prey and predators on the different
patches. According to different cases, it is possible to
make different functional responses emerge. In this
contribution, we have mainly focused on migration
between two patches. In the case of many patches, the
process of aggregation can lead to an important
reduction in the dimension of the model. Our method
can also be used in the case of different kinds of
subpopulations, not only in a patchy environment,
but to various individual states.

It is a general method for aggregation and
emergence which can be applied to different cases of
structured populations. It is a method devoted to the
passage from a micro-level to a macro-level. This
method implies that different timescales exist.
Alternate approaches based on statistical mechanics
of populations can also be performed (Demetrius,
1983).
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The aggregated model is composed of the two
following equations:

dn1

dt
= r1n1,

dn2

dt
= r2n2, (33)

with

r1 = s
i

r1
i n

1
i * and r2 = s

i

r2
i n

2
i *.

Similar to the case of two patches, we assume that
r1

1 and r2
1 are positive and that any other growth rate

is negative. This means that there is a favorable patch
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k1
r1 = a1

r n1 + b1
r n2 and k1

1r =constant,

k2
21 = g2

r n1 + d2
r n2 and k2

1r =constant, (34)
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APPENDIX

Let X be a Ca-vector field on Rk1 ×Rk2 ×R, such
that, for each n $ Rk2, (0, n, 0) is a fixed point of X.
Let DX(n) be the linear part of the vector field X at
(0, n, 0). We assume that DX(n) has k1 eigenvalues
which have negative real parts, and that 0 is an
eigenvalue which has multiplicity k2 +1. A well-
known result of linear algebra claims that a splitting
of the global vector space as Es

n ×Ec
n exists, where Es

n

is the space associated to the non-zero eigenvalues,
and Ec

n is the eigenspace associated to the eigenvalue
0. This vector space is called the center space. Using
these assumptions and notations, we can express the
Center Manifold Theorem (Fenichel, 1971), in the
following form:

: For each compact set DWRk2, and for each
positive integer K, there exists a positive real o0 and

a CK-map h: D×]− o0, o0[4Rk1, such that:

(i) h(n, 0)=0.
(ii) the graph W of h, so called Center Manifold,

is invariant by X.
(iii) W is tangent to Ec

n at each (0, n, 0).

Remark: since the unstable eigenspace is reduced to
{0}, the center manifold is attractive. Thus, the
solutions of the global vector field can be approxi-
mated by the solutions of the restriction of X to W
as long as the n-component stays in the compact D.

The models that we consider are written in the
following form:

dn

dt
= f(n, n)+ oF(n, n)

g
G

G

G

G

F

f

dn
dt

= og(n, n, o)

do

dt
=0

where n$Rk1, n $ Rk2, o $ R.
The fast part, obtained when putting o=0, has a

hyperbolic stable equilibrium. This last assumption
leads us to apply the previous theorem. In order to
look for the fast equilibrium, we need to solve:

f(n, n)=0

and we have assumed that this equation has a unique
solution n*(n), for each n, we then put n̄= n− n*(n),
in order to translate the equilibrium at 0. Now,
writing the system into the new variables, we obtain
the following differential system:

dn̄

dt
= f� (n̄, n)+ oF� (n̄, n, o)

g
G

G

G

G

F

f

dn
dt

= oḡ(n̄, n, o)

do

dt
=0

(0, n, 0) is an equilibrium of this system, for each n.
We can calculate the linear part at such an
equilibrium, and we obtain the following matrix.

Df�
Dn̄

( (

DX(n)=G
G

G

F

f
0 0 (G

G

G

J

j0 0 0
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where Df� /Dn̄ denotes the matrix obtained by
derivating each component of f� with respect to
each component of n̄. Hence, all the eigenvalues

of this matrix have negative real parts. Conse-
quently, we can apply the Center Manifold
Theorem.


