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The aim of this paper is to give a method which permits us to describe how individual
properties can emerge at the population level, in population dynamics. We consider
interacting populations. In order to take into account the spatial or behavioral het-
erogeneity, we subdivide each population into subpopulations. A given subpopulation
corresponds to those individuals having the same behavior and who are in a homoge-
neous environment. Furthermore, we assume that the migration process is faster than the
growth and interaction processes. Therefore, we must study models with many variables
coupled together into large scaled differential systems. Firstly, our method permits us to
reduce these complex systems into simpler ones, which will be called reduced systems.
Secondly, these reduced systems give the population dynamics and contains informations
about individuals' behavior. that is we can explain how individual dynamics emerge in
the population dynamics. \Ve already investigated the case where the fast dynamics
reach an equilibrium in pre\'ious works. In this paper, we are interested in those models
where the fast dynamics oscillates because it is ecologically relevant.

Many authors have proposed reduction methods for complex systems in population
dynamics (Refs. 2. 3, 5, i. 11 and 12). Our approach is the same as the approach
of Auger and Roussarie (Ref. 3). but in our case, the fast dynamics are assumed to
reach a limit cycle instead of an equilibrium. In their paper, Auger and Roussarie
use a central manifold theorem to reduce the complex global dynamics to a simpler
one. Their model is of the same type as the model used in our paper: fast dynamics
for the individual processes (change of environment or behavior) and slow dynamics
for growth and interaction. These assumptions mean for instance that we consider
populations where individuals change their behavior or their environment many
times "in a day, but the effect of growth and interaction (predation, competition .
. . . ) are noticeable after a few weeks.



In many cases, the migrations are periodic. We can find examples in Ref. 14
about spatial distribution of fish and their prey: the authors explain that many
species of aquatic animals undergo regular daily vertical movements in the water
column. There are also examples for small mammals. Furthermore, the periodicity
of migrations could be forced by the sun periodicity for instance. This means that we
must consider models which depend explicitly on time (nonautonomous systems).
We study in this paper both cases: autonomous and nonautonomous systems.

In the next section, we describe the reduction method. We apply it in Sec. 3, for
a predator-prey model. In the last section, we show how our method permits indi-
vidual properties to emerge to the population level. In order to see this emergence,
we have chosen to construct a complex functional response from a Lotka-Volterra's
one, in the same way as has been done in Ref. 15, in which the migrations reached
an equilibrium.

2. Reduction Method

2.1. The model

We use the following notations: nf is the density of subpopulation i of population
a, n'" is the density of population a, A is the number of populations, and for
a E [1, ... , Al, N'" is the number of subpopulations in a. The general model that
we use in this paper has the following form:

where R » 1 is the scale factor. that is the part of Eq. p.l) just near R is the fast
model (change of behavior or environment). The functions Ii and F;'" are assumed
C2•

In order to reduce this global system, we will use theorems of perturbation
theory, then we transform this system (2.1) in another form which is adapted to
those theorems. First, we consider the frequencies of subpopulations:

ur=nf, iE[I, ... ,N°]. aE[l.. ... A.].
n'"

For each population a, we omit to consider the frequenc~-uN" because when we
know N'" - 1 frequencies, we know all of them. In this way, we only consider ~
frequencies, with

A

k~ :2)NO -1).
0=1

Finally, putting E: = 1/R and considering the new tiu1l' ., such that t = eT, we
can rewrite system (2.1) with the new variables. 'We use wctorial notations. Let
11= ('Ill, ... ,nA) be the vector of global densities, and tt>t u = (ut, ... ,U~I_l" .. ,



'l/.~, •.• ,U.~A_l) be the vector of frequencies. System (2.1) can be written in the
following fonn:

du ( )- = 1 u,n,c,T ,
dr
dn- = cg(u,n,c),
dr
d£
- =0dr '

u E IRkl and n E IRA. Furthermore, 1and 9 are at least C2• We assume that for
c = 0, and for each n, there is a limit cycle "Yn which is a strong attractor, in a way
that will be precised later.

In a first step, we assume that 1 does not explicitly depend on T, that is (2.3)
has the following form:

du
dr = I(u, n,E),
dn
dr = cg(u,n,c) ,
d£
dr =0.

In this case, we assume that for E = 0, "Yn is hyperbolic and stable, that is the
linear part of the Poincare map defined near the limit cycle has eigenvalues such
that each eigenvalue has a real part strictly less than 1. Using the following theorem
(Ref. 18):

Theorem 2.1.1. Let (uo,no) be an initial condition nearl'no' the solution (u(r),
ll(r» of system (2.4) stay in a E-neighborhood OI"Yn(€T) after a time ro = O(lln(E)I}'
that is to = O(Elln(c)l).

In a second step. we consider functions 1explicitly depending on r. In this case,
we assume that:

- the limit cycle of the fast part (E = 0) does not explicitly depend on time.
- each trajectory through an initial condition in a given compact is in a c-

neighborhood of a limit cycle In after r = O(ln(E».

Finally, in both autonomous and nonautonomous cases, trajectories starting in
a given compact are in a ~-neighborhood of a limit cycle "Yn after a short time
t = O(dn(e».

The reduction met.hod is firstly founded on an averaging theorem. In order to apply
this theorem. we need to transform systems (2.3) and (2.4), but the transformation is
available in a neighborhood oUhe limit cycles I'n. As a consequence, we use the fact
that in both autonomous and nonautonomous cases, trajectories are quick in such a
neighborhood. No\\". we describe explicitly the transformation. Let <p E [0.27l") be a
parametrization of In for each n and let z E IRk1-1 be the transversal coordinates.



The limit cycle is {z = OJ. After the substitution U 1-+ (cp,z), the system (2.3)
becomes (Ref. 17):

clz () 2clr = a cP,n, r . z +O(lIzll ) +O(e) ,

~~ = w(n) + O(lIzll) + O(e),

dn
dr =e·g(z,cp,n,e),

where w(n) =f:. O.
From the second equality in (2.5), if IIzll = O(e) and if r « ~, then

cp(r) = CPo +w(n)r + O(e).

As a consequence, if CPo = 0, we can consider the following change of variables:
cp

r = w(n) + O(e).

It means that the time r is proportional to the parameter cp more or less a term
near e. Finally, we can now consider the nonautonomous case as the autonomous
one.

Using Izi = O(e), we can write (2.5) as follows:

{

~~ =w(n)+e·f(cp.n,e).
(2.6)

~: = e . g(cp, n, e) +O(e2
).

We will use an averaging theorem, that we can find in Ref. 1, and which is given
below:

Theorem 2.2.1. Assume the following perturbated differential system:

{
~=w(n) + ef(n. cp, e) •
n = eg(n,cp,e) ,

where f and g are 21f-periodic with respect to ..p. and 11 E D C IRA and let the
averaged equation be:

. 2rr

p = eG(p) with G(p) = 2~ 1 g(.,:'.p. O)dcp.

Assume that w does not vanish in D, and that the solution p( r) for the averaged
equation stays in V during the time t = T < < 1. With these assumptions, the
distance between the solution of the averaged equation p( T) and the n-coordinate
of the solution of the perturbated differential system (2.7\' with an initial condition
n(O) = p(O) stays near 0 during r E [0, fJ, if e is small (/lough:

II11(r) - p(r) II~ Ce.



112
11"G(p) = - g(tp,p,O)dlj?

211" 0

on a domain V C IRA. Now, we consider the system:

dp ( )dr = cG p .

From Theorem 2.2.1, there exist T« 1 and a constant C such that:

Finally, we have reduced the global system. The approximation for the solutions
for both perturbated and averaged equations is available during a finite time. We
explain now a method which permits to reduce the global dynamics, without the
time limitation. This second process is founded on a central manifold theorem,
and the dynamics obtained on the central manifold is exact: the problem of time
limitation disappears.

As we have assumed that for each n when c = 0, there exists a limit cycle "Yn,

we can define a Poincare map Pn on a section En transversal with respect to "Yn·

Let ~ be defined by:
E= U En,

nEa

where ~ is compact in IRA. Vie can choose the transversal sections ~n such that E
is a smooth submanifold of IRk! x IRA. and the map P : ~ -; P(E) is defined by:
P(u.n) = Pn(u) for each n E ..:l.

Let co be a positive real in a O-neighborhood. We take note of the time T!(1 (u.n)
for it to return to ~ when starting from E. We consider the followingdiffeomor-
phism:

F: ~ x [-£0.£0] --+ F(~ x [-co, co]) •

(uo. no. £) t-+ (u(T.:( uo, no)), n(T!( uo,no)). c) .

As we have seen before, all trajectories starting in a given compact of IRk, x IRA .
early jump in a c-neighborhood U of the union of limit cyclesIn for alln E ~. In U.
weconsider again the change of coordinates u •.....•(z, lj?). With the new coordinates.
we can assume that the equation of ~ is {<p = O}.

It is clear that .i\lt = {O}x IRA X {O}is a set of fixed points of F. For each 11 E IRA.
wedefine DF(11) as the linear part of Fat (0,11.,0) E }vl. vVehave assumed that In
is hyperbolic and stable. then DF(n) has k1 - 1 eigenvalues of modulus less than
1. and 1 is an eigenvalue with multiplicity A + 1. We define E~ as the eigenspace
associated with 1 (it is called the central space). With these notations. we use the
followingtheorem (Refs. 4. 6. 10 and 13):

Theorem 2.2.2. For all compact ~ C IRA and f01' all nat'lLml intege1's /.;. there
el'ists a positive 1'eal co and (/.(/\ -mal) h: ~ x [-co,£o]- IRk!. stLch that:



(i) h(11, 0) = 0,
(ii) the graph W of h is tangent to E~, for all 11 E M

(iii) W is invariant by F.

In the new system of coordinates (z, cp), it is easy to see that the diffeomorphism
F can be written as follows:

F: ~ x [-eo, eo] --+ F('£ x [-eo.eoD,

(ZO,110,e) t--+ (Z(1"E(ZO,110)),lJ.o+ O(e), e) ,

where TE is the composition of the change of coordinates u ~ (z,cp) and 'iE• The
linear part of F is:

(
g~(0,110'O) * *)

DF(110) = 0 1 * .
o 0 1

The hypothesis of Theorem 2.2.2 can be verified. As a consequence, there exists
a central manifold, on which the dynamics is exact, and is given by the following
formula:

4>: ~ x [-eo, eo] --+ 4>(~ x [-eo . .:-o)),

(110,e) t--+ (11(1"E(h(no,e),110).e).

This diffeomorphism leaves the variable e invariant, we then write it as 4>E' that is
we have a family of diffeomorphisms with one parameter .:-.Finally, we have:

11'.(h(n'd,n> dn
4>e-(n) = 11 + -d dro .r

lTcln>
=11+e 0 g(h(l1(r),e),<p(r),I1(.1.0)dr+0(e2

)

1T«n>
=11+e 0 g(O,<p(r), n(r),.O)dT + 0(.:-2).

( 1271"g( <p, 11, 0) .,
4>~11)= 11+ e () d.; + 01;-) .

o W 11

This diffeomorphism gives the global dynamics for every time. The problem is
that now we have to study discrete dynamics, and it is mort' difficult than the study
of continuous dynamics.



We will now compare both methods, in order to show that in some cases, the av-
eraging method is available for every time. It is necessary to discretize the dynamics
obtained by the averaging method. This discretization gives:

(T.(Il)

¢•.(n) = n + £ 1
0

G(n(T»dT + 0(e2
)

'" (T,(Il) (27<
= n + 2~7l"1

0
1

0
g(!p, n(r), O)dlpdr + 0(£2).

For all 11 E ~, T•.(n), which is the period of 1•••" is much less than l/e, and then,
for all T E [0,T•.(n(O»], we have:

'"1T
.(Il) 12

11"¢•.(n) = n + 2~ g(Ip,n,O)dlpdr + 0(e2)
il" 0 0'"1T

,(Il) 12
7<=n+.~_( dr)( g(Ip,I1,O)dlp) +0(£2)

2/1 0 0

211" 2,..
=n+ ..)~_({ _(1 )dlp)( ( g(cp,n,O)dlp) +0(£2)

_II 10 w n 10-12
11"

= n + ~) y(cp, n,O)dcp + 0(£2) .
..,.:(n 0

It means that the diffeomorphism obtained by discretization of the averaged dy-
namics is a perturbation of the dynamics obtained on the central manifold. As a
consequence, if the dynamics obtained on the central manifold is structurally stable.
then the dynamics obtained by the averaging method is available for every time.

We consider in this section. a predator-prey system in which each population is
subdivided into two subpopulations. Each subpopulation for a given population
is associated to a spatial patch. We assume that individuals migrate quickly be-
t\\'een the patches. The interactions predators-preys are assumed to follow the Mass
Action La,,' (Ref. 16) in each patch, that is the interaction is proportional to the
number of encounters. It is relevant because the subpopulations are assumed to be



homogeneous. We propose the following model:

dnl J..N N [ ]dr = :IZ1lZ - kZI nl + ET·1/.1 1- bl,Pl ,

d11'2 kN N [ ]-d = 'zlnl - k121lZ +c1".11·2 1- bz·P2 •,r
dpi _ kP I.P [ b ]dr - 121J".l- "'2IPI - CPI I', - e. I·nl •

dP2 P P [ ]dr = ~IPI - kl2P.l - cP2 It - e,bZ,1/.2 •

where ktj and k~ are functions defined as follows:

{

k~ = a - (rlw + r2) sin(wr) + (rl - r2w) cos(wr).
kfI = 1- a + (rlw + r2) sin(wT) - (rl - 1'2"") cos(wr).
k~ = b - (rlw - r2) sin(wr) + (1'1 + r2w) cos(wr).
kft = 1 - b + (rlw - r2) sin(wT) - (rl + 1·2.u) cos(wr).

and a. ri and w could be functions of the global densities (n.p), kij is the rate of
subpopulation j of population a going in subpopulation j of population a at any
moment, Expressions (3,2) mean that the fast process oscillates. that is individuals
change their behavior or their environment regularly in the day, w is then the
frequency of these changes, We can calculate the solutions of the fast dynamics
defined by (3,1) and c = O. These solutions are:

{
ul(r) = a + rlCOS(WT) -1'Z sin(wr) + R1(T).
'VI (r) = b + 1'1 cos(wr) + 1'2 sin(wr) + Rz( T) •

~(r) exponentially reach to O. that is if T > IIn(c)1 then there exist constants AIi
such that: R;( r) < Mic for i = 1.2.

This means that the frequencies (11.1= nl ,VI = PI ) quickly reach an
1/.1 + 1/.2 PI + P2

ellipse which is centered at (0.2• bZ).

In order to apply the method described in Sec. 2, we perform a change of coor-
dinates: (11'10 vt> •.....•(z. ep). that is we consider:

{

11.1 = a.+ 1'1 cos(ep) - '''2 sin(lj:).
VI = b + 1'1 cos(ep) + 1'2 sin (e;) .

The functions a. b. 1'; and w must then be chosen such that the expressions given
by (3.4) are available, that is 11.1 E [0,1] and VI E [0,1].

If c =f. O.it is clear that:

{
cos(ep) = COS(WT) + G(E:).
sin(ep) = sin(wr) + G(E:).

Furthermore. a straightforward computation gives:

{

dn [ ]dr = cr.n 1 - (bl'Ul'Vl + bz'lIzvz)p = cgll .•.·.ll.p,c).
(3.6)

d
dP = -cp[II, - e(b,'llI1'1 + bZ'U;2VZ)ll] = E9cl.,..·.Il,P.E:).,r



with 1/.2 = 1 - '1/.1 and '112 = 1 - t11. We will now apply the averaging theorem. Let
us consider: 2,..

Gi(n,1J) = -.!.-1 9i(<p,n,p,O)d<p.
271' 0

Using (3.6) and the followingformulas, obtained with (3.4) and (3.5), we get
the reduced dynamics.

{

'Ul = a + 1'1COS(<p)- r2 sin(<p)+ O(e) ,
VI = b + rl COS(<p)+ r2 sin(<p)+O(e),

{

dn -
dt = rn(l - bp),

dp -
dt = -p(Jl' - ebn) ,

4. Functional Response: An Example

Weeasily observe that the last system is a Lotka-Volterra system if b is a constant.
On the other hand, if b is (n,p)-dependent, which is possible because a, b, 1'i and
w could be (n, P)-dependent, then the global dynamics are not a Lotka- Volterra
system: there emerge properties from the individuals' level to the population level.

In the previous application, we have assumed that the local dynamics followthe
1\lassAction Law, and it results in new dynamics at the global level. We use this
example to construct a functional response which is not of Lotka- Volterra type.

We recall that the functional response for a predator-prey system (Refs. 8,9 and
15) is the number of preys catched per predator and per unit time. This means that
the local functional response of our model is proportional to 11 (a Lotka-Volterra's
functional response), on each patch. If the migration rates are (n,p)-dependent.
then we show that the global functional response is more complex than the Lotka-
Volterra's one. Let us assume that patch 2 is a refuge for the prey, that is lJ.2= o.
and for the sake of simplicity, we also assume that 1'1 = 1'2, which is relevant in an
ecologicalpoint of view. In this case, we can simplify the expression for b:

If (/ and ware constant, and b = 1 +1
0
/1' then the functional response of the global

system is of the following form:

/3n
FR(n) = --.

1+an



It is known as the Holling functional response (Ref. 9). The main goal of our work is
to bring to light that the method permits us to use local properties to give a global
description of the population dynamics. However, we give a quick interpretation
of the theoretical example of this Holling functional response: if n increases then b
decreases, this means that the number of predators foraging (on patch 1) decreases.
We can for instance interpret this fact as a physiological saturation of the predator.

We can also remark that a small change of w (which could be modified by the
slowdynamics because it could be (n,p)-dependent) is translated in a big change of
b. It would be interesting to investigate in this direction from a biological viewpoint.
It would explain what is the effect of the fast frequency on the global dynamics. It
will be the aim of future work.

1. V. Arnold, Ghapitre supplimentaire sur la theorie des eqtlations differentielles ordi-
naires, ed. MIR (1980).

2. P. M. Auger, Dynamics and thermodynamics in hierarchically organized systems,
Applications in Physics, Biology and Economics (Pergamon Press, 1989).

3. P. M. Auger and R. Roussarie, Complex ecological models with simple dynamics: from
individuals to population, Acta Biotheor. 42 (1994) 111-136.

4. J. Carr, Applications of Centre Manifolds, Applied Mathematical Sciences. Vol.
35 (Springer, 1981).

5. W. G. Cale, R. V. O'Neill and R. H. Gardner, Aggregation en'o,' in nonlinear ecological
models, J. Theor. Biol. 100 (1983) 539-550.

6. N. Fenichel, Persistance and smoothness of invariant manifolds for flows. Indiana
Univ. Math. J. 21 (1971) 193-226.

7. T. C. Gard, Aggregation in stochastic ecosystem models. Ecol. Modelling 44 (1988)
153-164.

8. I. Hanski, The functional response of predators: worries about scale. Trends EcoL. EvoL.
6 (1991) 141-142.

9. C. S. Holling, Some characteristics of simple types of predation and parasitism. Can.
Ent. 91 (1959) 385-398.

10. M. Vol. Hirsch, C. C. Pugh and M. Shub. Invariant Manifolds. Leclm'e Notes ill

Mathematics, Vol. 583 (Springer. 1977).
11. Y. Iwasa, V. Andreasen and S. A. Levin, Aggregation in model ecosystems. I. perfect

aggregation, Ecol. Modelling 37 (1987) 287-302.
12. Y. Iwasa, S. A. Levin and V. Andreasen, Aggregation in modd ecosystems. II. approx-

imate aggregation, IMA J. Math. Appl. Med. Biol. 6 (1989) 1-23.
13. A. Kelley, The center, center-stable, stable. center-unstable and tmstable manifolds. J.

Differential Equations 3 (1967) 546-570.
14. M. Mangel and W. Clark. Dynamic Modeling Behavioral Ecology (Princet.on

Univ. Press, 1988).
1.5. J. Michalski, J. C. Poggiale. R. Arditi and P. M. Auger. Fedllig rates and migration

in a heterogeneous envimnment. submitt.ed to J. Theor. Bioi.
16. J. D. Murray, Mathematical Biology Biomathematics tel'/. \ '01. 19 (Springer. 1989).
17. A. I. Neishtadt, Persistence of stability loss f01' dynom:':'ll bifurcations. Differ-

entsial'nye Uravneniyn 23 (1981) 2060-2067.
18. A. K. Zvonkin and M. A. Shubin. Usp. Mat. NOll!.:. 39 (1%-1' 77-127.


