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Abstract

We consider a host–parasitoid system with individuals moving on a square grid of patches. We study the
effects of increasing movement frequency of hosts and parasitoids on the spatial dynamics of the system.
We show that there exists a threshold value of movement frequency above which spatial synchrony occurs
and the dynamics of the system can be described by an aggregated model governing the total population
densities on the grid. Numerical simulations show that this threshold value is usually small. This allows
using the aggregated model to make valid predictions about global host–parasitoid spatial dynamics.
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1. Introduction

Many field observations have shown that the dynamics of different sub-populations of the same
population located at different places were synchronised. This spatial synchrony has been ob-
served for different species of insects [1,2], fishes [3], birds [4,5], mammals [6,7], turtles [8], trees
[9] and viruses [10]. Although it decreases with the distance between populations, this synchrony
effect can be observed for important distances, from kilometres to thousands of kilometres [11–
13].

Two main causes have been investigated to explain this spatial synchrony effect. The first one is
known as the Moran effect resulting from environmental correlations [14]. The second cause is
dispersal [15]. The two processes can contribute to spatial synchrony at the same time [16]. The
aim of this work is to use models to investigate the effect of local dispersal on spatial synchrony
of a host–parasitoid system.

Building detailed models implies considering an important number of variables, which makes
a mathematical analysis difficult. Models incorporating slow and fast processes allow some sim-
plifications [17–19]. Aggregation of variables methods are aimed at reducing the dimension of a
mathematical model to make it available for analytical study. Aggregation of variables of a sys-
tem consists in the consideration of a small number of global variables and the system describing
their dynamics. When the dynamics of the global variables is exactly the same in the aggregated
model as in the initial model (referred to as the complete model), it is called perfect aggregation
[20]. When perfect aggregation is not possible, approximate aggregation methods are used [21–
23]. The consistency of the global variables in the complete and the aggregated systems is then
only approximate. Those methods can take advantage of multiple time scales in a system, for
continuous time [24–26] as well as for discrete time models [27,28]. The aggregated model is ob-
tained from the complete model by making the approximation that the fast system tends to some
stable attractor, for example an equilibrium point. This approximation is valid when the aggre-
gated model is structurally stable and the difference between the two time scales is large. In
the case of spatial population dynamics with fast symmetric dispersal and slow local interactions,
the aggregated model is obtained by making the approximation that local sub-populations
become synchronous. Therefore, the aggregated model is a good tool to explore spatial
synchrony.

Spatial host–parasitoid dynamics models usually combine two sub-models, one describing local
host–parasitoid interactions on each patch and the other describing dispersal among patches (see
[29]). Those models were mostly developed to study the dynamics, the persistence [30] and stability
[31,32] of the host–parasitoid population. Reeve [33] showed that for the non-persistent Nichol-
son–Bailey models with individuals moving to any other patch, persistence could only occur with
density-dependant parasitism. Hassell et al. [30] and Comins et al. [34] considered spatial environ-
ment as a two-dimensional network of patches connected by dispersal on the eight nearest neigh-
bours. For a sufficiently large grid, the system could persist without any other stabilizing
mechanism [34] but the localised nature of dispersal [35] which allows asynchrony between pop-
ulations [36] and the emergence of spatial structures such as spiral waves, chaotic dynamics or
crystal structures [30].

These models involved a single time scale in the sense that between two generations, local inter-
actions as well as dispersal processes were performed one time. Some models consider one global



Fig. 1. Densities of individuals after k events of dispersal for k = 1, 7 and 15. All individuals start on the centre patch,
and 50% of them move to an adjacent patch at each event of dispersal.
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event of dispersion [37]. But most models use the hypothesis of a single event of random dispersal
on the eight neighbouring patches [38]. However, in some situations, insects can reach further
patches. This is likely to occur for most host–parasitoid associations involving winged adults like
wasps, butterflies, flies or midges [39,40]. In a recent work, Huang and Diekmann [41] considered
a dispersal process consisting of two events: after landing on a patch, some of the individuals
could jump again to another neighbouring patch. This could happen with species looking for
places of higher prey densities, like mites, which disperse in the air and look for the best place
to settle. In this work, the dispersal event is repeated k times, with all individuals leaving the patch
where they are at each event. Therefore, insects fly at random from patch to patch without stop-
ping for the total duration of the dispersal process. Then insects settle and thus can reach not only
the closest neighbouring patches but also farther patches. Thus an increase of parameter k corre-
sponds to a longer flight time.

Fig. 1 shows the spatial distribution after the dispersal process of insects initially located on a
single patch for different values of k. The insect density is a Gaussian-like distribution, which cor-
responds to a diffusion pattern.

In recent works, Lett et al. [42,43] studied the effects of repeated dispersal events on the global
dynamics of a host–parasitoid system (see also [44]). They considered a system of two spatial
patches [42] and a row of patches [43] connected by dispersal. Local host–parasitoid interactions
were described by the classical Nicholson–Bailey model, and hosts and parasitoids could disperse
with constant proportions of migrants from one patch to another. This model involved two time
scales, as between two generations the dispersal process could be repeated several times when the
local interactions occurred only once. In the present work, we propose an extension of previous
works to a square two-dimensional network of spatial patches (with A2 patches) connected by dis-
persal. We compare the dynamics of the complete model (involving 2A2 variables for host and
parasitoid local densities) to the aggregated model (involving only two variables, corresponding
to the global host and parasitoid densities). Using aggregation methods, we investigate the effects
of number of dispersal events and network dimension on the spatial synchrony of patches. We
found that we need only a relatively small number of dispersal events to obtain a close match be-
tween the dynamics of the complete and the aggregated models.
2. Presentation and reduction of the model

The complete dynamics is a combination of two processes, a process of dispersal and a process
of local host–parasitoid interactions.
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2.1. The complete spatial model

In a homogeneous environment, the dynamics of host–parasitoid systems with discrete gener-
ations can be described by a pair of first-order difference equations (1)
ntþ1 ¼ kðntÞnte
�apt

ptþ1 ¼ cntð1� e�aptÞ

�
ð1Þ
which correspond to the Nicholson–Bailey model with host growth rate k(nt). Here nt and pt are
respectively the host and female parasitoid densities at generation t. For the host growth rate, we
adopt the logistic form k(nt) = exp(r(1 � nt/K)), as first introduced by Beddington et al. [45],
where r is a positive parameter and K is the carrying capacity. Therefore, in the absence of par-
asitoids, the host population would tend to K. Parameter a is the parasitoid searching efficiency
and c is the average number of female parasitoids emerging from each infected host. If we suppose
that the environment consists of a square lattice with A · A patches, the dynamics involves two
phases. The first one corresponds to host–parasitoid interactions. Eq. (1) allow us to calculate
local populations on each patch from one generation to the next. The second phase is dispersal
between neighbouring patches. We assume that a constant proportion ln (resp. lp) of migrants
for the host (resp. parasitoid) population is leaving any patch to go to the eight nearest patches
in equal proportions. Eqs. (2) describe dispersal in a patch.
ntþ1 ¼ ð1� lnÞnt þ
ln
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ptþ1 ¼ ð1� lpÞpt þ
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In this model, we use reflexive boundaries, meaning that individuals moving out of the lattice will
go back to the patch they come from (periodic boundaries would change the patterns obtained;
however we found no influence on persistence). Under this condition, movements preserve the
total numbers of hosts and parasitoids. The dispersal process for all the patches can be described
by a non-negative matrix M. The complete model combines dispersal and local interactions as
shown in Eq. (3).
X tþ1 ¼ F ðMkX tþ1Þ ð3Þ

The components of the 2A2-dimension vector Xt are the host and parasitoid densities on each
patch. The vector of functions F is of the same dimension and incorporates the two previous equa-
tions of Eq. (1) of local insect interactions for all patches on the grid. Parameter k is an integer
that we call dispersal frequency. When parameter k = 1, there is a single dispersal event between
two generations. When k > 1, the dispersal process is repeated several times. Therefore, parameter
k represents in a certain sense the ratio between the time scales of dispersal and local interactions.
When k is increased, the dispersal process becomes faster with respect to local interactions. In this
model, the dispersal process appears like a diffusion model (which steps are explicitly described). It
can be seen as a one step migration which distributes individuals in an area around the starting
patch, which is a compromise between the strict neighbourhood and the area covered by global
migration. Parasitism occurs then in every patches where individuals have moved.
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In the following sections, we will present simulations as examples. In most simulations, we will
use the same set of parameters a = 0.2, r = 2.6, K = 50, and c = 0.4 to facilitate the comparison of
simulation results. Furthermore, we use the values ln = lp = 1, i.e., every individual moves to an
adjacent patch during each dispersal event. Henceforth, the set of parameters a = 0.2, r = 2.6,
k = 50, c = 0.4, ln = lp = 1 will be referred to as the default set of parameters.

2.2. The aggregated model

For large values of k, an aggregated model is obtained in two steps. At the first step, we neglect
the slow process of local host–parasitoids interactions and only study the fast dispersal process.
With reflexive boundaries, there exists a positive and stable equilibrium of the dispersal process,
which corresponds to the same proportion 1/A2 of hosts and parasitoids on each patch. This equi-
librium corresponds to a spatially uniform distribution of hosts and parasitoids on the grid, and
therefore to spatial synchrony among patches. In the second step an approximation is made. For
any generation t, we assume that the system has reached the fast equilibrium due to the dispersal
process before the slow dynamics, the local host–parasitoid interactions, takes place. Substituting
the fast equilibrium into Eq. (1), and by summation of insect population densities for all patches
of the grid, we obtain a reduced model (Eq. (4)) governing the dynamics of the total host density
Nt and the total parasitoid density Pt at time t:
N tþ1 ¼ N te
rð1� Nt

KA2Þ�
a

A2P t

� �
;

P tþ1 ¼ cNtð1� e�
a

A2P tÞ:

8<: ð4Þ
This model is also a Nicholson–Bailey model with host logistic growth. For a given set of param-
eters, the dynamics obtained for this model are the same as those obtained with Eq. (1), but with
rescaling: if we define ut = Nt/A

2 and vt = Pt/A
2 and substitute them in Eq. (4), we obtain the sys-

tem as the one defined by Eq. (1))

2.3. Comparison of the complete model and the aggregated model

We compare the dynamics of total host and parasitoid densities obtained with the complete
model and with the aggregated model. As the number of dispersal events k increases, the dispersal
process becomes fast in comparison to local interactions, and we expect the complete model
dynamics to become ‘closer’ to the aggregated model one. In the examples to come, host and par-
asitoid population dynamics will be graphically represented as a phase portrait and the adequa-
tion of the dynamics can be evaluated qualitatively. But we also want to determine quantitatively
how close the dynamics are.

Aggregation methods have mainly been developed in order to solve the complexity of models
involving many state variables and parameters. Time scale separation methods take advantage of
different time scales involved in the dynamics, to build by approximation methods a reduced mod-
el from the complete one. However, it is important to check that the dynamics of both models are
close enough. This can be done in two main ways. First, one can check that, starting from the
same initial condition, the solutions of the aggregated and complete models always remain close.
For example, in [42], it was shown that for a two-patch model, an increase of parameter k allows
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to maintain the distance between the trajectories of both models as small as expected. The same
result holds for networks of larger dimensions. Another approach relates to the qualitative
dynamics, i.e., the asymptotic behaviour of the complete and aggregated models. In the long term,
after some transient dynamics during which the trajectories of the complete and aggregated mod-
els may differ, the solutions of the reduced model should tend for example to the same structurally
stable attractor than those of the complete one. In this work, we pay a particular attention to this
second aspect. We will see later a demonstrative example of the convergence of the complete mod-
el toward the asymptotic stable attractor of the aggregated model.

We use the sum of the variances V of host and parasitoid spatial distributions to compare the
models. This coefficient gives a numerical determination of spatial uniformity of insect densities.
A zero value corresponds to spatial uniformity. As we will see later, spatial uniformity corre-
sponds to a similar asymptotic behaviour for the complete and aggregated models. When this
coefficient tends to 0, spatial structures disappear and solutions of the reduced and complete mod-
el tend to the same structurally stable attractor.

We define a threshold value for V under which we consider that the density of hosts and par-
asitoids given by the complete model is uniform. We use here a value of 2, which corresponds to a
mean difference of one host and one parasitoid per patch between the density distribution and the
mean of densities, which is low compared to the carrying capacity of 50 hosts. We consider that
the solution given by the complete model tends to the attractor of the aggregated model when the
coefficient V drops and remains under this threshold.
3. Results

3.1. Effect of an increasing number of dispersal events on the spatial dynamics of the complete model

In this model, like in previous host–parasitoid spatial models [30,34,36], spatial structures like
spiral waves can appear after a transient dynamics. The effect of an increasing number of dispersal
events on the spatial structures of the host and parasitoid population densities is a kind of zoom
effect, the spirals becoming larger. For even larger values of k, spiral waves may eventually vanish,
leading to spatially uniform densities. To illustrate this phenomenon, we present in Fig. 2 the spa-
Fig. 2. Numerical simulations of the complete model using the default set of parameters (a = 0.2, r = 2.6, K = 50,
c = 0.4, ln = lp = 1) with A = 200. Number of hosts in each cell is portrayed at one generation, with the highest values
in black.
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tial patterns obtained for host population density with numerical simulations of the complete
model (Eq. (3)) using the default set of parameters for increasing values of k. The initial condition
corresponds to a few hosts and parasitoids located on a single patch and zero elsewhere, as found
in Hassell et al. [30]. The influence of initial conditions will be discussed later. Following a tran-
sient dynamics, spiral waves are observed: for k = 1, there are six small spirals inside the network
when only one bigger spiral remains for k = 4.

3.2. Comparison of the complete model and the aggregated model

The following examples will illustrate the behaviours of the complete and the aggregated mod-
els, and the incidence of parameter values on these.

3.2.1. Convergence of the trajectory of the complete model toward the attractor of the
aggregated model

Fig. 3(a) presents numerical simulations of the aggregated model (Eq. (4)) for the same para-
meter values than in Fig. 2, but for a reduced grid (A = 50). After some transient dynamics that
is not shown, the attractor of the aggregated model is a stable invariant curve, shown in black in
Fig. 3(a). Fig. 3(b)–(d) present numerical simulations of the complete model for the default set of
parameters and k = 1 at different time intervals: 0 < t < 500 (b), 500 < t < 1000 (c), and
1000 < t < 2000 (d). At the beginning of the simulation, there were 20 hosts and parasitoids on
one patch. To make the comparison between complete and aggregated models dynamics easier,
Fig. 3. (a) Numerical simulation of the aggregated model with a = 0.2, r = 2.6, K = 50, c = 0.4, ln = lp = 1 and
A = 50. (b)–(d) Numerical simulation of the aggregated model like in (a) in black, and numerical simulation of the
complete model for k = 1 in grey for 0 < t < 500 (b), 500 < t < 1000 (c) and 1000 < t < 2000 (d).
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the attractor of the aggregated model is shown in black and the solutions of the complete model
are shown in grey. At each generation, the total host and parasitoid densities are calculated from
the complete model (Eq. (3)) and also from the aggregated model (Eq. (4)). Observations of the
complete model spatial dynamics showed that during a transient phase (not presented here), a
spiral wave started but was not persistent. Although starting with the same initial condition, at
the beginning the solutions are far apart during the transient dynamics, but after some generations
the solutions of the complete and aggregated models tend to the same stable attractor. Fig. 3(d)
shows that the trajectories of the complete model eventually converge to the attractor of the
aggregated model.

3.2.2. Effect of the grid size
With a bigger grid (A = 100), the attractor of the aggregated model is similar to the one in the

previous example. But for a movement frequency value of k = 1, contrary to the case of Fig. 3, a
spiral wave invaded the grid and was persistent, and the solutions of the complete model did not
converge to the attractor of the aggregated model (Fig. 4(a)). Fig. 4(b) shows that V remains large
(about 200) and periodic for long simulation times.

3.2.3. Effect of the number of dispersal events
With the same set of parameters and the same initial condition as above, but with a larger value

of k (here k = 3), the solution of the complete model tends to the attractor of the aggregated mod-
el, as shown in Fig. 4(c). In that case, a spiral wave could not persist. Spatial uniformity was ob-
served all over the grid after a transient dynamics. Therefore, a larger value of k has permitted to
Fig. 4. Numerical simulations of the aggregated model (in black) and the complete model (in grey) with the default set
of parameters and k = 1, A = 100 (a), and k = 3, A = 100 (c) for 1000 < t < 8000. (b) and (d) represent the
corresponding fluctuations of the sum of variances of hosts and parasitoids distribution V.
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counter the effects of a bigger grid size. Fig. 4(b) shows that V tends to zero when k = 3, which
means that the spatial patterns disappear. The fact that V drops and remains at low values is a
good indicator of the disappearance of spatial structures like spirals, and also of the convergence
of the complete model trajectories toward the attractor of the aggregated model.

Under very general conditions on function F, and when host and parasitoid populations are
bounded, it can be shown that when k tends toward infinity, for any distribution of hosts and par-
asitoids at time t, the difference between the total population at time t + 1 for the complete and
the aggregated model uniformly tends toward 0 (see the proof in Appendix A).

3.2.4. Effect of parameter r
We changed the parameter r to obtain models with different types of attractors. When r = 2.15

(other parameters being unchanged with respect to Fig. 3), the attractor of the aggregated model
is periodic and corresponds to the five black dots shown in Fig. 5(a). For a movement frequency
value of k = 1, unlike in case of Fig. 3, a spiral wave invaded the grid and was persistent, and the
solutions of the complete model did not converge to the attractor of the aggregated model (result
is not shown). Fig. 5(a), presents the comparison between the attractor of the aggregated model
and the solutions of the complete model for k = 2. It shows that the solutions of the complete
model tend to the attractor of the aggregated model. Spatial uniformity was observed all over
the grid within less than 1500 generations. For r = 2.94, we obtain another attractor for the aggre-
gated model (Fig. 5(b)). In this case, we only need k = 1 to get the convergence.

3.2.5. Sensitivity of convergence to initial conditions
To test the sensitivity of the complete model dynamics to initial conditions, we decided to con-

sider three types of initial conditions, shown in Fig. 6. The first one (type (a)) consists of a small
pack of hosts and parasitoids located close to the centre of the network, with location and number
of individuals chosen at random. The second type (type (b)) consists of 20 pairs of hosts and par-
asitoids in one randomly chosen patch. This condition is similar to the one used in [30]. These two
types of initial conditions could correspond to a group of insects colonizing a new area. The third
type (type (c)) of initial conditions is a spiral obtained by running the model with parameters that
lead to persistent spatial structures like in Fig. 2(a). Running repeated simulations with the default
set of parameters, A = 50 and k = 1, we found that the complete model trajectories always
Fig. 5. Numerical simulation of the aggregated (black) and complete (grey) models in the same conditions as in Fig. 3
except r = 2.15 and k = 2 (a), and r = 2.94 and k = 1 (b).



Fig. 6. Initial conditions used in those simulations: (a) pack of hosts and parasitoids in the centre of the grid, (b) one
patch (randomly chosen) with 20 hosts and parasitoids and (c) spiral wave.
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converged toward the attractor of the aggregated model with initial conditions type (b), but some-
times it did not with type (a) and never with type (c).

3.2.6. Critical dispersal frequency for convergence
The non-persistence of spatial structures when the parameter k is increased can be well under-

stood from Fig. 2 showing that an increase of k provokes a zoom effect of spiral waves. For high
enough values of the movement frequency, the two-dimensional grid is not large enough to sup-
port a persistent spiral wave. As a consequence, we suppose that there exists a threshold value ~k of
the k parameter below which spatial structures persist and above which they do not:

• if k < ~k, as long as we could check numerically, there are some cases where spatial structures
persist, local dynamics remains asynchronous from patch to patch for very long simulation
times and the aggregated model is not useful to make predictions about the dynamics of the
complete model.

• if k > ~k, there exists a finite time such that spatial structures do not persist, the sum of variances
of the host and parasitoid density distributions tends to zero, patch dynamics become synchro-
nous and the aggregated model is useful to predict the asymptotic behaviour of the complete
model, whatever the initial condition is.

We will now try to determine numerically the value ~k for different sizes of grid and different sets
of parameters. We have performed simulations for two-dimensional grids of dimension A2 = 900,
2500, 10000 and 40000 and determined the influence of initial conditions and the proportion of
migrants ln, lp on the behaviour of the system.

3.2.7. Determination of the critical value
To find a value of ~k as independent on initial condition as possible, it is necessary to run many

simulations with different initial conditions. The set of initial conditions types that were described
previously permits us to determine a reasonable estimation of ~k.

To estimate the value of ~k we performed several simulations using the default set of parameters.
Precisely, for each value of k and A tested we performed 20 simulations with initial conditions
type (a), 20 simulations with initial conditions type (b) and one simulation using initial condition
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type (c). If for all simulations with the same initial condition type, the coefficient V dropped and
stayed under the threshold value of 2 in less than 64,000 time steps, we noted a ‘+’ in Table 1,
otherwise we noted a ‘�’. It should be noted that when V was not below the threshold value at
the end of a simulation it seemed to have reached a quasi-periodic state and was therefore unlikely
to drop below it later.

For initial conditions (a) and k = 1, the complete model asymptotic dynamics is very different
from the aggregated model one. However for larger values of k, the complete model behaves
asymptotically like the aggregated model. We obtained significant differences in the results ob-
tained for the three initial conditions types. While the solutions of the complete model tend to
the attractor of the aggregated model for k = 1 with initial conditions (b) similar to that of Hassell
et al. [30], we need a value of 3 to come to the same conclusion with condition (c). From Table 1
we choose the lowest value of k that assures a ‘+’ for all the tested initial conditions as an esti-
mation of ~k, i.e., ~k ¼ 3. We assume that when using a value of k higher than ~k, the asymptotic
dynamics for the complete model and the aggregated model will always be the same, whatever
the initial condition is.

We repeated the simulations for a larger grid of size A = 100 (Table 2). The threshold value
obtained in this case is ~k ¼ 8. From Tables 1 and 2 we can see that initial condition of type (c)
is the ‘worst’ as larger values of k are required in order to get a ‘+’, even though we used only
one simulation of this type while 20 of the other types. Therefore, for other grid sizes we decided
to run only the simulation that uses initial condition of type (c) to determine the value of ~k
(Table 3).

The effect of k on the dynamics of the host–parasitoid system has also been investigated and the
existence of a critical value has been found with other parameters values and other models like the
classical Nicholson–Bailey model, which presents diverging local dynamics (no result shown).
Table 1
Results obtained for simulations with the default set of parameters and A = 50, for the three types of initial conditions

k 1 2 3 4 5 10

IC(a) � + + + + +
IC(b) + + + + + +
IC(c) � � + + + +

+ means that for all simulations performed, host and parasitoid distributions tend to spatial uniformity after some time,
and � means that this was not the case for at least one simulation.

Table 2
Results obtained for simulations with parameters a = 0.2, r = 2.6, K = 50, c = 0.4, A = 100 and ln = lp = 1, and for the
three initial conditions

k 1 2 4 7 8 9

IC(a) � + + + + +
IC(b) � + + + + +
IC(c) � � � � + +

Same as Table 1, except A = 100.



Table 3
Threshold values estimated for different sizes of grid

A 30 50 100 200

~k 2 3 8 10

Table 4
Results for simulations with parameters a = 0.2, r = 2.6, K = 50, c = 0.4, and A = 50 for different values of l = ln = lp

l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

~k 24 13 5 5 5 5 4 4 3 3flk 2.4 2.6 1.5 2 2.5 3 2.8 3.2 2.7 3

Second row: Threshold value for k above which spatial structures always disappear for initial condition (c). Third row:
product flk , indicator of the dispersal speed.
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3.2.8. Effect of mobility l
In the results shown previously, the proportion of migrants was set to 1. We expect the value of

ln and lp to have an incidence on the threshold value ~k. In order to start an investigation on this
point, we have studied the case where ln = lp for other values between 0 and 1. We note
l = ln = lp. We tested the hypothesis that there should be a threshold value flk under which spa-
tial structures exist and above which they disappear. We have run simulations with parameters
a = 0.2, r = 2.6, K = 50, c = 0.4 for a grid size A = 50 and initial condition (c) for different values
of l = ln = lp, and have reported the results obtained in Table 4.

According to Table 4, for each value of the parameter l, there is a value flk over which the solu-
tions of the complete model converge to the attractor of the aggregated model. This value is
roughly the same as the value of ~k obtained for l = 1, i.e. about 3. Parameters l and k have dif-
ferent consequences on dispersal: when l increases, more individuals disperse, but still on the
neighbouring patches, while when k increases, the individuals can reach further patches, the pro-
portion of migrants being unchanged. However, those two parameters have roughly the same ef-
fect on the dynamics, as it is shown in Table 4.
4. Discussion and conclusion

In our model, insects are assumed to disperse several times per generation before reproduction.
In classical models, Hassell et al. [30], insects disperse one time per generation and can only reach
neighbouring patches, usually the eight closest patches. In our model, we assume that insects can
go farther. In order to reach a non-contiguous patch, the insect must fly from the departure patch
over several other patches which are located in between them. We have represented this dispersal
process between two non-contiguous patches by a series of k dispersal events. Insects are assumed
to fly at random in the network for a certain time and then can settle on a patch which can be
more or less far from the departure patch. They can reach any patch located inside a disk of radius
kL, where L is the average size of a patch. The spatial distribution that is obtained after a series of
k dispersal events inside this domain resembles a Gaussian distribution as shown in Fig. 1. Thus in
our work, dispersal model corresponds to a diffusion process, which may be seen as a compromise
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between the one-step dispersal and the global dispersal which can be found in some other works
(see Bernstein et al. [46,47]), where individuals are pooled and randomly distributed among the
patches, moving implicitly several times.

In this work, we have shown that the aggregation method works for rather small values of
parameter k, see Table 3. Therefore, the radius of this dispersal domain can be rather small
and insects are assumed to disperse in a rather limited domain. As suggested to occur by French
and Travis [48]: ‘The parasitoids appeared to disperse more when larval host density was higher in
the neighbouring cells than in the start cell. This is interesting because it is possible that individ-
uals dispersed more than once during the dispersal period, and parasitoids visiting more than one
cell may have been able to ‘compare’ local environments’. It is with this idea in mind that we con-
ducted our work.

A lot of interest was devoted to the existence of spatial structures and mechanisms that facil-
itate their formation in host–parasitoid communities [49]. Spiral waves, spatial chaotic dynamics
as well as crystalline structures have been obtained in modelling works. In these models, the patch
model describing the local host and parasitoid interactions was unstable, as for example the clas-
sical Nicholson–Bailey model used in [30]. Instability came from the fact that a unique positive
fixed point existed and was locally unstable for any set of parameter values. Therefore, in the case
of a single isolated patch, after some generations the host density usually went to zero and con-
sequently the parasitoid density too one generation after. In the case of a set of patches connected
by dispersal, it was shown that the community could become persistent and that persistence was
more likely to occur when the size of the spatial network was large. In this work, the patch model
that we use, the Nicholson–Bailey model with host logistic growth, is not unstable. For some val-
ues of the parameters there can be a unique positive fixed point which is locally stable. For other
values, stable attractors such as invariant curves or periodic attractors can occur. In the case of a
network of patches connected by dispersal, our numerical simulations have shown that spatial
structures can also be observed and can be persistent. Fig. 2 shows spiral waves similar to the ones
described in [30,34].

Our work has shown that there exists a threshold value of the movement frequency k above
which spatial patterns do not persist and patch dynamics become synchronous. In such cases,
an aggregated model governing the total insect population densities can be obtained and is suc-
cessful to make suitable predictions about the dynamics of the complete model. The existence
of a threshold value of k is not unexpected. Indeed, diffusion tends to reduce spatial gradients
and to promote spatial homogeneity. Therefore, when dispersal events become more frequent,
a homogeneous spatial state is more likely to occur. Thus, for a high value of k, one can under-
stand that the proportion of hosts and parasitoids become similar from patch to patch, destroying
spatial structures and inducing spatial synchrony. However, it is unexpected that the critical value
of the k parameter is relatively low. Our simulations have shown that for networks of 10000–
40000 patches, a value of 8–10 dispersal events per generation is enough to promote spatial syn-
chrony. In such situations, individuals disperse within a disk which radius is about 5–10% of the
size of the square grid side, which corresponds to a rather short range of dispersion with respect to
habitat size. As a consequence, for realistic ranges of dispersion, it is possible to build an aggre-
gated model that can provide useful information about the macroscopic asymptotic behaviour of
the complete model. That means that in most cases, local diffusion is enough to destroy spatial
structures and to lead to spatial synchrony.
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We showed that fast dispersal can favour spatial synchrony. However, we did not take into
account stochastic processes, which on the contrary can induce spatial asynchronous dynamics.
Local environmental variability, which may be different from patch to patch, would also favour
spatial asynchrony. With correlated environmental disturbance (Moran effect), the population
synchrony would be exactly the same than the environment synchrony for linear models [50].
Abiotic factors such as climatic or habitat heterogeneity can provide such variability [51], while
in this paper only biotic factors have been taken into account. Both factors should be taken in
consideration as their respective roles are still unclear [52]. Furthermore, we focused here on a
fixed proportion of dispersing individuals. We have now to consider density-dependent dispersal:
local density of individuals may have either a positive or a negative effect on dispersal, and then
on dynamics and synchrony [48]. In reality several factors operate at the same time and may have
different and even opposite effects on spatial synchrony. The balance between these different
factors is probably a key factor to explain the resulting observed host–parasitoid spatial
dynamics.

Our work was oriented toward host–parasitoid communities. In the near future, we would like
to extend it to other kinds of models (continuous time models), other spatial communities (pred-
ator–prey models) and other species (birds, fishes. . .). Therefore, our work could propose a gen-
eral framework for the study of spatial synchrony based on aggregation of variables.
Appendix A

A.1. The complete model

Let us consider the following complete model for a grid with A2 cells
ntþ1 ¼ f ðMk
nnt; Mk

pptÞ
ptþ1 ¼ gðMk

nnt; Mk
pptÞ

(

where A is the size of one side of the grid, nt; pt 2 RA2

are vectors representing host and parasitoid
populations in every patch at time step t, f and g are functions C1 of R2A2

in R2A2

corresponding to
the local dynamics. The movement frequency k is a positive integer and Mn and Mp are A · A dis-
persal matrix for hosts and parasitoids such as for each column, the sum of elements is equal to 1
(stochastic matrix). We consider matrix that are irreducible and aperiodic, which is the case for
dispersal on the eight nearest neighbours with a constant proportion of migrants on a square grid.

Let us consider the 2A2-dimension vector Xt defined by X t ¼ ðnt; ptÞ
T 2 R2A2

which contains

population densities for hosts (A2 first elements) and for parasitoids (A2 last elements). We intro-
duce the function h = (f;g)T and the matrix of dispersal M = diag(Mn;Mp). We can now write the
complete model like in Eq. [2]
X tþ1 ¼ hðMkX tÞ

Let 1 be a A2 vector which elements are all equal to 1, and ~1 ¼ diagð1T; 1TÞ. The function ~1hMk

gives for any population vector Xt a 2-dimension vector which elements are total population for
hosts and parasitoids at time step t + 1.
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A.2. The aggregated model

Let us consider M ¼ limk!þ1Mk.
Let mn be the eigen vector of norm 1 associated to the eigen value 1 of Mn, and mp the eigen vec-

tor of norm 1 associated to the eigen value 1 of Mp. We denote �m ¼ ðmn; mpÞT.
For all population vectors nt and pt, we have limk!þ1Mk

nnt ¼ ð1TntÞmn (Perron–Frobenius the-
orem) and limk!þ1Mk

ppt ¼ ð1TptÞmp.
By defining S ¼ diagðmn; mpÞ we have
S~1 ¼ M
Let us consider the vector in R2 representing hosts and parasitoids total populations (ut;vt)
T to

which we associate the following population vector:
ðnt; ptÞ
T ¼ ðutmn; vtmpÞT
we have
ðutþ1; vtþ1ÞT ¼ ð1Tntþ1; 1Tptþ1Þ ¼ ð1Tf ðMk
nnt; Mk

pptÞ; 1TgðMk
nnt; Mk

pptÞÞ
Because we consider the system to be at fast equilibrium, we approach MkVt with
MV t ¼ ðutmn; vtmpÞT, and we obtain
ðutþ1; vtþ1ÞT ¼ ð1Tf ðutmn; vtmpÞ; 1Tgðutmn; vtmpÞÞ

We then define the aggregated model as follows
utþ1 ¼ F ðut; vtÞ
vtþ1 ¼ Gðut; vtÞ

�

with F ðut; vtÞ ¼ 1Tf ðutmn; vtmpÞ and Gðut; vtÞ ¼ 1Tgðutmn; vtmpÞ.

A.3. Approximation of total population given by the aggregated model

Let us denote H = (F;G)T. We can then write
H ¼ ~1hS
For any population vector Xt, the vector of total population is given by ðut; vtÞT ¼ ~1X t. Then the
approximation of total population given by the aggregated model at the next timestep is
ðutþ1; vtþ1ÞT ¼ Hð~1X tÞ ¼ ~1hSð~1X tÞ

Because S~1X t ¼ MX t, we have
ðutþ1; vtþ1ÞT ¼ ~1hðMX tÞ
A.4. Result

We give to the space R2A2

a norm k.k. We suppose that there exists a compact K of R2A2

such as
the dynamics stay in that compact (h(K) � K) and such as h is C1 on that compact. Then for any
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distribution Xt, the difference between total populations calculated with the complete model and
the aggregated model after one timestep tends toward 0 when k tends to infinity. More precisely:
jj~1hMk � H~1jj ¼ O
1

k

� �
Proof. For any population vector Xt in K, the distance between the total population given by
complete and aggregated model is
jj~1hðMkX tÞ � Hð~1X tÞjj ¼ jj~1hðMkX tÞ � ~1hðMX tÞjj 6 jj~1jj:jjhðMkX tÞ � hðMX tÞjj

because h is C1 on K, there exists a 2 R such as h is a-lipschitz. Then
jj~1hðMkX tÞ � Hð~1X tÞjj 6 ajj~1jj:jjMkX t �MX tjj 6 ajj~1jj:jjMk �M jj:jjX tjj

Because Xt is in a compact, we have for any Xt
jj~1hðMkX tÞ � Hð~1X tÞjj 6 constantjjMk �M jj
and so
jj~1hMk � H~1jj 6 constantjjMk �M jj ¼ O
1

k

� �
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