Math. Model. Nat. Phenom.
Vol. 3, No. 3, 2008, pp. 87-102

Enrichment Paradox Induced by Spatial Heterogeneity
in a Phytoplankton - Zooplankton System

J.-C. Poggialé'!, M. Gauduchorr and P. Auger’

@ Centre d’Oé&anologie de Marseille, UMR CNRS 6117
Laboratoire de Microbiologie, de&chimie et d’Ecologie Marines
Universié de la Mediterrage, Campus de Luminy Case 901
13288 Marseille Cedex 9 - France
> UR GEODES - IRD Bondy - 32, Av Henri Varagnat 93143 Bondy Cedex néea

Abstract. This paper is devoted to the study of a predator-prey modalpatchy environment.
The model represents the interactions between phytogardtd zooplankton in the water col-
umn. Two patches are considered with respect to light dvisitla one patch is associated to the
surface layer, the second patch describes the bottom Mggeshow that this spatial heterogeneity
may destabilize the predator-prey system, even in oligbiosystem where the nutrient is low
enough to avoid “paradox-enrichment” phenomenon. Indeetthjs case, an heterogeneity index
can be used as a bifurcation parameter, leading to a Hopthtion. Moreover, we assume that in-
dividuals can be dispersed in both patches via hydrodymampiscesses, like in a mixed layer. The
effect of mixing intensity is analysed as well as interatcsitoetween dispersion and enrichment.
We also show that, in some cases, spatial heterogeneity $tabitizing effect. These contrasted
results are examined by considering the non linear interabetween heterogeneity, dispersal and
enrichment and some mechanisms leading to stabilizagstdbilization are exhibited.
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1. Introduction

It is well known that spatial structure can exhibit significaffects on spatially distributed popu-
lations or communities dynamics. These effects are vaaodssome methods for integrating ex-
plicit spatial processes in population dynamics model&Hhmen extensively discussed (see [21],
[24],[6] for instance). Spatial structures can result frioiotic interactions themselves ([27], [26])
but also from environmental constraints ([25]), which sbalthe case in our paper. The effects of
dispersion on the stability of equilibrium has been disedsa many papers (see [4] and references
therein for a detailed discussion). Roughly, effects ofedéht factors, like dispersion rates inten-
sity, on populations or communities dynamics have beeryaadlfrom the individuals behavioral
level ([4], [16]) or the population level ([31], [28]) to theetapopulation level ([36]), the commu-
nity level ([10], [12], [22], [7], [30], [20], [25], [26]) andl the ecosystem level ([23]). In most of the
previous works at the population or community levels, atgtare interested in the role of spatial
structure on the dynamics stability. However, some worka déth other concepts like perma-
nence ([8]) or persistence ([32], [1]). Nowadays, it is atfiedl that spatial heterogeneity induces a
complexity in the analysis of population or community dymesnfrom the observation as well as
from the theoretical point of view ([34]). Some further istigations are needed to improve our
knowledge on the effect of spatial structure on models amlyin previous works ([29], [30]),
we suggested a method based on time scales separation im@simplify patchilly distributed
models to analyze the effects of spatial heterogeneity palation dynamics. In our work, spatial
heterogeneity means that some parameters (growth rageiatimn rates, etc.) can differ from one
patch to another, for some reasons. In [35] for instanceatitieors analyzed the effects of spatial
heterogeneity on the stability of a predator-prey systera patchy environment where a patch
was a refuge for the prey. This refuge affects the globaladred rate which modifies the stability
of the predator-prey dynamics. This paper illustrates matmat even in rich environments, the
destabilization can be avoided and the mechanisms fordhusien of the “Enrichment paradox”
suggested in this article refer to the reduction of intecast intensity between prey and predator
via the refuge. In [29], we studied a similar system with adater-prey in a patchy environment
and a refuge for the prey. From the ecological point of view, @sults were roughly similar to
those obtained in [35] but we shown how our method can be Uisefproviding analytical results
at the global level, even in a particular case where the ticadesseparation application is more
subtle. In [26], the authors show that an auto-organizetiadsructure (spatiotemporal chaos) in
a homogeneous environment can also prevent extinctionmflppons and resolve the paradox of
enrichment.

In the present paper, we still analyze a predator-prey madepatchy environment. We con-
sider a vertically structured water column in which lightp&ation is limited. Even if nutrients do
not concentrate in the immediate vicinity of the surfacegitghly results that only phytoplankton
cells located high enough in the water column are able to ghanks to the light while cells in
the bottom can not (or only poorly) photosynthesize. Thiatigp structure of light availability
induces spatial heterogeneity in phytoplankton cells patn growth. Hydrodynamism in mixed
layer permits to the phytoplankton cells to disperse in tlagewcolumn and to take benefit from
light at some times. Zooplankton also disperses in the veatieimn and grazes on phytoplankton.
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We study how the light-induced spatial heterogeneity &dféwe predator-prey interactions and the
resulting dynamics. We show that even in oligotrophic estays, oscillations may result from
the spatial heterogeneity. In [18] and [19], the authorsastitat coupled oscillations of daph-
nia and algae are common in the field. Nevertheless, the ade$ of the oscillations are rather
small and the destabilization induced by nutrient incredses not occur. However, in [11], the
authors present a real phytoplankton-zooplankton systearchemostat, which exhibits the Hopf
bifurcation induced by enrichment. Thus the effect of dmment on stability is really unclear and
relations between laboratory and fields results need to blyzed in the framework of a theory
which can explain their paradoxal results. As it is alreadyl&ned in [35], spatial heterogeneity
probably plays a role in the fields and its effects can be cergbr instance, if results from [35]
can lead to the conclusion that some aspects of heterogemeistabilizing, we show that other
aspects are destabilizing.

Indeed, in the present paper, we explain how the destatizaan occur even for low local
carrying capacities, that is in environments which are poanutrient, if heterogeneity is high
enough. We first explain how the above mentioned conditioag lead to an effective carrying
capacity of the water column larger that it should be. As asegnence, the zooplankton - phyto-
plancton community may exhibit oscillations even in ratheor nutrient environments. We then
analyze the mechanisms under which spatial heterogeratiead to this result.

In the next section, we present the phytoplankton - zooptankodel. We provide a mathe-
matical analysis in some range of the parameter values,lgavhen dispersion rates are very low
or very high. In the former case, the analysis is based ondie that a low intensity of disper-
sion rates leads to a quasi separation of patches whichuatiedtseparately. The latter case need
singular perturbation techniques which are briefly rechlla the fourth section, we complete the
analytical results by some numerical studies which pemiinprove our understanding of the role
of spatial heterogeneity. The different factors like ehment, heterogeneity and dispersion rates
intensity are used as bifurcation parameters in order tgpeoenhomogeneous and heterogeneous
situations. A conclusion ends the paper.

2. The phytoplankton - zooplankton model

2.1. System description and general assumptions

We consider a phytoplankton (prey) - zooplankton (predaggstem in a two patches environ-
ment. In the water column, the vertical distribution of theyfplankton species resources is
not homogeneous. For instance, the light availability eguially decreases with depth and the
nutrients distribution depends on the hydrodynamics d¢ardi. Roughly, the water column hy-

drodynamics can range from a rather well mixed to a strat#tate. The former situation occurs
for instance under windy conditions at the sea surface aaukléo a quasi-homogeneous distri-
bution of nutrients. The latter situation results in a hegeneous distribution of nutrients, which
are less concentrated at the surface and present a shagnt@ation increase at the thermocline
depth [17]. The heterogeneous spatial distributions offi light and nutrients result in a spatial
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variability in phytoplankton growth rate. The growth raggtiomum depends on particular distribu-
tions of resources and there is no general consensus inetedlire to situate it with precision, but,
roughly, it is either very close to the surface (well mixeduoon) or anyway no deeper than the
thermocline (stratified column). In our paper, we vertigalplit the water column in two patches
and we assume that the limit is set under the growth rate optisleepness, so that the growth rate
in patch 1 (upper layer) is larger than the growth rate inlp@t¢deeper layer).

We then also assume that the water layer represented by pascless thick than the water
layer represented by patch 2. As an example, patch 1 carsegyira layer with a depth comprised
between 0 and 30—-40 m while patch 2 corresponds to a layer 3 @m0 m to 120 m. As a
consequence, dispersion rates from patch 1 to path 2 arerhtiggin dispersion rates from patch
2 to patch 1. Indeed, at any time, among individuals of the gatch 1, a high proportion are
bounded close to the interface with patch 2 and are thersigseeptible to cross it downwards,
whereas the proportion of individuals of patch 2 close toitiberface is rather small compared to
all the individuals lying in the remaining great volume oftgda2. We insist that the hypothesis
applies on theer capitadispersion rates and not on the fluxes of individuals at therface on
which we do not make ang priori assumption.

We finally make the following general assumptions for the elodn each patch, the phyto-
plankton population growth is governed by a logistic equatind the consumption rate by zoo-
plankton is represented by a Holling type Il functional r@sge.

2.2. Model description

We consider the following model:

dr ax

d_Tl = dyxry —djry + € (rlxl (1 — _1) b n ;1 y1) (2.1a)
dz ax

d—: = dafxl — d%xQ + € (7“2%2 (1 - E) - b + ;2?&) (21b)
_dy1 = dyyo —djy1 +¢c|e —m )y (2.1¢)
dr 2 ! b + x1

dys ax3

il diyy — djya + € <€b N m) Y2 (2.1d)

wherez; andy; are respectively the phytoplankton and zooplankton alwretaon patch. r; is

the phytoplankton intrinsic growth rate on patGhy; is the carrying capacity on patcha is the

per capitamaximal ingestion rate of phytoplanktohjs the half-saturation constant, that is the
abundance of phytoplankton for which the ingestion rateai$ the maximal ingestion rate, is

the conversion efficiency and is the zooplankton natural death rate. The paramé&téesp.d!),
wherei = 1, 2, is the dispersion rate from patc¢ho the other patch for the phytoplankton (resp.
zooplankton) population. Finally, is a dimensionless parameter which permits to account for
different time scales. Whenis small € ~ 0), the dispersion between patches is much faster than
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the demographic processes (growth, predation and deatichréing to the assumptions listed in
the previous sub-section, we havé}:> d3, d{ > dj andr; > 7.

3. Mathematical analysis of the model

3.1. Low dispersion rates

If we assume that is very large, the system (2.1) is a smablperturbation of the system:

D (“%)‘ﬁiﬁﬂ (3.2a)
L2 (1—%)—bf;2y2 (3.2b)
i = (o) o2
W = (o) o0

wheref = e7. This four-dimensional system is actually composed of tejgesated two-dimensional
sub-systems, one on patch 1 and the other on patch 2 ; botlemf dne Rozensweig McArthur
models. They are structurally stable, thus the-perturbation does not affect the dynamics from
the qualitative point of view. On each patch, there are tpgential equilibria:(0, 0), (K;,0) and
(Zei, Ye,i), Wherei = 1 or 2. The equilibrium(z. ;, . ;) is positive only ifea > m andK; > ..

More precisely, we have, ; = % andy.; = - (1 — %) (b+ z.,). The equilibrium(0,0) is

a saddle point for each sub-systemklf < x. ; on patchi then the equilibriuni &, 0) is globally
asymptotically stable in the sense that all initial cormis with positive coordinates reach this
equilibrium. If K; crosses the value. ; then a transcritical bifurcation occurs ; whén, > z. ;,
the equilibrium(K;, 0) is a saddle point. The equilibriufa. ;. v. ;) is globally asymptotically sta-
ble, in the sense given aboveAf < b+2z. ;. Let K, . = b+2z.;: this value is a Hopf bifurcation
value of the local carrying capacity parametetiklf> K; . then the positive equilibriurte. ;, y. ;)

is unstable and the trajectories initiated in the positivadfant reach a limit cycle. In the present
manuscript, we will now assume that on each patch< K; which means that, separately, both
sub-systems have a positive equilibrium which is globadlyraptotically stable ifK; < K;.. It
follows that when the dispersion is very low andif < K; ., the system (2.1) exhibits a globally
asymptotic stable equilibrium (details of this analysis ba found in [5] for instance) ; this result
is illustrated on figure (1).
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Figure 1: This figure illustrates the dynamics of the phytoplanktod ahthe zooplankton on each patch with
model (2.1), for low dispersion rates. On each graphicsethee two curves. The black lines exhibit the patch 1
dynamics, the dashed grey ones show the patch 2 dynamicgarameters values are the following: = 6;
ro=1; K1 =21; Ky =21;a=12;b=0.9;df =4;d5 =1;d} =4;d5=1;e=0.8;m = 0.5;

e = 100.

3.2. High dispersion rates : Aggregation of variables on the water column

If we assume that is small, we can use the singular perturbation theory inr@laggregate the
phytoplankton population and the zooplankton populatiortree whole water column. In other
words, let us consider = x; + 5 the total phytoplankton population abundance ardy; + -,
the total zooplankton population abundance, then we cae witivo-dimensional model governing
these global variables (see [2] for a detailed explanatimhexamples of the method). In order to
get this model, we first consider the non pertubated systelattiyg = = 0 in system (2.1):

dy
dr
dy
dr
@
dr
dy
dr

d

0

5T — (di +d3) 21 (3.33)
5y — (di +d3) y (3.3b)
(3.3c)
(3.3d)

According to this system, the global variableandy are constant and the vector;, y, =, y)
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tends to(u,x, vy, z,y), whereu; andwv; are the proportion located in patch 1 of the preys and
predators in the whole column, at equilibrium. After a shaanhsient time, the fast dispersion
leads to a constant frequency of prey and predator popotatia patch 1. The frequencies are:

d3
U = ;o U =1—u
! ardy’ '
dy
v = i vwy=1—wv
' &+ '

We can reduce the previous four-dimensional system (2.thedollowing two-dimensional sys-
tem:

dx T UpV1 UV2
@ _ 1— —) _ 3.5a
dt m:( K a<b+u1x+b+u2x) Y ( )
dy ULV, Uo Vs
— = — 3.5b
dt <€a<b+u1x+b+u2x>x m>y’ (3.5b)
TKlKQ .
wheret = e, r = ryu; +rous and K = 5 5— The functional response at the global
TlulKQ + T2U2K1
level is thus:
G(z)=g(z)x
where

g (:L‘) . ( U101 i U2V2 )

b+wuix b+ usx
The equilibria of this system aré?;, = (0,0), F; = (K,0) and, whenn < ea, E3 = (x., y.),
wherez, is the unique solution of the equation:
m
G(x)=—.
(2) = =
If m > ea, this equation has no solution. A straightforward algebnaanipulations leads to:

—b (u1v1 + U9V — ;n_a) -+ \/Z

Te =
2 (1 — g) U1U2
2
whereA = bz ((ulvl + Uy — E) —+ 4E (1 — E) U1U2) .
ea ea ea
Moreover,y. is defined by:
(1-%)
K
Ye =T—F—
g (xe)

thusy,. is positive only if K > x.. The functional respons@ = x.g satisfies the following
properties, for alk: > 0:

G (z)

Q
S
A VoIV
=)

g (v)
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(- %)

s
In other words E; is stable if the derivative of the function:

(1-%)
g(z)
is negative at = z,.. This leads to the following conditions:

x m
— 1__6>’ .
0< ( K g(m)<eK:ce

It is easy to write the previous condition with respect to¢heying capacityx’:

Then the stability of’; is obtained if the isocling = r is decreasing at the equilibrium.

rbH=—T

m
K<z,— —
. ereq (xe)
LetK, =z, — % If K < K., then the positive equilibrium is locally stable, while
Creq (T

if K > K., then the positive equilibrium is locally unstable and dkdimit cycle appearsk.
is a Hopf bifurcation value of the carrying capacity paraaneFigure (2) illustrates the similarity
between the complete model (2.1) and the reduced one (3.5).

3.3. Highdispersion rates : Comparison between homogeneous and hetero-
geneous situations

We show in this subsection that the spatial heterogenaillyded by light and described by differ-
ences in the and K local values, can lead to oscillations which would not odgauhe homoge-
neous case. More precisely, we shall compare the situatiemen,; # r, (heterogeneous case) to
the situation where; = r, (homogeneous case) and we show that, with the above lissedas
tions and for a given set of parameters, the homogeneousaasead to a globally asymptotically
stable equilibrium while the heterogeneous case can &xdsbillations.

In [28], we considered a system of one population living oo patches with high dispersion
rate and for which the growth on each patch was governed hgtiogquations. In that paper,
the local carrying capacities; and K, were assumed to be the sani¢; = K,. We shown that
the total population was following a logistic growth too. Mover, in the heterogeneous situation,
which was represented by # r,, we shown that the global carrying capacity could be larger
than K, + K, = 2K, in consequence of the nonlinearities of growth in a vagaivironment.
Suppose; > r, (in the opposite case, the inequalities must be changedrboyybeg the indexes),
the established condition to get the result was:

1 dal:

—>—=>1
T2 d%

The result can be extended to the situation wheéreZ K,. The condition becomes:
K27"1 df KQ

— > — 3.6
K17’2 - d% - Kl ( )
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Figure 2: This figure illustrates the dynamics of the phytoplanktod afthe zooplankton in the whole system,

in heterogeneous conditions. On each graphics, there areuvwes. The black lines are obtained with the
complete model (2.1) while the dashed grey ones result frenagigregated model (3.5). The parameters values
are the followingrry =657, =1; K; =2.1; Ko =21;a=12;0=0.9;df =4;d} =1;d{ =4;dj =1;
e=0.8;m=0.5;¢=0.05.

and the proof is the same as that in [28]. Let us assume thse thequalities are satisfied. We
thus know that the total carrying capaciy of the phytoplankton population can be enlarged by
the spatial heterogeneity induced by the differences extvike growth rates on both patches.
However, the bifurcation valug&’. is the same in the homogeneous and in the heterogeneous case
since it does not depend efniand K. It follows that in the heterogeneous situation, the global
carrying capacity can be larger thaf while it is not the case in the homogeneous situation with
the previous assumptions. As a consequence, spatial betezity can lead to a destablization of
the positive equilibrium and may result in the occurrenceayulations fluctuations. This result
can be illustrated by comparing figures (2) and (3). Inddeske figures are obtained with the same
parameter values excepted for the parameteOn figure (2), parametey, is 6 (that isr; > 79)
what corresponds to a heterogeneous environment while oref(§),; = r,, what corresponds
to a homogeneous environment.
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Figure 3: This figure illustrates the dynamics of the phytoplanktod efthe zooplankton in the whole system, in
homogeneous conditions. On each graphics, there are twescurhe black lines are obtained with the complete
model (2.1) while the dashed grey ones result from the ag¢gdgnodel (3.5). The parameters values are the
following: 1 = 1;r =1; K1 =21; Ky =21;a=12;0=09;df =4;d} =1;d} =4;dy =1;
e=0.8;m=0.5;¢=0.05.

4. Intermediate dispersion rates and general numerical results

In this section, we extend the previous results to interatediispersion rates. As we shown in the
previous section, we could deal with differefdf on both patches, which would be more realistic.
However, for the sake of simplicity, we decided to $6t = K, := K, what still let us explore
the effects of spatial heterogeneity of local resourcdsness but through one single parameter
(r;). We investigate the role of spatial heterogeneity, disiperrates intensity and resources rich-
ness on the stability of the system, which is here repreddntehe local stability of the positive
equilibrium, with model (2.1). In order to perform this aysis, we proceed in three steps. In the
first step, we analyze the stability of the predator-prey ehbgt means of a bifurcation diagram in
therichness - dispersglane for two extreme environment conditions: homogenemashetero-
geneous. The second step deals with the analysis of the effdispersion rates on the structure
of the bifurcation diagram in thbeterogeneity index - local carrying capaqgigne. Finally, we
study the effect of the local carrying capacity on the strtetof the bifurcation diagram in the
dispersal - heterogeneity indplane. The bifurcation analyses were performed using coation
technics by means of the software (matlab toolbox) Matcept [
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4.1. Effect of spatial heterogeneity

We first compare the effect of enrichment and dispersiorsratensity in two types of environ-
ments ; one is homogeneous while the second is heterogeng&beshomogeneous situation is
obtained by setting; = r,, the heterogeneous case satisfies condition (3.6). In lastbsc we
determined the bifurcation diagram in th&, <)-parameter space. The difference between the ho-
mogeneous case and the heterogeneous case, illustratepian(#) is important. In the former
case, the system has a stable positive equilibrium for lawyey capacity, whatever value is,
that is whatever the intensity of dispersion is, in the rawgeconsidered. In the latter case, the
system has a stable positive equilibrium for lower disgarsates, whatever the carrying capacity
is in the range we considered. From the ecological point @fvyit means that a Hopf bifurca-
tion occurs in the homogeneous case when the carrying ¢gpacieases, that is by enrichment.
However, in the heterogeneous case, the Hopf bifurcatiedsikess enrichment to occur when the
dispersion rates increase (smgll that is when the mixing induced by hydrodynamics processe
is intensified.

Homogeneous case Heterogeneous case
15 15 ‘ ‘ ‘
1»
w
0.5!
0y 25 3 35 4 0y 25 3 35 4
K K

Figure 4: On this figure, an homogeneous case (left) and an heterogemese (right) are compared. They
are simulated with model (2.1). The homogeneous case pomds to identical prey growth rates = ro
(and we set these parameters to 1) and the heterogeneousocassponds ta; # 7. In this case, we set
ry = 6 andry = 1. We compare these situations for various local carryingacigs and various dispersion
rates intensities. The white regions, the “stability regih indicate the existence of a stable equilibrium ; gray
regions correspond to “unstability regions” where no stagjuilibrium exists (the same color code will be kept
in the figures that follow). The figure illustrates that theimtazifurcation parameter involved in the destabilization
(Hopf bifurcation) is the carrying capacity for the homogeus case whereas it is the dispersion intensity rates
for heterogeneous case. Note the persistence of the uitgtedgion for low values ofK in the heterogeneous
case. The parameters values are the followiRg: = 2.1; Ko = 2.1;a =12;b0=0.9;d} =4, d5 = 1;

d{ =4;d5 =1;e=0.8;m=0.5. ¢ varies from0.01 to 1.
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4.2. Effect of dispersion rates intensity

In order to understand how the spatial heterogeneity affihet organization of these bifurcation
. . . . . T
diagrams, we define an heterogeneity index by the ratio oftbeith rates:a« = —. The ho-

mogeneous case correspondsite- 1 and spatial heterogeneity increases vm'thCén if spatial
heterogeneity increases whendecreases from 1 to 0, we do not consider this situation which
does not lead to the condition (3.6). Figure (5) illustratesresult by means of bifurcation dia-
grams in the parameter spade, «), for different dispersion rates intensities measured.bye
can see on the left panel of figure (5), obtained for high d&pa rates{ = 0.05), that when the
heterogeneity index increases, the region of stability decreases, enhancengetult that, for a
given resources richness, heterogeneity can have a destapeffect and can generate fluctua-
tions in populations densities. Figure (5) shows how th&alglization is organized when spatial
heterogeneity increases, for various dispersion intessitWe can see that the effect of spatial
heterogeneity is more important for high dispersion rateseswhen these rates decreasent
creases), the dependence of the bifurcation diagram oretieedgeneity index tends to disappear
and the region of stability of the positive equilibrium spds throughout the bifurcation diagram.
It is noticeable that for these intermediate dispersioes;ahe carrying capacity needed to destabi-
lize the system is very high, even in the homogeneous sinaiihe stabilizing effect of dispersal
is highlighted here. Increasingmeans decreasing the dispersion rates, which leads tolatioso

of patches and the local parameters are such that on eaates@atch, the population densities
reach equilibrium values. It follows that for very high valof , the bifurcation diagram should
not depend om and should exhibits a behavior, with respectipsimilar to what is expected on
each patch when isolated. This situation is only obtaineddoy high values ot.

e =0.05 e=0.8 e=10

2 2.5

3.5 4 2 2 4 6 8 10 12

K

3
K

Figure 5: In this figure, we represent the destabilizing effect indlizgan increased carrying capacity according
to the ratio of the growth rates = T, which is a measure of spatial heterogeneity. The threelpanerespond

to different levels of dispersion rates, from very fast digpon (left,e = 0.05), intermediate dispersion rate
(middle,e = 0.8), to slow dispersion (rightt = 10). Note the enlarged scale of the x-axis in the right panel.
The left-panel figure illustrates the enlargement of thealyikty region when the heterogeneity increases, for
high dispersion rates. As the dispersion rate gets lowgzr(imediate and slow dispersion), the effect of spatial
heterogeneity diminishes, while the stability region fills the diagram (right panel). Parameters values are the
following: 1o =1;a=12;6=0.9;df =4;d5=1;d! =4;d5=1;e¢=0.8; m = 0.5.
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4.3. Effect of local carrying capacity

In this last step, we analyze a bifurcation diagram in (thev)-parameter space, see figure (6).
A small region of unstability exists for very high dispensitates (smalt) and a large region of

unstability exists for low dispersion rates. These regamesseparated by a large region of stability.
Let us note that the chosen local carrying capacity valuedb that if the patches were isolated, the
dynamics on each patch would exhibit limit cycles. It folthat for a given heterogeneity index,
the system is unstable for very high dispersion rates. rimteiate dispersion rates stabilize the
predator-prey system. The very low dispersion rates casesliike a system of isolated patches,
with fluctuations. The width of the stability region is greator high values of the heterogeneity

index .
K =5
6 . .
5)
4
3
3
2
1 n n
0 10 20 30
E

Figure 6: This figure illustrates the combined effects induced byiapheterogeneity, measured with= :—;
and dispersion rates intensity, given by The other parameters values are the following:= 1; a = 1.2;
b=0.9;di =4;d5 =1;d] =4;dy=1;e=0.8;m=0.5; K =5. For greater values ok, the stability
region would enlarge, while the right hand unstability cegivould disappear il gets smaller.

A systematic study with regards to variationsidflet us precise the behavior of the system
(unshown result): when the local carrying capadityncreases, the stability region narrows down
and only a small window of dispersion rates values can staltihe system; at the opposite, when
K gets too small, the highunstability region disappears, what corresponds to thea®gd regime
of equivalent isolated patches.

5. Conclusion

According to previous works like [35] or [29], for instanapatial heterogeneity affects the stabil-
ity of predator-prey systems. However, we illustrated hbig factor acts in a complex way and
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leads to apparent contradictory effects. We associateithttwo other factors, namely the disper-
sion rates intensity and the resources richness, in ordegadiow they all interact and to dispell
this contradiction in enlightening its origin. These twbet factors have been chosen because the
literature also largely associates them with stabilityéssin predator-prey systems. For instance,
in chemostat, enrichment can lead to destabilization, t®asishown experimentally in [11].

Moreover, as we mentioned in the introduction, some wokes[lL 3] exhibited the stabilizing
effect of dispersal. However, in this work, even if there isederogeneous distribution of popu-
lations induced by predator-prey interactions, the emvitent is homogeneous. We shown here
that spatial heterogeneity can reduce or enhance thidistadpistrength of dispersion. In a real
marine system, dispersion rates can be very low as well gshgin according to hydrodynamics
constraints. We therefore analyzed the extreme situatoa$ytically by means of aggregation
techniques for instance and we extended the results tariet#ate situations by using numerical
bifurcation analysis. These approaches were already cmdlim previous works ([3] for instance)
and this combination reveals itself to be efficient for uistemding the dynamics of rather high di-
mension nonlinear systems.
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