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Abstract—This paper is devoted to the study of the effect of individual behavior on the Lotka-
Volterra predation. We assume that the individuals have many activities in a day for example. Each
population is subdivided into subpopulations corresponding to different activities. In order to be
clear, I have chosen the case of two activities for each population. We assume that the activities
change is faster than the other processes (reproduction, mortality, predation...). This means that
we consider population in which the individuals change their activities many times in a day while
the reproduction and the predation effects are sensible after about ten days, for example. We use
the aggregation method developed in [1] to obtain the global dynamics. Indeed, we start with a
micro-model governing the micro-variables, which are the subpopulation densities; the aggregation
method permits us to obtain a simpler system governing the macro-variables, which are the global
population densities. Furthermore, this method allows us to observe emergence of the dynamics.
Indeed, the method implies that the dynamics of the micro-system is close to an invariant manifold
after a short time. We show that the dynamics on this manifoid is a perturbation of the well-known
center of the Lotka-Volterra model. Finally, we prove that a weak change of behavior can lead to a
subcritical Hopf bifurcation in the global dynamics.
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INTRODUCTION

Predation plays a crucial role in population dynamics because it determines the biomass trans-
ferred in the biocoenosis. Among all the existing predation models, the simplest is the Lotka-
Volterra’s model which is based on three assumptions:

— the Malthus Law is applied for both populations, that is the prey has an exponential
growth in the absence of predators and the predator has an exponential decay in the
absence of prey;

— the Mass Action Law is applied for the predation, that is the number of prey disappearing
per unit time is proportional to the number of encounters;

— the predator density growth is proportional to the density of eaten prey.

Many authors have shown various paradoxes implied by this model and they proposed more
realistic models. The first objection of the Lotka-Volterra model is that every solution is periodic:
it presents a center. In our paper, we consider this model together with a behavioral dynamics. We
consider two activities for each population and fast changes. The activities changes are assumed
to be constant. We have thus a differential system with four equations governing each population
density in each activity. The aggregation method permits us to reduce the dimension from four
to two equations, governing the total population densities. This method is based on a Center
Manifold Theorem. The reduced system is in fact the restriction of the initial micro-system to the
center manifold. One obtains a macro-system which is a perturbation of the dynamics occurring

Typeset by ApmS-TEX
51



52 J. C. POGGIALE

on each patch, that is the center. As a consequence, we must calculate the perturbation term in
order to determine the actual dynamics. We study the macro-system and we show that even a
weak change in the behavioral parameter can have a strong consequence on the global dynamics.
In fact, we cause emergence of a Hopf bifurcation by acting on the predator behavior.

In the first section, we apply the reduction method on the micro-model and we exhibit the
macro-model with perturbation terms. In the second section, we choose an example where the
macro-model is completely determined. We show that the dynamics presents a stable or unstable
focus, according to the parameters values. Furthermore, we prove in the third section that when
the parameters associated to the predator migration are modified (even weakly), a subcritical
bifurcation occurs at the population level.

MICRO-MODEL
AND MACRO-MODEL

This section is devoted to the description and the first treatment of our micro-model. Let ng
be the density of population o on patch i (i € {1,2} and a € {1,2}). Population 1 is the prey
population and population 2 is the predator population. Our model is the following:

9 (bl — Wl + nk o - b330 - b330,
d;2 R (k3 ni — kiynd) +nd (o — b33n? — bi2n2), o
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G R (o — k) — (e — 63int — 634

The coefficient a® is the growth rate of population a. For the sake of simplicity, we assume
that it does not depend on the activity. The coeflicient b}f is the rate of prey in activity i eaten
by a predator in activity j. b7} is the growth rate of predator in activity i due to predation on
prey in activity j. R > 1 is the time scale factor: it means that the change of activities is faster
than the other processes. The parameter k is the rate of population a switching from activity j
to activity i. It is assumed to be a consta.nt

Let n®* = n{ + ng be the total densities. Let u; = nl/n! the prey frequency in activity ¢ and
let v; = n?/n? the predator frequency in activity i. We can write system (1) as
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In this case, the fast dynamics, obtained by putting € = 0 in (2), has a hyperbolically stable
equilibrium. It is the solution of the linear system

k12u2 k21u1 =0, ué =1- uia 3)
k12U2 k21u1 = 0, ug = 1 — u%.
It follows that the solutions are N
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and a simple calculation shows that the eigenvalues of the Jacobian matrix associated to the fast
part, at the equilibrium given by (4), are —(kf, + k7). They are strictly negative. Now, the
reduction method can be applied.

We consider the relative frequencies @ = u{f — U7 and then the equilibrium frequencies are
now at zero. Our model (2) can now be written as follows:
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The Global Center Manifold Theorem (see [1-4]) states that the global dynamics is in a short
time close to the solutions of the following macro-model:

1
ddlt =n! (! - b'n?) +n'O(e),
dn? (6)
- = —n? (a® — b?n!) + n0(e).

As the parameters kf; are assumed to be constant, the equilibrium frequencies are constant. We
conclude that if € is null, the model (6) is the Lotka-Volterra model. This model presents a center
in the positive orthant which is not a structurally stable dynamics. Hence, the perturbation term
cannot be neglected. In order to determine the actual global dynamics, it is necessary to calculate
at least the next term in the asymptotic expansion with respect to €.
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ASYMPTOTIC EXAPANSION AND
STUDY ON THE CENTER MANIFOLD

First Term in the Expansion

The method used for calculating the following terms in the asymptotic expansion can be found
for example in [1]. On the center manifold, we have: 4¢ = cw®(n!,n?) + O(e), for every (n!,n?)
in a given closed and bounded set A in the plane. We replace u$* by its expression in the equations
of system (5) and obtain

du}
—Tl = ¢ (kiw}; — kpwiy + UL [b! = (b13U2 + b12U2)| n®) + O (¢?),
()
da?
d—Tl =¢€ (k?2w31 - kjwh - Ut [bz - (bﬂUll + bﬁUz})] ”1) +0 (52) :
Furthermore, we can write
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22 2 LT 0(e2).
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As a consequence, by using w§ = —w§, we can conclude
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Finally, we replace w® by its expression in the last two equations of system (5) and deduce the
following system (9):
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Local Study of the Dynamics

We study in this section, the vector field X, defined by (9), on a compact set in the positive
orthant, in the generic case, that is for an open and dense set A in the space of parameters.
We shall study in the next section an example where the parameters cross transversally the
complementary set of A.

When ¢ is null in (9), the vector field associated X has a nondegenerate center in the positive
orthant. Let A be a compact set in the positive orthant. For a sufficiently small value of €, the
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vector field X, has only one singularity in A. This singularity is close to that of X;. Let us
study this singularity. As we are in the positive orthant, which has boundary invariant under the
flow of X., the function f : (n,n?) — 1/n'n? is well defined and positive. As a consequence,
the vector field X, = f - X, has the same orbits as X.. Now, we study X,. When ¢ is null, this
vector field is an Hamiltonian vector field, that is there exists a function H such that the vector
field can be written as follows:

dnl OH

T o )
dn? OH

& =t ().

In the following, we denote by i the derivative of z with respect to the time ¢. The expression
of X, is
al

’fll — F _ (bl +¢ (Cllnl +cl2n2)) +0 (62)

= —-% (n',n?) + O(?),
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OH
=5 (n!,n?) + O(e?),
where H(n!,n2?) = b'n?—a! In(n?)+b%n! —a?In(n!)+C. The constant can be chosen such that H
is null at the singularity of the nonperturbated vector field. Let (!, 72) be the coordinates of

the singularity of X;. A straightforward computation permits the verification of

2
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Let (Al,72) be the coordinates of the singularity C. of X,. The Implicit Function Theorem
allows us to conclude that these coordinates are at least C! with respect to £. By using the Taylor
Theorem, we have

Let DX, (C.) be the linear part of X, at C.. It is given by

! = —ectin! — (E-T_%l)—z- + 0(5)) n?+0 (),

(12)

X —— ((_(1:)2 + O(s)) n' +ec?n? +0 (7).
i

We conclude that if ¢ is sufficiently small, C, is either a stable focus, an unstable focus, or a
center. In fact, if the trace of the linear part is positive, the focus is unstable. If the trace is
negative, the focus is stable. If this trace is null, we can conclude that the singularity is a center
for the linear part, but we cannot conclude this for the whole vector field X,.

Let Tr ()Z’e) be the trace of the linear part. It can be expressed as follows:

Tr (f(e) =dy-e+0 (%),
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where di = (—c!! +¢*2). Furthermore, the coefficients c*/ are functions depending on the parame-
ters of system (2). In particular, they depend on the activities-changes, that is on the behavior.
There are three cases:

(i) di > 0: in this case, for € sufficiently small, C; is an unstable focus;

(ii) d1 < 0: in this case, for ¢ sufficiently small, C, is a stable focus;

(iii) d1 = 0: in this case, we cannot conclude anything a priori.

The coefficient d, is an analytic function with respect to the parameters. If follows that the
set {d; = 0} in the parameters space has an open dense complementary set. In other words, if A
is the set {d; # O} then it is an open dense set in the parameters space. For every parameter
vector in A, we can give the nature of the singularity of X, if ¢ is sufficiently small.

This ends the local study near the singularity, when the parameter vector is in A. Let us now
study the global dynamics (limit cycles, etc...).

Global Study of the Dynamics

In this section, we use some techniques of the Perturbation theory which can be found for
example in [5-7]. Let us consider w, the dual form of the vector-field X,. From (11), we know
that

we (n',n?) = dH (n!,n?) + en (n',n?) + o(e), (13)

where
n (n*,n?) = (*'n' + *?n?) dn' + (c''n! + c'2n?) dn®.
The function H is defined just after (11). It is a Morse function. Let ¥ be a section transversal
with respect to the curves {H = C®} and 0 € £. We can define the Poincaré map P: on L.

With these notations, the limit cycles are given by the roots of the moving map 4., defined as
h+— 8. = P:(h) — h. The Poincaré lemma allows us to write

6(h,e) = —¢ /{H=h} n + o(e).

Let I;(h) be the first coefficient in the expansion of §(h,e) with respect to . The sign of I;
gives the sign of § for e sufficiently small. We determine the sign of I;.

Ii(h) = —/ (®n? + c#n?) dn! + (c'n! + ('2n?) n?) dn?
{H=h}

= — // (c"t = ¢*) dn' A dn?
{H<h}

=d // dn! A dn?.
{(H<h)

The second equality above is an application of the Stockes Theorem. Let

A(h) = / / dn! A dn?.
{H<h}

A(h) is the area of the topological disc {H < h} and it is then a strictly positive real number
for every h values. Consequently, the sign of I; is the same as that of d; and thus, it does not
depend on h. We conclude that for d; > 0, the solutions of the model are unbounded: they leave
every neighborhood of the singularity (if € is small enough). If d; < 0, the solutions converge to
the singularity. Finally, if d; = 0, we can not conclude anything a prior:.

Now, assume that we can make a parameter vary. We suppose that for the initial parameter
value, d; < 0 and for the final parameter value, d; > 0, all that for a fixed ¢ value. Between
its initial and final value, the parameter crosses a bifurcation value. We analyse this case in the
following section.
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BIFURCATION ON THE CENTER MANIFOLD

Mathematical Study

In this section, we exhibit a Hopf bifurcation on the center manifold. Furthermore, we show
that this bifurcation is generic and that it is a subcritical Hopf bifurcation. In order to show this,
we consider a one parameter subfamily of the family defined by system (1). Then we vary the
parameter of this subfamily. When this parameter increases, we show that the singularity in the
positive orthant switches from a stable to an unstable one. Simultaneously, a stable limit cycle
appears around the singularity. In other words, at the beginning, the solutions converge to the
singularity and after the bifurcation, they oscillate around the same singularity.

In a first step, we show that the trace of the vector field linear part, depending on the parameter,
near the singularity, changes its sign. In the second step, we point out the birth of the stable
limit cycle around the singularity by proving that the third derivative of the moving map is not
null at the bifurcation parameter value.

We choose the following one parameter subfamily:

dn!} 1 1 1 2 2
- = [ng —2n}] +enj [2 - 2.93n] — 0.2n3],
dn} 1 1 1 2 2
- = [2n] — n3] +enj [2 —n} - 0.5n3],
(14)
2
idl‘Tl = [(1+ A\)n3 — 3n}] —end [3 - 0.59n] — 0.2n}],
dn% 2 2 2 1 1
F = [37‘),1 ot (1 -+ A)HQ] — &Ny [3 — Ny — 0.3"2] .

It is a model like (1). We can thus reduce it into a model like (9). The parameter X is free:
it can take values between —1 and +oo. When we change this parameter value, we obtain a
bifurcation of the global dynamics. A straightforward calculation shows that the parameters of
the reduced system (on the center manifold) are

145.05 -+ 83.85) 98.4 + 16.8)
1=2 2=3, M=—— R et
=4 =9 514+ N) 51(4 + )

We know from the previous section, that the first coefficient d;{A)} in the expansion of the trace
of the vector field, on the center manifold, with respect to the parameter €, is given by the
coefficients c!! and c?2. These coefficients can be calculated with formulae (10). We obtain

_ 659.88(1 + X)
867(4+ A)3

_ 659.88 + 1503.00) + 527.25)2 + 46.18)3
867(4 + A)° '

cll(/\) =

20\ =

We deduce the dy(\)

1503.09 + 527.25) + 48.18)2

(A =X 867(4 + \)3

As a consequence, d1(0) = 0. Briefly, the behavior of d;(A) for A close to 0 is given by

dd(\)| _ i _ 1503.00

- %

D |y 3468
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We conclude that if A is close to 0 and has a negative value, then di(A) < 0 and if A is close
to 0 and has a positive value, then d;()) > 0.

Let Tr(A,e) be the trace of the linear part of the vector-field on the center manifold, at
the singularity in the positive orthant. If the sign of this trace changes when the parameter )
increases, then the singularity, initially stable, becomes unstable: there is a Hopf bifurcation. We
show that this bifurcation occurs for a small enough fixed & value. In fact, it is a consequence of
the Implicit Function Theorem. Indeed, we have

Tr (A, €) = £ (d1(A) + O(e)).
Therefore, the sign of Tr (), €) is the same as the sign of Tr (A, &) where
Tr (A €) = di(\) + O(e).

We have seen that

Tr(0,0) =0,
oTr _ d(di(N))
oy (0:0) = ===+ - #0.

The Implicit Function Theorem permits the conclusion that in a (0,0) neighborhood, in the
parameter space {(),€)}, the function Tr vanishes on a curve, which is the graph of a function
€ — A(e). The conclusion is also valid for the function T, if ¢ is not null.

If £9 # O is fixed in a neighborhood of zero, there is a unique value of the parameter A, such
that Tr (g9, Ao) vanishes. It means that when A crosses the Ag value, then a Hopf bifurcation
occurs.

From an ecological viewpoint, it means that if A < Ay, both populations densities reach an
equilibrium. If A increases and crosses the value )\g, then this equilibrium becomes unstable: the
populations densities oscillates around the unstable equilibrium. It is important to know if these
oscillations amplitude increases with time or if they are bounded. We shall see now how these
amplitudes depend on A when this parameter is close to Ap (so called bifurcation value).

In order to solve this problem, we consider again the moving function 8(h, \,e). When this
function vanishes, it implies the existence of limit cycle. The solutions of the model contained in
the compact set bounded by this limit cycle are bounded. Let us summarize the results in the
following way. Fix € and X in a (0,0)-neighborhood. We can distinguish four cases:

(i) if 6(h, A,€) > 0, the oscillations amplitude increases;

(ii) if 6(h, A, €) < 0, the oscillations amplitude decreases;

(iii) if 8(h,A,€) =0, all trajectories are periodic: the oscillation amplitude is constant;

(iv) if 6(h, A &) = O for a given value hg of h, the trajectory vn, passing through hg is periodic,
and the trajectories passing through h < hg oscillate with a amplitude bounded by that
of Yh,.

Let us consider the function é associated to the vector field obtained in the center manifold. As
we have seen, when the function § is close to zero, the first coefficient I; (h, A), in the expansion
with respect to the powers of ¢, is close to zero. Thus, it could be smaller than the other terms
of the expansion. We make a change of parameter to avoid this problem.

As ¢ is fixed to a positive value g close to zero, let A = pe and let pg = Ag/go. With these
notations, the dual-form of the vector field on the center manifold, after multiplying by the
positive function (n!,n?) — 1/n!n? is

we = dH +eny + €2z + 0 (€7) .
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As we have seen

m = (ctn? + ¢n?) dn! + (c'ln? + c'?n?) dn?
[ 021 (n ) +c1? (n2)2

=d 5 ] +cPn?dnt + Mt dn?
[21 (n1)? 4 12 (n2 2
=d () ; < (n°) +c* (n®dn! + n' dn?) - din' dn?

21 (,1\2 | 12 (.2)2
=d|S ) ;—c (=) +c22n1n2:| +dintdn.
L

Let H'(n!,n?) = (c2'(n!)? + c'2(n?)?)/2 + c*2n!n? + C*. We choose the constant such that
H'(7!,7%) = 0 and let

H, (n',n?) = H (n',n®) + eH’ (n!,n?).

We parametrize the transversal section ¥ by the values of H,. We can thus write the dual-
form w, as follows:

we = dH, + edi(A)n! dn? + e%na + 0 (7).
We have proved that dy(\) = Ad} + o(\) with d} > 0. As a consequence,

we = dH, + exdin' dn® + eo(\) + e¥n2 + 0 (€2) .
By using the change of parameter A = pe, the dual form becomes
we = dH, + e?pdin' dn® + *np + 0 (%) .

The moving function is thus given by

8(h, X, €0) = -—63/ (ndin'dn® + n2) + o (¢2)
{Hfo =h}

= —€3 /{H=h} (ndin' dn® + no) + o0 (d).

In order to determine 72, we must compute the coefficients w$ (see [1,7) for more details). The
result is

n? 2, ) 2,2
w%zzm U} (Zzb (UJ‘IU -1U Zb}J _11 +w11 bl Zle j y

=1 j= j=1
T ! (15)
n! 2 2 21 1 2 : 21, 1 2 2 & 1
w%Q k k‘2 Ul Zzb (wtlU +wJIU ) th wiy | Fwip b —Zbr‘;i Utl ’

+ 21 i=1 j=1 j=1 i=1

and we have w§), = —w{,. The form 7, can be written with respect to these coefficients as follows:
2
n = Zzbfjl (w LU? +wﬂw,1 U1 2)| dn?
i=1j=1

=1 j=1

2
+ ZZblz(w}2U}+w,l +Ulw 22)] dn?.
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Replacing the parameters by their values, we obtain
2 2
7 (n!,n?) = (aéo (n")” + alin'n? + al, (n?) ) dn?

2 (o122 1.2 2 ( 22 2 (16)
+ (a20 (n') + a}jn'n? + ad, (n?) ) dn?.

Therefore, it is a polynomial form. Its coefficients ag; are real numbers which depend on the
parameter A (or g, which is the same). We can now give a general expression for the moving

function

8(h, N\ e0) = —63/ (udin dn® + n2) + 0 (€3)
{H=h}

= —¢2 / / (nd}dn' A dn® + dna) + o0 (€d) an
(H<h}
=—&3 //{H<h} (nd}+(2a3,— aly) n' +(a%;, — 2ad;) n?) dn' A dn®+o ().

If e is small enough, the sign of § is the same as that of the first coefficient in the expression with
respect to powers of €. Let I(h,A\) = I(h,4s) be this coefficient: we can expand it with respect
to h in a neighborhood of 0, that is close to the singularity of the vector field )Z'Eo.
In a first step, we consider a new coordinates system in which the function H can be written
as
(z,y) = 2* + 9%

With these coordinates, by considering
z = pcos(f), y = psin(8),

the integration on the domain {H < h} is the integration on the disc of center 0 and of radius
p = Vh. We expand the integral, which depends on p and p. In our example, this expansion
gives
I(p, p) = ca(u)p® + ca(u)p* + 0 (p*)
with
(i) c2(p) > 0 and cq(p) > 0 when p < po,
(ii) co(u) < 0 and cq(p) > 0 when p > o,

¢ keeps in a neighborhood of pg. In the Case (i), the integral is positive for every p close to zero.
In the Case (ii), the integral vanishes for p close to pg = /—ca(t)/ca(p), which is close to zero
if u is close to pp.

The moving function § is a €¢-perturbation of the integral I calculated just above. As a
consequence, the number of roots of § is the same as the number of roots of I (for every p close
to zero), if the derivative of I with respect to p at the roots is not null and if € is small enough
(Implicit Function Theorem).

The Hopf bifurcation is therefore generic: when the parameter A is smaller than its bifurcation
value, there is no limit cycle, and the equilibrium is stable. When the parameter becomes greater
than the bifurcation value, a limit cycle appears: it is stable while the equilibrium is now unstable.

Ecological Interpretation

The parameter A appears in the predators migrations rates. When X increases, the predators
proportion decreases in activity 2 and increases in activity 1. Furthermore, the predators in
activity 1 have a larger attack rate than the predators in activity 2. It follows that when A
increases, the predation increases.

Therefore, it seems that an increase of predation causes the system to leave its equilibrium and
to oscillate.
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CONCLUSION

Effects of individuals behavior on the Lotka-Volterra model was investigated. The aggregation
method developed in [1] was used in order to obtain the total population dynamics. The aggre-
gated model is in fact the restriction of the global model on a center manifold. In this paper, the
aggregated model is a perturbation of the center of Lotka-Volterra. An asymptotic expansion
of the aggregated model was computed and the population dynamics which corresponds to this
aggregated model was described. We showed with an example that a change in the individual’s
behavior can lead to a bifurcation in the dynamics at the population level.

We considered an example where the predators had two activities. In the first one the predators
had a larger attack rates than in the second one. A Hopf bifurcation occurs when the predators
density in the activity 1 increase. Therefore, the predation can be interpreted as a destabilizing
factor: when the predation is smaller than a given threshold (before the bifurcation value),
the system reaches a stable equilibrium. However, if the predation is larger than the previous
threshold, the system leaves the equilibrium and oscillates.

The aggregation method is thus a good tool for reducing the initial model into a simpler one,
where analytical results can be obtained. Furthermore, it allows us to understand how new
dynamics emerge at the population level.
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