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Different mechanisms at the behavioural or physiological levels determine many properties of
predator-prey systems at the population level. In this paper, we present a method of obtaining complex
predator-prey dynamic models from models at a detailed, behavioural level of description. We consider
a multi-patch predator-prey model, the dynamics of which contains two time-scales: a fast one,
associated with migrations between patches, and a slow one, on which interactions, reproduction and
mortality occur. We use methods of perturbation theory in order to aggregate the multi-patch system
into a reduced system of two differential equations for the total prey and predator populations. Several
models for the aggregated systems are obtained from specific migration scenarios. At the global level,
complex expressions for the functional and numerical responses emerge from simple models at the local
and behavioural levels. We show that, even if the predator growth rate is directly related to prey deaths
at the local level, this may no longer be true at the global level. As a consequence, the coupling between
the predator and prey equations may be broken when a predator-prey model is derived from
behavioural considerations.
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1. Introduction

The dynamics of predator-prey systems with overlap-
ping generations is usually described by models of the
following general form:

dN
dt

= f(N)N− g(N, P)P, (1a)

dP
dt

= eg(N, P)P− mP, (1b)

where N and P represent the density of prey and
predators, t is the time, f(N)N the prey growth rate
in the absence of predation, g(N, P)P the impact of
the predator on the prey growth rate, e the conversion
efficiency, and m the per capita death rate of
predators. The idea hidden behind the form of eqns
(1) is that the predator numerical response, eg(N, P)
in (1b), is proportional to g(N, P), the impact of an
average predator on the prey growth rate. Moreover,
if g(N, P) is interpreted as the number of prey killed
per predator in a unit time (hereafter called the
predator ration), the form of (1) imposes that the only
influence of predators on prey is by killing them and
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that the predator growth rate is proportional to the
amount of prey killed.

In models of type (1), the predator ration may be
identified with the per capita predator impact on the
prey population and is usually called the functional
response. As we will see later, this identification is not
always justified for predator-prey models derived
from behavioural mechanisms because such models
do not have, in general, the form (1). Therefore, we
will later use the terms ‘‘predator ration’’ and ‘‘per
capita predator impact’’ rather than ‘‘functional
response’’ when referring to the models obtained in
this paper.

Within the framework defined by (1), many
different models have been suggested. The major
difference between models sits in the expression
describing the functional response. In models of type
(1), the functional response g(N, P) plays the key role
since, coupling the two equations, it determines the
dynamic properties of the predator-prey system. In
the classical Lotka–Volterra model, the functional
response is linear, i.e., the feeding rate of each
predator individual is assumed to respond propor-
tionally to prey abundance. A large number of more
realistic expressions have been suggested in order to
take account of behavioural or physiological con-
straints such as predator saturation, predator
interference, etc. [Holling, 1959; Watt, 1959; Ivlev,
1961; Takahashi, 1964; Hassell & Varley, 1969;
Rosenzweig, 1971; Hassell & Rogers, 1972; Tosto-
waryk, 1972; Jost et al., 1973; Strebel & Goel, 1973;
Gomatam, 1974; Rogers & Hassell, 1974; Bedding-
ton, 1975; DeAngelis et al., 1975; Real, 1977; Arditi
et al., 1977, 1978; see Arditi (1979) for comparative
tables]. Some of these expressions depend on N only,
others depend on both N and P. Most of the authors
cited above concentrated their studies on the influence
of different mechanisms on the functional response
only. As we will see in Section 3, behavioural
mechanisms can influence the numerical response
also, i.e., the effect of prey consumption on the
predator growth rate.

Different kinds of arguments have been used to
justify the various models. Some persons will be
satisfied with phenomenological or empirical argu-
ments. Others will request that models emerge from
the detailed description of behavioural mechanisms.
In the present paper, we explore one method of
obtaining complex models for the entire prey and
predator populations from simpler models at a more
detailed, local and behavioural scale of description.

We assume a heterogeneous environment consist-
ing of several patches. Prey and predators migrate
between the patches. Some patches may be accessible

to both species, others can contain one species only.
When both species co-occur, they are assumed to
interact. Patches reserved for a single species may be
actual refuges (for the prey) or simply states of
inactivity (for the predators). For the sake of
simplicity, we assume that locally (i.e., in each patch)
the dynamics is described in the simplest way: each
species increases or decreases exponentially (i.e.,
according to the Malthus law) in the absence of the
other species and trophic interactions are described by
the Lotka–Volterra model (i.e., they follow the law of
mass action). Thus, we can model complex patterns
of behaviour such as prey avoiding predators,
predators searching for prey, aggregative or repulsive
behaviours within each species, predators entering or
leaving states of active searching, of handling the
prey, etc. We will show that the way in which these
phenomena combine with each other at a behavioural
scale will translate into mathematical models of
predator-prey systems at the global scale. Population-
level complex behaviours, like prey logistic-like
growth or predator saturation, will emerge from
migrations between patches.

Technically, the full model will be a system of
ordinary differential equations for the two species in
the several patches. Two time-scales will be con-
sidered: a fast one on which migrations between
patches occur and a slow one on which interactions,
reproduction and mortality take place. We will use
methods of perturbation theory in order to aggregate
the full system into a reduced system of two
differential equations for the total prey and predator
populations (Section 2). In general, the relations
between the predator and the prey equations at the
global scale will be different from those adopted at the
local scale; they will be determined by the specific
modes of migration between the patches (Section 4).
In Section 5, we show how some well-known
functional responses can be derived using our
formalism.

2. The Method: a Prey-predator Model in a
Multi-patch Environment

As mentioned, the two species can migrate between
different spatial patches and/or switch from one
activity to another. In our formalism, spatial patches
and different modes of activity are treated in the same
way; therefore we will use the same term ‘‘patch’’ to
designate both. For the sake of simplicity, we limit
ourselves in this section to the case of two patches for
each species. The general case of an arbitrary number
of patches will be presented in the next section.
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2.1.     

We assume that predation takes place in patch 1
only. Patch 2 can be seen as a refuge for both prey
and predators. Thus, patch 2 can, in reality, consist
of separate patches for the prey and the predators. We
assume that, in the absence of predators, the prey
reproduce (or die) exponentially in each patch and
that, in patch 1, predation is of the Lotka–Volterra
type. In order to obtain prey self-limited growth
which stabilises the global predator-prey dynamics we
suppose that the net prey growth (without migration)
in patch 2 is negative. This models the situation in
which patch 2 is a prey refuge where no food is
available: to feed, the prey must go to patch 1, where
they risk predation. In addition, we suppose that
migrations between patches are much more rapid
than the other processes in the system. This system is
described by the following set of equations:

dN1

dt
=

1
e

(m12N2 −m21N1)+N1(r1 − a1P1), (2a)

dN2

dt
=

1
e

(m21N1 −m12N2)−N2d2, (2b)

dP1

dt
=

1
e

(n12P2 − n21P1)+ (e1a1N1 − m1)P1, (2c)

dP2

dt
=

1
e

(n21P1 − n12P2)− u2P2, (2d)

where N1, P1, N2, P2 are prey and predator densities
in patches 1 and 2 respectively, r1 is the prey intrinsic
growth rate in patch 1, d2 is the prey intrinsic death
rate in patch 2, a1 is the so-called searching efficiency,
e1 the conversion efficiency and mi the predator
mortality in patch i (i=1, 2). The terms mij (nij )
describe the rate of migration of prey (predators)
from patch j to patch i and may, in general, be
functions of N1, P1, N2 and P2. e is a small parameter
and its presence in (2) shows explicitly that the
dynamics of migrations is much faster than that of
other phenomena like predation, growth, and
mortality. Throughout this paper, all parameter
values are supposed to be positive.

We assume that each patch is homogeneous and
that, within a patch, prey and predators encounter
each other at random, following the law of mass
action. Heterogeneity is modelled by the presence of
several patches. Our model is thus a Lotka–Volterra
model in a multi-patch environment.

2.2.  

Frequently, the variables of interest are the total
abundances of the populations and not their detailed
distribution among the patches. In the model

described by (2), the variables of interest are
N=N1 +N2 and P=P1 +P2 rather than N1, N2, P1,
and P2. When migration is much faster than the other
processes, one may expect that the distributions of
prey and predators among patches come quickly to an
equilibrium. The case (not considered here) in which
these distributions do not tend to an equilibrium but
to a limit cycle can be treated in a similar way
(Poggiale & Auger, 1996). In order to explain the
method more clearly, we rewrite (2) in a more
convenient form:

du1

dt
=

1
e

(m12u2 −m21u1)+ u1u2(r1 + d2 − a1v1P),

(3a)

dv1

dt
=

1
e

(n12v2 − n21v1)− v1v2(m1 − m2 − e1a1v1N),

(3b)

dN
dt

=(r1u1 − d2u2 − a1u1v1P)N, (3c)

dP
dt

=−(m1v1 + m2v2 − e1a1u1v1N)P, (3d)

where

ui =
Ni

N
, i=1, 2, (4a)

and

vi =
Pi

P
, i=1, 2. (4b)

Thus, eqns (3c) and (3d) describe the evolution of the
total populations while (3a) and (3b) describe changes
of the distribution between patches. Note that the
equations for the total abundances [(3c) and (3d)] do
not depend explicitly on the rapid migrations while
(3a) and (3b) contain both slow population dynamics
and fast migration.

2.3.       



In the r.h.s. of (3a) and (3b), the terms that describe
migrations are much greater than the others.
Neglecting the slow terms gives:

du1

dt
=

1
e

(m12u2 −m21u1), (5a)

dv1

dt
=

1
e

(n12v2 − n21v1). (5b)
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At equilibrium we have:

u*1 =
1

1+
m21(u*1 , v*1 , N, P)
m12(u*1 , v*1 , N, P)

, u*2 =1− u*1 , (6a)

v*1 =
1

1+
n21(u*1 , v*1 , N, P)
n12(u*1 , v*1 , N, P)

, v*2 =1− v*1 , (6b)

where the asterisks denote the equilibrium solutions.
In general, (6) should be further solved to find u*1 and
v*1 as explicit functions of the total variables N and
P, since the migration coefficients mij and nij may
depend on all variables u1, v1, N and P. Note that,
once at the equilibrium of the fast part of the
dynamics, the patch occupancies, Ni , Pi , become
functions of the total variables, N and P, only.

The idea behind the method presented here is
therefore that, when migration is much faster than the
other processes, one may expect that, at each instant
of the slow dynamics, the fast part of the dynamics
is at an equilibrium. Then, one may take the solution
of the fast part and substitute it into the slow part in
order to obtain an aggregated system of equations. In
general, the evolution of the aggregated system differs
from that of the full system. The error is small for
short time periods but, after a long time, it can, in
principle, accumulate to an important value. Pertur-
bation theory and, in particular, the Centre Manifold
Theorem (see Appendix A) give conditions under
which this accumulated error is negligible.

2.4.  

Aggregation methods allow to replace the complete
system of four eqns (3) by an aggregated system of
two equations for the total prey and predator
populations (Auger, 1989; Auger & Roussarie, 1994;
Poggiale et al., 1995). The Centre Manifold Theorem
warrants that, if the solution of (6) is also an
asymptotically stable solution of the linearization of
(5) around this solution (i.e., it is hyperbolically
stable), one may substitute the solution of (6) into
(3c–3d) and, thereby, the full system (3) may be
replaced by the reduced system:

dN
dt

=FN (N, P), (7a)

dP
dt

=FP (N, P), (7b)

where

FN (N, P)= (r1u*1 − d2u*2 − a1u*1 v*1 P)N, (8a)

FP (N, P)= (e1a1u*1 v*1 N− m1v*1 − m2v*2 )P. (8b)

Remember that u*i and v*i are functions of N and P.
Thus, in general, FN and FP will be nonlinear functions
of N and P.

According to the Centre Manifold Theorem (see
Appendix A), eqns (7) describe the trajectory of prey
and predator populations with errors of order e with
respect to the initial full system (2). Hereafter, system
(7) will be called the aggregated system.

3. Recipe

We present here a recipe that summarises in a
concise and general form the method presented in the
previous section. This recipe should be followed in
order to find the aggregated system from a known
scenario of migrations between patches. The number
of patches is arbitrary and local predator-prey
interactions may be of any form.

(1) Write the full system of detailed equations that
describe both migrations between patches and
predator-prey interactions within patches. Inter-
specific interactions within patches may be
described by any model; in the examples given in
this paper, we used the Lotka–Volterra functional
response for the sake of simplicity only.

(2) Look for time-scales in the system. If two different
time-scales can be determined, and if the fast one
is associated with migrations, proceed to point 3.
If there is one time-scale only (i.e. changes of
abundances of the subpopulations due to
migrations are not much faster that changes due
to other processes), then the conditions of the
Centre Manifold Theorem are not fulfilled and
the method cannot be used.

(3) From the original equations for the full system,
write equations for the total variables N=ai Ni

and P=ai Pi and for the occupation frequencies
ui =Ni /N and vi =Pi /P. The equations for the
total populations will not depend explicitly on
migrations (only slow terms will be present),
while the equations for the occupation frequen-
cies will contain both predation and migration
terms.

(4) Find the equilibrium solution of the equations
for the occupation frequencies, simplified by
neglecting the small terms (i.e. terms that describe
processes other than migrations). If the solutions
(denoted by u*i and v*i ) are hyperbolically
stable (i.e., they are asymptotically
stable solutions of the linearized equations) then
proceed to point 5. Otherwise the conditions of
the Centre Manifold Theorem are not fulfilled
and the method cannot be used.
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(5) Substitute the equilibrium frequencies u*i and v*i
(which are functions of the total variables N and
P) into the equations for the total variables found
in point 3, in order to obtain the aggregated
system:

dN
dt

=FN (N, P), (9a)

dP
dt

=FP (N, P). (9b)

(6) Check whether the global variables N and P
whose dynamics are described by (9) are always
bounded. If yes, the aggregated system has been
successfully obtained and can be analysed by
proceeding to point 7. If not, after a certain time
(of the order 1/e) the conditions of the Centre
Manifold Theorem may no longer be fulfilled and
the method should not be used.

(7) The reduced system (9) can be written in the
following general form:

dN
dt

= f(N)N−G(N, P)P, (10a)

dP
dt

=H(N, P)P− m(P)P, (10b)

where f(N) is the per capita prey net growth
function, G(N, P) is the per capita predator
impact on the prey growth rate, H(N, P) is the
numerical response of the predator, and m(P) is
the mortality rate of predators in the absence of
prey. The formal definitions of these terms are the
following:

f(N)N=FN (N, 0), (11a)

G(N, P)P=FN (N, 0)−FN (N, P), (11b)

m(P)P=−FP (0, P), (11c)

H(N, P)P=FP (N, P)−FP (0, P). (11d)

(8) If local predator rations (the amount of prey
killed per predator per unit time) are known, the
global predator ration for the aggregated system
is simply given by

g(N, P)= s
n

i=1

gi (N*i , P*i )v*i , (12)

where N*i = u*i N, P*i = v*i P, and gi (Ni , Pi ) is the
local predator ration in patch i. In general, the
global ration g(N, P) will be different from the
impact function G(N, P).

4. Migrations and Predator-prey Dynamic Models

A number of different behavioural mechanisms
influencing the population dynamics of predator-prey
systems can be considered [see Berryman (1981,
chapter 5) for a discussion of different migration
scenarios]. For example, individuals may have
repulsive or aggregative tendencies. Prey may avoid
forming aggregates that could be easily detected by
potential predators or, on the contrary, prey may
aggregate in order to form groups that are easier to
defend. Predators may look for the prey and
aggregate where the prey are. Or they can avoid
competing predators. Finally, predators may be busy
handling the prey caught. All these behaviours can be
easily translated as models of the migration rates
between different patches. It will then be easy to find
the population dynamics resulting from a given
migration scenario.

Below, we present three examples in which simple
migration scenarios result in different mathematical
models of predator-prey systems. In all these
examples, both prey and predator species can migrate
between two patches and predation occurs in patch 1
only. The full system of dynamic equations is given by
(2) and the examples differ only in the rates of
migration, mij and nij . In this section we assume that
the migration rates mij and nij depend only on the local
densities Nj and Pj , i.e., individuals have no
knowledge of the situation in the other patches. The
aggregated systems were obtained by following the
recipe of Section 3.

4.1.  1:    

    

Let prey migrate from patch 2 to patch 1 randomly
at a constant rate a and from patch 1 to patch 2 at
a rate proportional to N1, the prey density in patch
1, i.e., prey avoid aggregation in places where they are
available to predators. Let predators migrate
randomly to patch 1 at a constant rate g and be
retained in patch 1 proportionally to N1, the prey
density in patch 1, i.e., their migration to patch 2 is
inversely proportional to N1. The full dynamics of the
system is described by (2) with

m12 = a, n12 = g,

m21 = bN1, n21 =
d

N1
. (13)

With this migration scenario, one can easily calculate
the equilibrium frequencies, u*1 and v*1 [eqns (6)] and
prove that the equilibrium is hyperbolically stable.
The dynamics of the aggregated system is given by



0
N

H(N)

G(N)
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(10), where

m= m2 (14)

is the natural mortality rate, and

G(N)=

4a1a
2gN2

(a+za2+4abN)(ad+dza2+4abN+2agN)

(15)

is the per capita predator impact. The numerical
response is

H(N)=0e1 − (m1 − m2)
a+za2 +4abN

2a1aN 1G(N),

(16)

and

f(N)= r(N)01−
N
K1 (17)

is the net per capita prey growth function with

r(N)=
2ar1(r1 + d2)

2d2bN+(r1 + d2)(a+za2 +4abN)
(18a)

and

K=
ar1(r1 + d2)

bd2
2

. (18b)

The prey growth (17) has a logistic-like form, which
results from the self-repulsive prey behaviour in the
favourable patch (Auger & Poggiale, 1996). The
migration rate m21 = bN1 means that, even if
predators are absent, overcrowding of prey in patch
1 forces the prey to move to patch 1 where they can
only die. Consequently, in the absence of predators,
the global prey density converges to a constant value
given by (18b). This implies that the global density of
prey (and hence that of predators as well) is bounded
and, thus, according to the Centre Manifold
Theorem, the time evolution of the aggregated system
(10), and (14–18) is always close to the time evolution
of the full system (2, 13).

In this example, the global predator ration g is
equal to the per capita predator impact G given by
(15). Thus, the global predator ration (the amount of
prey eaten by an average predator in a unit time) is
not proportional to the total prey density N (as the
local Lotka–Volterra functional response in patch 1)
but it behaves like zN for large N. This example
shows that density-dependent migrations modify the

global predator ration, which differs from that at the
local scale.

Note that, contrary to the usual form of
predator-prey models (1), the numerical response (16)
is not proportional to the predator impact (15), i.e.,
the relation between the two responses is not given by
a constant multiplier but by a complex function of
prey density. Figure 1 shows the qualitative behaviour
of G(N) and H(N). At low and high prey densities
these functions are approximated by:

G(N)1 a1g

d
N2,

H(N)1 e1G(N)−
(m1 − m2)g

d
N,

h
J

j
for small N

(19)

and

G(N)1 a1 0 a

2b
+

d

g
+Xa

b
N1,

H(N)1 e1G(N)− (m1 − m2).

h
G

G

J

j

for large N

(20)

The shape of G(N) in Fig. 1 reminds that of the
Holling type III functional response. The acceleration
phase at low density, where an increase in prey density
leads to more-than-linear increase in G(N), is due to
the assumption that predators are retained by the
prey in patch 1. However, as the numerical response
H(N) is not proportional to G(N), the latter cannot
be strictly identified with the functional response used
in models of type (1). Nevertheless, if the prey density
is high, one can see from (20) that the numerical
response H(N) becomes proportional to G(N). For
large N, the system (1) becomes therefore a valid
approximation for the aggregated populations and
G(N) in (20) can be used for the functional response
g(N) of (1).

F. 1. Qualitative behaviour of the functions G(N) and H(N)
of example 1. The predator mortality in patch 1, m1, is assumed to
be higher than that in patch 2, m2.



0
N

H(N,P)

G(N,P)
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In the present example, even though the local
numerical response in patch 1 is proportional to the
local predator impact in the same patch, the
proportionality is lost at the global level. In fact, the
prey influence the predator growth rate not only by
supplying food but also by forcing predators to
migrate to a patch where their mortality is different.
This results in a decoupling of the numerical response
from the predator impact and, consequently, in a
decoupling between the predator and the prey
equations: the form (1) is broken.

4.2.  2:    



Let the prey migrate from patch 2 to patch 1
randomly at a constant rate a and from patch 1 to
patch 2 at a rate which is the sum of a term
proportional to the prey density in patch 1 and of a
term proportional to the predator density in the same
patch. This means that prey avoid to aggregate in
places where they are available to predators (as in the
previous example) and flee the predators by going
back to the refuge (patch 2). Let predators migrate
randomly. The full dynamics of the system is
described by (2) with

m12 = a, n12 = g,

m21 = bN1 + lP1, n21 = s. (21)

Again, one can easily find the equilibrium (u*1 , v*1 )
and verify that it is hyperbolically stable. The
aggregated system is given by (10) with

f(N) given again by (17), and

m=(m1v*1 + m2(1− v*1 )), (22)

where

v*1 =
g

g+ s
. (23)

In order to shorten mathematical expressions that will
follow, we define the function

D(N, P)=z(a+ lv*1 P)2 +4abN . (24)

Then, the global predation ration is given by

g(N, P)=
2aa1v*1 N

a+ lv*1 P+D(N, P)
, (25)

the per capita predator impact on the prey growth
rate is

G(N, P)= g(N, P)

+
(r1 + d2)lv*1

2b 01−
lv*1 P+2a

D(N, P)+D(N, 0)1, (26)

F. 2. Qualitative behaviour of the functions G(N, P) and
H(N, P) of example 2. The predator density, P, is fixed at a
constant value.

and the numerical response is given by

H(N, P)= e1g(N, P). (27)

Due to prey self-limitation (in the same way as in
the previous example) and to the fact that predators
can only harm prey, both N and P are bounded and
thus, according to the Centre Manifold Theorem, the
aggregated system (10) and (22–27) approximates the
full system (2) and (21) with no time limit.

Figure 2 shows the qualitative behaviour of
G(N, P) and H(N, P) for a fixed predator density P.
Note that both functions start from the same value
for N=0 but with different slopes, whereas, for large
N they have the same slopes but differ from each other
by a constant. At low and high prey densities
they are approximated by:

G(N, P)1 1
e1

H(N, P)+
(r1 + d2)lv*1
lv*1 P+ a

N,

H(N, P)1 e1
a1av*1 N

a+ lv*1 P
,

h
G

G

J

j

for small N (P fixed) (28)

and

G(N, P)1 1
e1

H(N, P)+
v*1 (r1 + d2)l

2b
,

H(N, P)1 e1v*1 0a1Xa

b
zN−

a+ v*1 lP
2b 1.

h
G

G

J

j

for large N (P fixed) (29)

At low and high predator densities these functions are
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approximated by:

G(N, P)1 1
e1

H(N, P)+
(r1 + d2)lv*1

2b

×01−
a

D(N, 0)
−

2ablv*1 NP
(D(N, 0))31,h

G

G

G

G

G

G

J

j
H(N, P)1 2e1a1av*1 N

a+D(N, 0) 01−
lv*1

D(N, 0)
P1.

for small P (N fixed) (30)

and

G(N, P)1 1
e1

H(N, P),

H(N, P)1 e1a1a

l

N
P

.
h
G

G

J

j
for large P (N fixed) (31)

Commonly, the per capita predator impact on the
prey growth rate is supposed to be proportional to the
predator ration [as in (1)]. In the present example this
is not the case. The per capita predator impact (26)
is the sum of the predator ration, which describes
predation, and a term proportional to (r1 + d2) which
describes modifications of the prey growth rate due to
changes of prey behaviour in the presence of
predators. In a heterogeneous environment the
predator can influence the prey growth rate not only
by killing the prey, but also by increasing their
migration to less favourable places. This results in
decoupling between the prey and the predator
equations. Nevertheless, if the prey or predator
density is high (the other density being fixed), one can
see from (29) or (31) that the numerical response
H(N, P) becomes proportional to G(N, P).

Note that if l=0, i.e., if the migrations are
described by

m12 = a, n12 = g,

m21 = bN1, n21 = s. (32)

then, as seen from (26) and (27), the per capita
predator impact on prey growth is proportional to the
numerical response. If lq 0 and b=0, i.e., if the
migrations are described by

m12 = a, n12 = g,

m21 = lP1, n21 = s. (33)

then the per capita predator impact

G(N, P)=01+ (r1 + d2)
lv*1
a1a1g(N, P) (34)

is also proportional to the numerical response (see
Appendix B for a proof that, for some values of the
parameters, the dynamics of the aggregated system
that results from the migration scenario (33) is
bounded and, thus, that the Centre Manifold
Theorem can be applied without time limitation).
With either of the migration scenarios (32) or (33) the
resulting aggregated systems are of type (1), i.e., the
prey and the predator equations are coupled by the
fact that predator growth is proportional to predator
impact on the prey. Nevertheless, it would be
erroneous to conclude that combining the two
scenarios will result also in a system of type (1).
Indeed, combining (32) and (33) gives the migration
scenario (21), for which the global per capita predator
impact (26) is proportional neither to the predator
ration (25) nor to the numerical response (27) and,
thus, the predator and the prey equations are not
coupled. We see here that combining mechanisms
does not result in the sum of their separate effects.

4.3.  3:    

,     

In example 1, the per capita predator impact (15)
was equal to the predator ration but was decoupled
from the numerical response (16); in example 2 the
reverse occurred: the numerical response (27) was
proportional to the predator ration (25) but the per
capita predator impact (26) was decoupled from the
predator ration (25). One can expect that combining
the migration scenarios (13) and (21) from both
examples will result in decoupling both the numerical
response and the per capita predator impact from the
predator ration. This is indeed the case, but the
resulting mathematical formulas are too long to be
shown here (probably longer than the rest of the
paper). Instead, we present below arguments that
these two decouplings occur simultaneously and,
moreover, that the numerical response is not
proportional to the per capita predator impact.

Let the migration rates be the sum of those from
the two previous examples. The full dynamics of the
system is described by (2) with

m12 = a, n12 = g,

m21 = bN1 + lP1, n21 =
d

N1
+ s. (35)

The system from example 1 [with migration rates
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given by (13)] is a special case of (35) with l=0 and
s=0. The system from example 2 [with migration
rates given by 21] is a special case of (35) with d=0.
Using these facts and treating the system (2, 35) as a
perturbation of systems from examples 1 and 2, one
can show (see details in Appendix C) that, in the
aggregated system of the system (35), the numerical
response is decoupled from the predator ration (as in
example 1), that the per capita predator impact is also
decoupled from the predator ration (as in example 2)
and that the per capita predator impact is decoupled
from the numerical response.

5. Some Scenarios Generating Known
Functional Responses

Some functional responses used frequently in the
ecological literature are known to have been derived
from behavioural mechanisms (Holling, 1959; Bed-
dington, 1975). In this section, we show how these
mechanisms can be described in our formalism of
migrations between patches and how each component
of the predator-prey system is affected by these
mechanisms. We show also that mechanisms other
than those originally proposed lead to the same
functional responses. In this section, each patch
corresponds to a behavioural mode rather than to a
distinct place. In this case, the migration rates
(switching rates) may also depend on the total
densities: if an individual A switches to another mode
when it encounters another individual B, it may do so
independently of the behavioural mode of B.

5.1.     

The Holling type II functional response is

g(N)=
AN

1+BN
. (36)

where A and B are positive constants. Holling (1959)
obtained this expression by assuming that, after
catching a prey, a predator spends some time Th

handling it. In terms of our formalism, this
mechanism means that patch 1 only is available to the
prey, that predators leave patch 1 at a rate
proportional to the prey density (n21 =8N), and that
the rate of their migration from patch 2 to patch 1 is
inversely proportional to the handling time (n12 =1/
Th ). The full dynamics of the system is given by

dN
dt

= f(N)N− a1NP1, (37a)

dP1

dt
=

1
e 0 1

Th
P2 −8NP11+(e1a1N− m1)P1, (37b)

dP2

dt
=

1
e 08NP1 −

1
Th

P21− m2P2, (37c)

If one assumes that the migrations between patches
(i.e., the switching between the two behavioural
modes) are faster than the variations of the total
predator and prey populations, the system (37)
aggregates into a two-dimensional one. The dynamics
of the aggregated system is given by (10) where the
predator impact is

G(N)=
a1N

1+8ThN
, (38)

which is equal to the predator ration g(N) and which
is formally identical to (36). The numerical response
is

H(N)= (e1 + (m1 − m2)8Th )g(N), (39)

the mortality is

m= m1, (40)

and the growth function f(N) is not affected by
predator behaviour. If the prey growth is self-limiting
(e.g., of the logistic type), then the global prey and
predators densities are bounded, and the time
evolution of the aggregated system (10) and (38–40)
is always close to that of the full system (37). Note
that the aggregated system (10) and (38–40) has the
‘‘canonical’’ form (1).

5.2. - 



The DeAngelis-Beddington functional response
(DeAngelis et al., 1975; Beddington, 1975) includes
dependence on predator density in order to reflect
mutual interference. It is

g(N, P)=
AN

1+BN+CP
, (41)

where A, B and C are positive constants. Beddington
(1975) has proposed a mechanism that results in the
functional response (41). This mechanism is the same
as that of Holling (see the previous subsection),
extended to describe direct interference between
predators. After catching a prey, a predator spends
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some time Th handling it (as in Holling’s mechanism),
and after encountering another predator individual, it
wastes some time Tw on direct interference.

Again, it is easy to transpose this mechanism into
our formalism. As before, assume that prey exist in
patch 1 only. Predators leave patch 1 at a rate which
is the sum of a term proportional to the prey density
and a term proportional to the total predator density
(n21 =8N+cP) and stay in patch 2 while handling
prey or interfering with each other. The mean time
that a predator spends in patch 2 (i.e., the reciprocal
of n12) is the weighted sum of Th and Tw :

T2 =
8NTh +cPTw

8N+cP
, (42)

The full system is thus

dN
dt

= f(N)N− a1NP1, (43a)

dP1

dt
=

1
e 0 8N+cP

8NTh +cPTw
P2 − (8N+cP)P11
+(e1a1N− m1)P1, (43b)

dP2

dt
=

1
e 08N+cP)P1 −

8N+cP
8NTh +cPTw

P21− m2P2.

(43c)

The aggregated system is given by (10) with

G(N, P)=
a1N

1+8ThN+cTwP
, (44a)

g(N, P)=G(N, P), (44b)

H(N, P)=0e1 +
m1 − m2

1+cTwP
Th1G(N, P), (44c)

m(P)=
m1 + m2cTwP
1+cTwP

, (44d)

and the per capita net growth function f(N) is not
affected by predator behaviour. As before, if the prey
growth is self-limiting (e.g., of the logistic type), then
the global prey and predator densities are bounded,
and the time evolution of the aggregated system
(10, 44) is always close to that of the full system (43).
Note that the numerical response (44c) is not simply
obtained from the predator impact (44a) and,
consequently, the aggregated predator and prey
equations are not coupled. However, if the predator
death risk is the same while performing different
activities (m1 = m2, a rather strong assumption), then
H(N, P) is proportional to G(N, P) and the predator

and prey equations are coupled. The predator ration
(44b) is equal to the impact function (44a) and is
formally identical to the DeAngelis-Beddington
functional response (41).

The above migration scenario translates accurately
the mechanism suggested by Beddington (1975).
However, one may object that the number of
predators encountered by a predator individual in
patch 1 should be proportional to the number of
predators in that patch, P1, rather than to the total
number of predators, P. Indeed, one may argue that
a predator individual that is handling captured prey
or interfering with another predator individual
cannot enter into a new interference relation.
Moreover, one may take account of the fact that each
predator-predator encounter removes not one but
two predators from patch 1. Thus, the migration rate
from patch 1 to patch 2 should be n21 =8N+2cP1

and the migration rate from patch 2 to patch 1 will
read:

n12 =
8N+2cP1

8NTh +2cP1Tw
. (45)

Consequently, the full system is

dN
dt

= f(N)N− a1NP1, (46a)

dP1

dt
=

1
e 0 8N+2cP1

8NTh +2cP1Tw
P2 − (8N+2cP1)P11

+(e1a1N− m1)P1, (46b)

dP2

dt
=

1
e 0(8N+2cP1)P1 −

8N+2cP1

8NTh +2cP1Tw
P21

− m2P2, (46c)

and the aggregated system is given by (10) with

G(N, P)=
aN

4cTwP
(−1−8ThN

+z(1+8ThN)2 +8cTwP ), (47a)

g(N, P)=G(N, P), (47b)

H(N, P)=0e1 +
(m1 − m2)8Th

1+z1+8cTwP

01+
2+8ThN

z1+8cTwP+z(1+8ThN)2 +8cTwP11
×G(N, P), (47c)

m(P)= m2 +
2(m1 − m2)

1+z1+8cTwP
. (47c)
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Again, the numerical response (47c) is not a function
of the per capita predator impact (47a) and the
predator and prey equations are not coupled.

An equivalent correction to Beddington’s mechan-
ism was made by Ruxton et al. (1992) to derive a
functional response formally equivalent to (47a) with
arguments based on chemical reaction kinetics.
Although having a quite different mathematical
expression, the function (47a) behaves very similarly
to the functional response (41). In particular, both
(41) and (47a) have the same limits as N, P:0 and
both saturate at the same value as N, P:a. In
practical situations, it will be difficult to discriminate
between (41) and (47a). For the sake of simplicity,
(41) can be used in ecological models.

One can also obtain the functional response (41)
from a behavioural mechanism different from that
proposed by Beddington. Consider predators having
one behavioural mode only (one patch) and prey
individuals that waste their time (which would
otherwise be devoted to feeding) when they encounter
each other (e.g., by fighting) or when they notice a
predator (e.g., by fleeing). Such a situation may be
described by (2) with

m12 = a, n12 = g,

m21 = bN+ lP, n21 =0. (48)

The aggregated system is given by (10) with

f(N)=
r1a

a+ bN 01−
d2b

r1a
N1, (49a)

g(N, P)=
a1N

1+
b

a
N+

l

a
P

, (49b)

G(N, P)=01+
(r1 + d2)l

a1(a+ bN)1g(N, P), (49c)

H(N, P)= g(N, P). (49d)

The predator ration (49b) is formally equivalent to
the functional response (41). Note that, again, as the
numerical response and the per capita predator
impact are not simply related, the predator and prey
equations of the aggregated system are not coupled.
If l=0, the ration (49b) and the impact (49c) reduce
both to Holling’s functional response (36).

6. Discussion

We have presented a method of constructing a
mechanistic model of global predator-grey dynamics
if detailed behavioural mechanisms are known. This

method allows to aggregate a system of 2n ordinary
differential equations (in the case of n patches and
one prey and one predator species) into a system of
two equations for the densities of total prey and
predator populations. In general, such aggregated
model has no simple mathematical expression. In
particular, complex models emerge at the global
scale even when prey and predators interact locally
in a simple Lotka–Volterra manner. Looking at the
qualitative behaviour of the components of these
complex models can help find an appropriate
phenomenological model or simpler mathematical
expressions that approximate the exact ones for
some ranges of variable values (e.g., high or low
prey density).

We have shown that, even if the predator impact
on prey growth is equal to the predator ration
(number of prey killed per predator in a unit time)
at the local level, this is no longer the case at the
global level (examples 2 and 3). This results from
the fact that predators can effect the prey growth
rate not only by eating them but also by influencing
their behaviour. Similarly, the numerical response H
may become uncoupled from the predator ration at
the global scale as a result of predator migrations
depending on prey density (examples 1 and 3). As
a consequence, at the global level, the predator
growth rate is generally not directly related to prey
deaths.

In general, the predator ration g(N, P) differs
from the per capita predator impact G(N, P) defined
by (11b). The former is the amount of prey eaten
per unit time by an average predator in the course
of its foraging behaviour (i.e., locally), whereas the
latter represents the effect of an average predator on
the prey growth rate on the scale of the total
population. These two functions are often con-
founded with one another because in ‘‘canonical’’
models of the form (1), they are identical to each
other and are called the functional response.
Nevertheless, they are generally distinct: the func-
tion G(N, P) describes phenomena at the global
level, whereas the function g(N, P) can only be
determined at the local level: it does not appear
explicitly in the aggregated system (10).

Each migration scenario leads to a global
predator ration that differs from that assumed
locally. In general, different rations emerge from
different scenarios but, as we have seen in Section
5, distinct scenarios may also result in identical or
similar rations. In particular, we have showed that
some rations that are equivalent to some well-
known functional responses emerge from different
migration or behavioural mechanisms.
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When building predator-prey models, one usually
concentrates on the functional response because it
plays the key role in determining the dynamic
properties of systems of type (1). However, we have
shown here that, if the functional response is to be
determined from behavioural mechanisms, one
should also account for the effect of these mechanisms
on other terms. This frequently results in uncoupling
of the predator and prey equations, i.e., the form (1)
is broken. Consequently, such mechanistically derived
functional responses no longer play a central role in
this approach to predator-prey theory.

Predator-prey systems are nonlinear: even the
simplest one, the Lotka–Volterra model, is described
by nonlinear equations. Due to this nonlinearity,
mechanisms generally do not add up in a simple way.
They interfere and influence each other. In particular,
if we know the dynamic properties of a model with a
given mechanism, we cannot use this knowledge to
predict the properties of another model where the
same mechanism is present simultaneously with some
others: we have to construct and study the new model
from the very beginning. Indeed, in example 2, the
migration scenario is the sum of two simpler
scenarios; nevertheless, the emerging property (the
uncoupling of the prey and predator equations) is new
and exists in neither of the two constituent simpler
cases. Therefore, one cannot expect that decomposing
mechanisms into simpler ones and studying them
separately will give a complete understanding of the
full predator-prey system.

As was mentioned, the mathematical formalism
remains exactly the same if ‘‘patch’’ is replaced by
‘‘activity mode’’ and ‘‘migration’’ is replaced by
‘‘switching activities’’. Therefore, our results and
conclusions apply not only to spatially heterogeneous
systems but also to a much wider class of behavioural
models, in which species can move between patches
and/or switch activities.

In the present paper, we have assumed that
migrations occurred on a fast time scale and
interactions, reproduction and mortality occurred on
a slow time-scale. This has enabled us to show how
the details of individual behaviour on the fast
time-scale determine the population dynamics on the
slow time-scale. However, there exist situations in
which migrations are slower than the predation
process. Indeed, it will be shown in a forthcoming
paper (Poggiale, Michalski and Arditi, in prep-
aration) that the alternative hypothesis that predation
is fast and that migrations, reproduction and
mortality are slow leads to a ratio-dependent
functional response in the sense of Arditi & Ginzburg
(1989).
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the Swiss National Science Foundation (grant 31-43440.95)
and of the French Programme ‘‘Environnement Vie et
Sociétés’’ (MMT and GDR 1107).
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APPENDIX A

The Centre Manifold Theorem

Let X be a Ca vector field on Rk1 ×Rk2 ×R.
Assume that for each n $Rk2, the point (u*(n), n, 0) is
a fixed point of X. Let DX(n) be the linear part of the
vector field at this fixed point. Assume that DX(n) has
k1 eigenvalues with negative real parts. Furthermore,
let 0 be an eigenvalue with multiplicity k2 +1. Then
the global space splits into Es

n ×Ec
n where Es

n is the
stable space such as dim(Es

n)= k1 and Ec
n is the centre

space with dim(Ec
n)= k2 +1. The eigenvalues of

DX(n) restricted to the stable space have negative real
parts, and zero is the unique eigenvalue of the
restriction of DX(n) to the centre space. With these
notations, the Centre Manifold Theorem (Fenichel,
1971; Auger & Roussarie, 1994; Chow et al., 1994)
can be written in the following form:

Theorem: for each compact DWRk2 and for each
positive integer K, there exists a positive real e0 and a
CK-map C: D×]− e0; e0[:Rk1, such that:

(i) C(n, 0)= u*(n), for each n $D;
(ii) The graph W of C is invariant under the flow of

X, and is transversally attractive;
(iii) W is tangent to Ec

n at each n $D.

Conclusion (i) means that each equilibrium of the
vector field X is on W, called the Centre Manifold.
Conclusion (ii) says that each solution of the global
system which starts on W, stays on it as long as n $D,
and that each solution of the full system is quickly
close to its projection onto the centre manifold W.
The last conclusion allows us to treat the dynamics of

the full system as perturbation of its projection onto
W and to expand it with respect to e $ ]− e0, e0[, if e

is small. If the projection onto W is structurally
stable, then the perturbation terms of order O(e) do
not influence the qualitative behaviour of the
dynamics and one can neglect them.

In our application, Rk1 is the space of occupancy
frequencies u1 and v1, u*= (u*1 , v*1 ) is the equilibrium
of the fast part of the dynamics, Rk2 is the space of
global densities N and P, and the real variable e is the
small time-scale factor of the model (2). In the case
of two populations N and P and two patches we have
k1 =2, k2 =2 and n=(N, P). The fact that DX(n)
has k1 eigenvalues with negative real parts implies the
hyperbolic stability of the fast equilibrium. The
eigenvalue 0 with the multiplicity k2 +1 corresponds
to k2 +1 first integrals of the fast part of the
dynamics, in our case N, P, and the constant e. If the
global densities, solutions of the restricted dynamics
on the Centre Manifold, are bounded then it is
possible to find a compact D such that each trajectory
entering into it remains in its interior forever. In this
case, the dynamics of the full system is approximated
by its projection onto the Centre Manifold W with an
error of order e and without time limitation. In all our
examples the aggregated systems were structurally
stable, which allowed us to neglect perturbation terms
of order O(e).

APPENDIX B

Global Stability of the Aggregated System of
Example 2 with b=0 and lq 0

We show here that the migration scenario of
example 2, with b=0 and lq 0, i.e., with the
migration rates given by

m12 = a, n12 = g,

m21 = lP1, n21 = s, (B.1)

leads to a bounded dynamics for some values of the
parameters. The aggregated system (found by
following the recipe from Section 3) is:

dN
dt

= r1N01−
(r1 + d2)lv*1 P
r1(a+ lP)

−
a1av*1 P

r1(a+ lP)1, (B.2a)

dP
dt

=−P0m1v*1 + m2v*2 −
e1a1v*1 aN
a+ lP 1. (B.2b)
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In order to simplify the study of this system, we define
the following parameters:

v*1 =
g

s+ g
, v*2 =

s

s+ g
, m= m1v*1 + m2v*2 ,

r=
m

r1
, b=

e1a1v*1
m

, A=
r1 + d2

r1
v*1 ,

B=
a1v*1 a

lr1
, C=A+B, (B.3)

and make the following change of variables and time:

x=N, y= lP, u= r1t. (B.4)

With these notations, the system (B.2) is equivalent
to:

dx
du

= x01−
Cy

1+ y1, (B.5a)

dy
du

=−ry01−
bx

1+ y1. (B.5b)

Now, we use the fact that the trajectories of such a
system are not modified if we multiply each equation
by the same positive function. We multiply each
equation by 1+ y to obtain:

dx
du

= x(1− (C−1)y), (B.6a)

dy
du

=−ry(1− bx+ y). (B.6b)

In order to prove that the solutions of (B.2) are
bounded, it is sufficient to prove that the solutions of
(B.6) are bounded. (B.6) has a unique equilibrium in
the positive orthant:

x*=
C

b(C−1)
, (B.7a)

y*=
1

C−1
, (B.7b)

if Cq 1, i.e., according to the definitions (B.3), if

ld2g+ a1agq lr1s. (B.8)

Let us consider the following function:

V(x, y)= rb(x− x*− x* Ln(x))

+ (C−1)(y− y*− y* Ln(y)) (B.9)

It is easy to verify that V is a Lyapounov function for
the system (B.6) with the minimum at (x*; y*). A
simple computation shows that:

d
du

(V(x(u), y(u)))=−
r((C−1)y−1)2

C−1
. (B.10)

The function V decreases along each trajectory of
(B.6) if condition (B.8) is satisfied. Consequently, for
certain values of the parameters, all trajectories
starting from the positive orthant converge to the
positive equilibrium, and thus are bounded. This
means that the migration scenario (B.1) according to
which prey avoid predators by going to the refuge
where their local growth is negative, leads to a globally
stable system. The presence of predators in patch 1 is
sufficient to prevent an unbounded growth of prey, if
prey avoid predators and if condition (B.8) is satisfied.

APPENDIX C

Proofs for Example 3

We show here that the migration scenario from
example 3 leads to uncoupling of both the numerical
response and the per capita predator impact from the
predator ration. In example 3, the migration rates are
given by:

m12 = a, n12 = g,

m21 = bN1 + lP1, n21 =
d

N1
+ s. (C.1)

Let p=(a; b; g; d; l; s)$R6 be the parameter
vector, and let x=(u1; v1; p). This vector is in
E=(]0; 1[)2 ×R6. We define the map: V: E:R2 such
that:

V(x)=G
G

G

F

f

a− u1(a+ bu1N+ lv1P)

g− v1 0g+ s+
d

u1N1 G
G

G

J

j

, (C.2)

where N and P are fixed positive parameters. With
these notations, finding an equilibrium of (5) (i.e., the
fast part of the dynamics) with migration rates given
by (C.1) is equivalent to solving the equation:

V(x)=0. (C.3)

We are interested in systems where all components
of vector p are non negative. We show that the
aggregated system (constructed according to the
recipe from Section 3) approximates the full system
without time limitation and that the predator ratio
gp (N, P), the numerical response Hp (N, P) and the
per capita impact of the predator Gp (N, P) are not
coupled between them. To this aim we prove the
following:

Proposition: There exists a parameter p0$ (]0; +a[)6

such that, for any (N; P)$ (]0; +a[)2:
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z (i) there exists x0$E, only depending on p0, that
verifies V(x0)=0

(ii) gp0 and Hp0 are not proportional to each other;
(iii) gp0 and Gp0 are not proportional to each other;
(iv) Hp0 and Gp0 are not proportional to each other;
(v) the solutions of the aggregated system are

bounded.

The meaning of these claims is:

(1) there exists an equilibrium (u*1 , v*1 ) of the fast part
of the dynamics with all the migration parameters
having positive values;

(2) there exists a parameter vector such that the per
capita predator impact, the numerical response
and the functional response are not proportional
to each other,

(3) the solutions of the aggregated model are
bounded, and hence, according to the Centre
Manifold Theorem, the dynamics of the aggre-
gated system approximates that of the full system
without time limitation.

Proof of the proposition: We use the Implicit
Function Theorem (Cartan, 1966) in order to prove
(i). Let (N; P) be a fixed positive parameter. Remark
that if p= p*= (a*; b*; g*; d*; 0; 0) where all non-
zero components are positive, then (C.1) gives the
migration rates of our example 1. In this case the
solution of (C.3) is x*= (u*1 ; v*1 ; p*) with

u*1 =
2a*

a*+z(a*)2 +4a*b*N
; v*1 =

g*u*1 N
d*+ g*u*1 N

.

(C.4)

Note that both u*1 and v*1 are in ]0; 1[ for each
(N; P)$ (]0; +a[)2. Furthermore, if we denote
V=(V1; V2), then

b DV

D(u1; v1)
(x*) b=G

G

G

H

H

1V1

1u1
(x*)

1V2

1u1
(x*)

1V1

1v1
(x*)

1V2

1v1
(x*)

H
G

G

H

H

=(a*+2b*u*1 N)0g*+
d

u*1 N1q 0, (C.5)

and hence, by the Implicit Function Theorem, there
exist an open neighbourhood U1 of (u*1 ; v*1 ) in (]0; 1[)2,
an open neighbourhood U2 of p* in R6, and a map
8: U2:U1, such that:

[x $U1 ×U2, V(x)=0\ (u1; v1)=8(p). (C.6)

Note that the linearisation of the fast part of the
dynamics [r.h.s. of (5)] of example 3 around the

equilibrium is a perturbation of the linearisation of
the fast dynamics of example 1, which has a
hyperbolically stable equilibrium. Thus in example 3,
the equilibrium 8(p) obtained by the Implicit
Function Theorem is also hyperbolically stable. As U2

is an open set containing p*, which is on the bound
of (]0; +a[)6, if follows that U2 + (]0; +a[)6 is a
non-empty open set. Hence, by considering p in this
set and by putting x0 = (8(p); p), (i) follows.

In order to prove (ii), we recall that the Implicit
Function Theorem claims that if V is of class C1 then
8 is also of class C1. Moreover, it follows from (7–12)
that the predator ration, the numerical response and
the per capita impact of the predator are C1 with
respect to the equilibrium frequencies. Therefore gp ,
Hp , and Gp are C1 with respect to p. Here we can write:

gp (N, P)= gp*(N, P)+O(>p− p*>), (C.7a)

Hp (N, P)=Hp*(N, P)+O(>p− p*>). (C.7b)

Then, by using (C.7) and the Taylor expansion, we
obtain:

gp (N; P)
Hp (N; P)

=
gp*(N; P)
Hp*(N; P)

+O(>p− p*>). (C.8)

We have seen in example 1 that the l.h.s. of (C.8)
actually depends on N, hence if the parameter p is
sufficiently close to p*, the r.h.s. of (C.8) also depends
on N. This proves (ii).

In fact, we have demonstrated the existence of a
parameter p for which the predator ration and the
numerical response are not proportional to each
other. Note that this result does not depend on the
value of d $ ]0; +a[. Let p̃=(a*; b*; g*; 0; l*; s*) be
the value of p from example 2. Similar arguments to
those above prove that

gp (N; P)
Gp (N; P)

=
gp̃ (N; P)
Gp̃ (N; P)

+O(>p− p̃>). (C.9)

In consequence, if p is sufficiently close to p̃, then the
per capita impact of the predator is not proportional
to the predator ration. In order to prove the
proposition, we need to exhibit a parameter p such
that (ii) and (iii) are simultaneously satisfied. If the
parameters d, l and s are small enough, then p* and
p̃ are arbitrary close. Hence there exists p0 such that
O(>p0 − p̃>) and O(>p0 − p*>) are both close enough
to zero and then (iii) follows.

Once again, similar arguments to those used above
lead us to write:

Gp (N; P)
Hp (N; P)

=
Gp*(N; P)
Hp*(N; P)

+O(>p− p*>). (C.10)

As this ratio is not a constant when p= p*, then it is
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not a constant when p= p0 because p0 may be
arbitrary close to p*. We conclude that if p equals p0,
then Hp0 and Gp0 are not proportional to each other.
This ends the proof of (iv).

To prove (v) note that in the absence of predators,
the prey growth is logistic [described by (17)] and thus

prey density is bounded. As prey can only suffer from
the presence of predators, their density remains
always bounded. As the predator density is limited by
their food (i.e., prey), the predator density is bounded
as well.


