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A B S T R A C T

Two predator-prey model formulations are studied: the classical Rosenzweig–MacArthur (RM) model and the
Mass Balance (MB) chemostat model. When the growth and loss rate of the predator is much smaller than that of
the prey these models are slow–fast systems leading mathematically to a singular perturbation problem. In
contradiction to the RM-model, the resource for the prey is modelled explicitly in the MB-model but this comes
with additional parameters. These parameter values are chosen such that the two models become easy to
compare. In both models the transcritical bifurcation, a threshold above which invasion of predator into prey-
only system occurs, and the Hopf bifurcation where the interior equilibrium becomes unstable leading to a stable
limit cycle occur. The slow-fast limit cycles are called relaxation oscillations which for increasing differences in
time scales leads to the well known degenerated trajectories being concatenations of slow parts of the trajectory
and fast parts of the trajectory. In the fast–slow version of the RM-model a canard explosion of the stable limit
cycles occurs in the oscillatory region of the parameter space. To our knowledge this type of dynamics has not
been observed for the RM-model and not even for more complex ecosystem models. When a bifurcation para-
meter crosses the Hopf bifurcation point the amplitude of the emerging stable limit cycles increases. However,
depending of the perturbation parameter the shape of this limit cycle changes abruptly from one consisting of
two concatenated slow and fast episodes with small amplitude of the limit cycle, to a shape with large amplitude
of which the shape is similar to the relaxation oscillation, the well known degenerated phase trajectories con-
sisting of four episodes (concatenation of two slow and two fast). The canard explosion point is accurately
predicted by using an extended asymptotic expansion technique in the perturbation and bifurcation parameter
simultaneously where the small amplitude stable limit cycles exist. The predicted dynamics of the MB-model is in
a large part of the parameter space similar to that of the RM-model. However, the fast–slow version of MB-model
does not predict a canard explosion phenomenon.

1. Introduction

There is already a long tradition in modelling predator–prey systems
under various environmental conditions. In some realistic cases there
are differences in the order of magnitudes of the ingestion and growth
rates of the two populations leading to so called fast–slow dynamical
systems. Various mathematical analyses techniques have been used to
analyse these models, here we focus on the application of perturbation
techniques.

The starting point is the Rosenzweig–MacArthur (RM) model [44]
where the prey population grows logistically and the predator-prey
interaction is described by the Holling type II functional response. This
predator-prey system is mathematically described by two ordinary
differential equations, (ODE)s, for the prey and the predator population.

This model does not obey mass conservation law, however. Therefore
we study also a version where additionally the prey population con-
sumes abiotic nutrients. The resulting model is called the Mass Balance
(MB) model where mass conservation is obeyed. This type of model is
common practice in modeling food chains in a chemostat reactor which
have been studied extensively: we refer to [24,45]. These systems
consist minimally of a nutrient, a prey and a predator. Consequently,
the description of the dynamics involves three ODEs. The resulting three
dimensional model is reduced to a two dimensional model for prey and
predator population when realistic assumptions are made.

For both types of models it is well known that the long-term dy-
namics is either a stable equilibrium (boundary: prey only, or interior:
predator-prey) or a stable predator-prey limit cycle. For the RM-model,
in [19] it was proved that the coexistence equilibrium is globally stable
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and in [4] that the periodic solution is unique thus a globally stable
limit cycle and in [31] a detailed bifurcation analysis is performed.

Nutrient enrichment leads to the risk of extinctions when fluctu-
ating densities during the limit cycle reach low values, called the
“paradox of enrichment” [43]. Mathematically the first transition oc-
curs at a transcritical bifurcation and the second at a Hopf bifurcation.
This holds for both types of model the RM and MB-model.

When the growth and loss rate of the predator is much smaller than
that of the prey, the system becomes a so called slow–fast system. These
rates for the predator are multiplied by a perturbation parameter. These
systems have been studied intensively in the literature, the RM-model
with fast–slow dynamics in [5,11,35,41,42]. slow–fast systems can
naturally be identified, are often encountered in ecology. This is almost
a rule when behavioral and population dynamics are considered at the
same time. But also interactions between two populations like plankton
and fish, plants and insects, herbs and trees are classical examples of
systems with two time scales (see [41]). Another example where there
are differences in the order of magnitudes of the ingestion and growth
rates is a food chain of sewage-bacterium-worms often found in was-
tewater treatment plants (see [40]). The worm is the water nymph Nais
elinguis, a oligochaete species. In a previous paper [25] we toke ad-
vantage of these different time scales to apply aggregation methods in
order to simplify the models for the dynamics of the wastewater
treatment plant system.

Using a perturbation technique often the slow variables are frozen
with the calculation of the equilibria of the fast system but better ap-
proximations are obtained by asymptotic expansions [16,18]. When the
perturbation parameter becomes small the resulting limit cycle is called
the relaxation oscillation, see [15], where the periodic orbits are phase
plane curves with both fast and slow parts of the trajectory.

When the time-scales differences are very large, that is with small
positive perturbation parameter, the presence of the Hopf bifurcation
indicates the possible occurrence of so called canards. In physics this
has been studied extensively for the van der Pol equations
[2,3,6,8,10,28,29,47]. More recently, in [16,37] geometric singular
perturbation techniques [12] have been studied for application in
biological practice, including these slow–fast predator-prey systems. In
this theory invariant manifolds play an important role in the study of
structural stability of dynamical systems or, when a degeneracy occurs,
in understanding the nature of bifurcations. A trajectory is an example
of an invariant manifold. Using this approach we will find that similar
to the van der Pol equations case also for the RM-model application of
asymptotic expansions [2,3] for the critical manifolds leads to a di-
vergent expansion. Nevertheless we will show that we are still able to
compute for which bifurcation parameter values a canard explosion
occurs.

Bifurcation analysis results show that in the MB-model the singu-
larity in the limiting time-scale differences is completely different from
that in the RM-model where the prey grows logistically. Only local
bifurcations occur and therefore continuation of equilibrium and limit
cycles gives a full picture of the long-term dynamics.

2. The RM bitrophic food chain model

A standard two-level food chain model from the field of theoretical
biology is the scaled Rosenzweig–MacArthur system (1963). The RM-
model reads in dimensionless form derived in the Appendix A:
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with �∈ +x t( ) ,i t≥ 0, =i 1, 2, respectively the size of the prey and
predator population. The first part of (1a) models that the prey

population grows logistically in absence of the predator. The hyperbolic
relationship +a x b x/(1 )1 1 1 1 is called the Holling type II functional re-
sponse. This expression occurs in both equations and models the con-
sumption of the prey population by the predator population. Parameter
a1> 0 is the searching rate for the prey and b1> 0 the product of the
handling time of the prey by the predator and the searching rate. The
ratio of the first term of (1b) and the last term on the right-hand sides of
(1a) is the efficiency c1> 0. The last term of (1b) is death rate d1> 0 of
the predator population but it can also model other biological processes
of which the loss rate is proportional to the population size similar to
maintenance.

For a description of the state variables and the biological meaning of
the parameters of the predator-prey model the reader is referred to
Table 1.

The set of equations analysed extensively in the literature that form
a model with slow–fast dynamics reads
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with �∈x ,i =i 1, 2. We introduced =c cɛ1 and =d dɛ1 and toke for
both parameters their reference value 1. The efficiency is again the ratio
of the first term of (2b) and the last term on the right-hand sides of (2a)
and is now equal to ε.

The functions � �→f : 3 and � �→g: 3 are of class smooth enough.
The time-scale separation parameter ε is introduced in the model to
implement trophic time diversification. For ε≪ 1 this is called a fas-
t–slow system.

In the mathematical literature, factor ε is treated as a perturbation
parameter, justified and described by the ratio between the linear death
rate of the predator and the linear growth rate of the prey in [16,42].
That is, only when the prey reproduce much faster than the predators
and the predator is, in comparison, not so efficient, when the ratio ε
becomes a small parameter. For, the efficiency =c cɛ ,1 where c is of
order 1 (with a reference value 1) is proportional to the perturbation
parameter ε.

The Holling type II hyperbolic relationship is derived by a time scale
argument using a time budget modelling spend on searching for and
handling of prey individuals by a predator individual. The ratio of these
two terms is called the assimilation efficiency in ecology literature and
the yield in the microbiology literature. When the units of both state
variables equal then consequently ε<1 means that there is a smaller

Table 1
List of parameters and state variables and their reference values. We take the
efficiency c1 and death rate d1 both proportional to the positive perturbation
parameter ε. For numerical studies we take that parameter a1 co-varies with b1
via =a b5/3 ,1 1 hence handling time is 3/5 and the values for parameters

= =c d 1 for the RM-model and = =D e 11 for the MB-model. This is without
loss of generality.

Parameter ref.values Interpretation

t [0, ∞) Fast time variable
τ [0, ∞) Slow time variable
x0 [0, ∞) Nutrient density
x1 [0, ∞) Prey biomass density
x2 [0, ∞) Predator biomass density
xr (0, ∞) Nutrient concentration in reservoir
a1 =a b5/31 1 Searching rate
b1 3,4 or 8 Handling time × searching rate

=c cɛ1 =c 1 Conversion efficiency
=d dɛ1 =d 1 Death rate

e1 1 Conversion efficiency
=D Dɛ1 =D 1 Dilution rate

ε [0,1] Perturbation parameter

B.W. Kooi, J.C. Poggiale Mathematical Biosciences 301 (2018) 93–110

94



than 100% biomass conversion, as is always the case in nature. We
assume that the formed products during this conversion process, have
no effects on other processes underlying model (2). In general, how-
ever, a very small conversion efficiency is not supported in the litera-
ture.

Observe that also the predator loss rate is multiplied by the same
factor ε in order to facilitate coexistence. In other words when predators
efficiency is low they also have to have a low loss rate in order to
survive. Therefore the parameter ε affects two processes, mass con-
version from prey biomass into predator biomass and the predator loss
rate.

2.1. Existence and stability analysis of equilibria and limit cycles

In model (2) there are only three free parameters, namely a1, b1 and
ε which scales the efficiency and predator loss rate. The following
stability analysis is classical for ε>0 and therefore we recall some
results regarding the dynamics of (2) and report some interesting results
when ε→ 0 and =ɛ 0

The one-parameter bifurcation diagram with varying b1 where =ɛ 1
and a1 co-varies with b1 via =a b5/3 ,1 1 is shown in Fig. 1 for parameter
b1 as free parameter. The three relevant equilibria zero- E0, boundary-
E1 and interior equilibrium E2 and the limit cycle L2 are summarized in
Table 2 and the bifurcation curves the transcritical bifurcation TC and
Hopf bifurcation H in Table 3. In [19] it was proved that the coexistence
equilibrium E2 is globally stable and in [4] that the periodic solution is

unique thus a globally unique stable limit cycle L2. The numerical bi-
furcation results show that the limit cycle for parameter values above
the supercritical Hopf bifurcation is stable and that the minimum values
become very small for large b1. This phenomenon is related to the
“paradox of enrichment” [43], because extinction due to stochastic
fluctuations is likely.

For the stability analysis of equilibria we need the Jacobian matrix
evaluated at point (x1, x2) ([27]), which reads
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In E0 the Jacobian matrix is
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(4)

The eigenvalues are the diagonal elements and the E0 is always un-
stable. At the boundary equilibrium E1 the Jacobian matrix reads
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The eigenvalues are again the diagonal elements and E1 is stable when
− − <a b 1 01 1 and unstable when − − <a b 1 01 1 . The equality gives

the transcritical bifurcation TC where = −b a 11 1 or for the reference
value =a b5/31 1 we have =b 3/21 .

At the equilibrium E2 the Jacobian matrix reduces to
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The complex pair of eigenvalues λ1, 2 of the Jacobian matrix evaluated
at the equilibrium E2 read

= ±λ b μ b iω b( , ɛ) ( ) ( , ɛ) .1,2 1 1 1 (7)

We calculated the following real �∈μ and imaginary �∈ω parts as
functions of parameter ε and b1 where =a b5/31 1
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In Fig. 2 the curve where =bΔ( , ɛ) 01 is plotted in the (b1, ε)
parameter space. This curve separates regions where the equilibrium is
a node Δ>0 (two real eigenvalues) or a spiral or focus Δ<0 (two
conjugated complex eigenvalues). At =Δ 0 there are two equal real
eigenvalues. From this figure we conclude that for =ɛ 1 and =b 31 or

=b 81 the equilibria are foci while for =ɛ 0.01 the equilibria are nodes,
stable and unstable, respectively.

The positions of the bifurcations TC and H are independent of the
parameter ε. This is not true for the so called first Lyapunov coefficient
ℓ1 which determines whether the Hopf bifurcation is supercritical or

Fig. 1. One-parameter bifurcation diagram for b1 and =a b5/31 1 of the RM-
system (1) with =ɛ 1. The equilibria E1 (below TC) and E2 (between TC and H)
as well as the maximum and minimum values for the limit cycle L2 (above H)
are shown. Note that the critical values where the bifurcations TC and H occur
in this diagram are independent of ε since the expression for the real parts of the
eigenvalues of the Jacobian matrix do not depend on ε.

Table 2
Equilibria of RM-model (2) and MB-model (54).

Equilibria System composition

RM-model
=E (0, 0)0 Extinction
=E (1, 0)1 Prey-only

= = ⎛
⎝

⎞
⎠−

− −
−

E x x( *, *) ,
a b

a b
a b2 1 2

1
1 1

1 1 1
( 1 1)2

Prey-predator

MB-model
=E (0, 0)0 Extinction
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subcritical, that is whether the emerging limit cycles are stable or un-
stable, respectively.

At the Hopf bifurcation with =b 41 we have for ε>0 a zero real
part =μ (4) 0 and the positive imaginary part equal to the determinant
of the Jacobian matrix J2: = =ω J(4) det 1/2 ɛ ,2 for the two con-
jugated complex eigenvalues. The square root of the ratio μ(b1)/ω(b1)
measures the amplitude of the limit cycle that emerge for the Hopf
bifurcation for b1> 4. Evaluation of this ratio just above =b 41 gives
that the oscillatory dynamics for values is as with the Hopf bifurcation
till the canard explosion occurs.

The derivative = >=dμ db b/ ( ) 3/40 0b1 1 41 at the Hopf bifurcation
equilibrium is positive and therefore the transversility condition for
applying the normal form theorem [31, Theorem (3.3)] is satisfied.
Using a similar procedure in Maple, [32] described in [31], the first
Lyapunov coefficient ℓ1 is evaluated as

= − +ℓ 16
75

14ɛ 1
ɛ

.1
3/2 (11)

Since ℓ1 is negative for ε>0, the Hopf bifurcation is supercritical. Note
that for lim ε→ 0 we have → −∞ℓ1 . That is, the first Lyapunov coef-
ficient ℓ1 becomes unbounded. Furthermore, in the limiting case =ɛ 0
at the Hopf bifurcation where =b 41 with =μ (4) 0 we get together with

= =ω (4) 1/2 ɛ 0 that this point becomes a degenerated bifurcation
where both eigenvalues are zero as in a Bogdanov–Takens bifurcation
point. Exploration of these facts can be done with a blow-up technique
[8,9] which is beyond the scope of this paper.

2.2. Phase-space analysis

In this section we discuss results in the phase-space of simulation in
time. These results where in all simulations the same initial conditions
are used, are shown in Figs. 3 and 4:

• Left panels of Fig. 3: for =b 3,1 in the region between the tran-
scritical TC and Hopf H bifurcation in Fig. 1 where equilibrium E2 is
stable,

• Fig. 4: for =b 41 at the Hopf bifurcation,

• Right panels of Fig. 3: for =b 81 above the Hopf bifurcation in Fig. 1
where equilibrium E2 is unstable.

In the top panels of Figs. 3 and4 the f-nullcline where
=f x x( , , ɛ) 01 2 : = − +x x b x a(1 )(1 )/2 1 1 1 1 and the g-nullcline where
=g x x( , , ɛ) 01 2 : = −x a b1/( ),1 1 1 are shown. Both are independent of ε.

The graph of the f-nullcline is part of a parabola where it intersects the
horizontal axis =x 02 at =x 11 and of the g-nullcline is just a vertical

line through the equilibrium point E2.

2.2.1. Stable interior equilibrium
With =b 3,1 see Fig. 3a with =ɛ 1 and Fig. 3c with =ɛ 0.01, the

equilibrium E2 is stable and there is convergence to the stable point.
For low =ɛ 0.01 value shown in Fig. 3c, initially after starting above

the nullcline the solution goes rapidly to the vertical axis. There is al-
most no prey population and hence the predator population diminishes
approximately exponential with rate =d 11 :

= −dx
dτ

x ,2
2 (12)

where differentiation is with respect to the slow time variable =τ tɛ .
The solution crosses the critical point =x a1/2 1 the intersection with the
nullcline and leaves the vertical axis moving fast toward the stable part
of the nullcline. Because this happens below the critical point (inter-
section of parabola and vertical axis) this phenomenon is called a de-
layed bifurcation which is explained in [42]. Eventually the system
converges to the stable equilibrium E2 given in Table 2.

2.2.2. Hopf interior equilibrium
The equilibrium E2, see Table 2, at the Hopf bifurcation H coincides

with the top of the f-nullcline parabola
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At the Hopf point we have the equilibrium E2
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x x x x( *, *) ( , ) 3
8

, 15
64

.H T1 2 1 2
(14)

The simulation results for system (2) are shown in Fig. 4. These results
show that the solution finally converges very slowly to this, sometimes
called a weakly attracting, equilibrium (14) at the top of the f-nullcline
denoted by (13).

2.2.3. Unstable interior equilibrium
With =b 8,1 see Fig. 3b,d equilibrium E2 is unstable and there is no

convergence to E2 but to a stable limit cycle L2.
For positive =ɛ 0.01 in Fig. 3d initially the dynamics is similar to

that for the stable case shown in Fig. 3c. The dynamics on the unique
stable limit cycle L2 consists of four concatenated episodes. Two parts of
the trajectory where the predator population changes slowly and two
parts of the trajectory where the predator population is almost constant
and the prey population changes fast (the almost horizontal parts of the
solution orbit).

2.2.4. Degenerate phase curves
With b1> 4 the limits of the limit cycles L2, the periodic relaxation

oscillations, for limε→ 0 are called degenerated phase curves shown in
Fig. 5, see [14] It consists of four concatenated episodes (families of
periodic sets). On two parts of the trajectory the dynamics is slow
(single arrow): one along the vertical axis where the predator popula-
tion decreases slowly and the other are along parts of the parabolic f-
nullcline where the prey population decreases while the predator po-
pulation predator population increases slowly. On the other two parts
of the trajectory the prey changes fast (double arrows) and the predator
is constant: one from point T toward the vertical axis and one from this
vertical axis to the point on the parabolic f-nullcline. This type of dy-
namics is discussed intensively in the ecological literature, we mention
[11,42] and references therein. These two episodes are connected by
two fast episodes along the horizontal lines where the prey population
size increases or decreases fast while the predator population is con-
stant.

Starting slowly on the vertical axis above the f-nullcline, during the
first episode, the solution orbit crosses the critical point TC and leaves

Fig. 2. Focus bifurcation where =Δ 0 curve for ε vs b1.
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this axis fast horizontally toward the parabola. Then it continues,
during the second episode, slowly and during the third episode again
along the parabola passing the top of the parabola point T given in (13).
Note that since b1> 4 the equilibrium E2 indicated by the open circle in
Fig. 5 on the f-nullcline, does not coincide with this non-hyperbolic
point T. After crossing this point the solution orbit, during the forth
episode, moves vastly horizontally toward the vertical axis again above
the f-nullcline, and so on.

Note that the dynamics of the degenerate phase curves shown in
Fig. 5 are indeed close to this for the RM-model in Fig. 3d where =b 81

in both cases. However for the Hopf bifurcation =b 41 case the re-
sulting dynamics for small ε≪ 1 does not look like that of Fig. 5 and
more importantly also not for b1 slightly above the Hopf bifurcation.
Therefore we focus in the next sections on the dynamics for parameter
values where the unstable equilibrium E2 is just above the Hopf bi-
furcation value.

3. Singular perturbation problem

In this section the singular perturbation technique is used to analyse
the singular perturbation problem where =ɛ 0 in the RM-model (2). We
will also analyse the quasi-steady state solution or the relaxation os-
cillation in detail. The reader is referred to [18,21,22] for introductions
into perturbation analysis.

3.1. Heuristic introduction

We start with a short overview of singular perturbation techniques.
Singular perturbation theory deals with systems of the original form (2)
where ε>0. When ε≪ 1 the system is a fast–slow system.

With =ɛ 0 we have the fast system also called called the layer system:
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0 .2
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The predator populations remains constant hence the trajectories
are the horizontal lines in Fig. 5.

With a change of time-scale, where =τ tɛ , we call the resulting
system the slow system:

=dx
dτ

f x xɛ ( , , ɛ) ,1
1 2 (16a)

=dx
dτ

g x xɛ ɛ ( , , ɛ) .2
1 2 (16b)

After substitution of =ɛ 0 we get
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1

1 .2
1 2 2
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This differential algebraic equation (DAE) is called the reduced system.
The trajectory is either part of the vertical axis where =x 02 or part on
the parabola, the other f-nullcline of the original system (2) in Fig. 5.
However, in the fast–slow context these are the sets of equilibria of the
fast layer-system (15) and then they are called critical manifolds where
x1 is acting as a parameter.

These heuristic results suggest the following approach for dealing
with the two different time scales. The first step consists in setting =ɛ 0

Fig. 3. Phase-space analysis for system (2) describing the RM-model with =b 31 (left panels) and =b 81 (right panels) while =a b5/31 1. Top panels (a,b): =ɛ 1 and
bottom panels (c,d): =ɛ 0.01. (a): Spiral stable equilibrium E2, (b): stable limit cycle L2, (c): node stable equilibrium E2 and (d): stable limit cycle L2.
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which gives the set of fast equilibria of the fast system (15) yielding the
algebraic equation (17a). This is the critical manifold which is the
set of equilibria either at the vertical axis or the parabola where

=f x x( , , 0) 01 2 .
From the results presented below in this section the parabolic cri-

tical manifold has two branches, one stable on the right-hand side (solid
curve) and one unstable on the left-hand side (dashed curve) of point T
in Fig. 5.

With good hypothesis (see below for the details), on the part of the
parabola, =f x x( , , 0) 01 2 is equivalent to =x p x( )1 2 and we can sub-
stitute x1 by p(x2) in equation (17b). The result is the slow or reduced
system

= =f p x x dx
dτ

g p x x0 ( ( ), , 0) , ( ( ), ) .2 2
2

2 2 (18)

The differentiation is with respect to τ and the smooth functions f and g
are defined in (2). Then the slow system becomes

⎜ ⎟= ⎛
⎝

− −
+

⎞
⎠

= = −

± + −

dx
dτ

x
a b p x

b p x

x p x
b

b

b a b x

( ) ( ) 1
( ) 1

,

( ) 1
2

( 1

( 1) 4 ) .

2
2

1 1 2

1 2

1 2
1

1

1
2

1 1 2 (19)

An alternative method is to use instead of =x p x( )1 2 of which the dy-
namics is described by the solution of (19), the inverse function

=x q x( )2 1 also derived from (17a). This gives the relationship

= = − +x q x
a

x b x( ) 1 (1 )(1 ) ,2 1
1

1 1 1
(20)

and using (17b) the differential equation

Fig. 4. Phase-space analysis for system (2) describing the RM-model, =b 41 and =a b5/3 ,1 1 that is at the Hopf bifurcation point for three different values of ε: =ɛ 1
(a), =ɛ 0.1 (b) and =ɛ 0.01 (c).

Fig. 5. Fast (double arrow) and slow (single arrow arrow) dynamics for system
(2) describing the RM-model with =b 81 where for limε→ 0 the concatenated
trajectories are the degenerated phase curves. The f-nullcline (parabola) and g-
nullcline (vertical line through equilibrium) are shown. Point T is top of
parabola given in (13) and TC is intersection point of f-nullcline and vertical
axis.
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= =dx
dτ

g x q x
dq
dx

dx
dτ

( , ( )) ,2
1 1

1

1

and we get formally

=
− +

+
= − −dx

dτ
q x a x b x

b x dq dx
dq
dx a

b x
( )( (1 ))

(1 ) /
, 1 ( (1 2 ) 1) .1 1 1 1 1 1

1 1 1 1 1
1 1

(21)

Note that this expression is zero at point T given in (13). Hence the
denominator of model (21) at that point T is zero. When the numerator
is unequal zero, this means that the rate of change becomes unbounded
at T which is a singular point of model (21). Only when in the special
case b1 is the Hopf bifurcation parameter value, point T is a limit point
where the numerator is also zero. This is studied in the Appendix B.

3.2. Geometric singular perturbation techniques

We discuss the singular perturbation problem outlined in the pre-
vious section for the case where ε is not zero but small and positive:
0< ε≪ 1. Here we follow the geometric singular perturbation techni-
ques.

Let us consider system (2) again. For =ɛ 0 the f-nullclines, the set
= ≥ ≥x x f x x x x{( , ) ( , , 0) 0, 0, 0}1 2 1 2 1 2 consist of two types of critical

manifolds,see Fig. 5

= = ≥x x x x{( , ) 0, 0}0
0

1 2 1 2M (22a)

= ⎧
⎨⎩

= − + ≥ ⎫
⎬⎭

x x x
a

x b x x x( , ) 1 (1 )(1 ), , 0 .1
0

1 2 2
1

1 1 1 1 2M
(22b)

They form a set of equilibria of the fast system system (15). In the
previous section we studied the dynamics for =ɛ 0 and now we will
consider 0< ε≪ 1.

To that end, let us remind the statement of Fenichel’s theorem. We
consider differential system of the form:

=dX
dt

F X Y( , , ɛ) ,
(23a)

=dY
dt

G X Yɛ ( , , ɛ) ,
(23b)

=d
dt

ɛ 0 ,
(23c)

where F and G are sufficiently smooth. We assume that the set
=F X Y( , , 0) 0 can locally be written as =X H Y( ), which defines a

critical manifold. If, for all Y in a given compact set ,D all the eigen-
values of H Y Y( ( ), , 0)DF

DX have a non-vanishing real part, then the cri-
tical manifold is said normally hyperbolic. In this case, there exists ε0 and
a map p defined on × [0,ɛ [0D such that:

(i) =H Y p Y( ) ( , 0);
(ii) the graph of p is invariant under the flow associated to the original

differential system (23);
(iii) the graph of p is tangent to the central space associated to the

lineralisation of the system at (H(Y), Y, 0).

As a consequence, both critical manifolds 0
0M and 0

1M are normally
hyperbolic and there exists ε0 such that for 0< ε< ε0, there are locally
invariant manifolds ɛ

0M and ɛ
1M except in the neighborhood of point T

=x x x x( , ) ( , )1 2 1 2 and in the neighborhood of the intersection between
0
0M and 0

1M on the vertical axis. Indeed, at those points, the derivative
of the fast part vanishes, which contradicts the assumptions of the
theorem statement.

Using its invariance, the perturbed manifold ɛ
1M can be approxi-

mated by asymptotic expansions in ε. It can be described as a graph

= ≥ ≥x x x q x x x{( , ) ( , ɛ), 0, 0} .1 2 2 1 1 2 (24)

This manifold is invariant when the following equality holds

= =dx
dt

dx
dx

dx
dt

dq x
dx

dx
dt

( , ɛ)
,2 2

1

1 1

1

1

(25)

yields with Eq. (23) and =x q x( , ɛ)2 1 :

⎜ ⎟

∂
∂

= ⎛
⎝

− −
+

⎞
⎠

q x
x

dx
dt

q x x a b
b x

( , ɛ)
ɛ ( , ɛ) ( ) 1

1
.1

1

1
1

1 1 1

1 1 (26)

Then (23) gives with =x q x( , ɛ)2 1 the invariance condition

⎜ ⎟ ⎜ ⎟

∂
∂

⎛
⎝

− −
+

⎞
⎠

= ⎛
⎝

− −
+

⎞
⎠

q x
x

x x
a q x

b x
q x x a b

b x
( , ɛ)

1
( , ɛ)

1
ɛ ( , ɛ) ( ) 1

1
,1

1
1 1

1 1

1 1
1

1 1 1

1 1 (27)

or using + >b x1 01 1

∂
∂

− + − = − −
q x

x
x x b x a q x q x x a b

( , ɛ)
((1 )(1 ) ( , ɛ)) ɛ ( , ɛ)( ( ) 1) .1

1
1 1 1 1 1 1 1 1 1 1

(28)

3.2.1. Asymptotic expansion
The following asymptotic expansion in ε is introduced:

= + + +…q x q x q x q x( , ɛ) ( ) ɛ ( ) ɛ ( ) ,1 0 1 1 1
2

2 1 (29)

hence

∂
∂

= + + + …
q
x

dq
dx

dq
dx

dq
dx

ɛ ɛ .
1

0

1

1

1

2 2

1 (30)

Substitution into (28) gives

⎜ ⎟
⎛
⎝

+ + + …⎞
⎠

− +

− + + + …
= + + … − −

dq
dx

dq
dx

dq
dx

x x b x

a q x q x q x
q x q x x a b

ɛ ɛ ((1 )(1 )

( ( ) ɛ ( ) ɛ ( ) ))
(ɛ( ( ) ɛ ( ) ))( ( ) 1).

0

1

1

1

2 2

1
1 1 1 1

1 0 1 1 1
2

2 1

0 1 1 1 1 1 1 (31)

Gathering orders of ε results for (1)O and assuming x1> 0 in:

= − + = − −q x x b x
a

dq
dx

b x b
a

( ) (1 )(1 ) , 1 2 .0 1
1 1 1

1

0

1

1 1 1

1 (32)

At =b 41 we have = −x b b( 1)/(2 )1 1 1 and hence =dq dx/ 00 1 .
For (ɛ)O and using an updated form of (28)

∂
∂

− = − −
q x

x
x a q q x q x x a b

( , ɛ)
( ( , ɛ)) ɛ ( , ɛ)( ( ) 1) ,1

1
1 1 0 1 1 1 1 1

(33)

gives

= − −

−
q x q x x a b

a x
( ) ( ) ( ( ) 1) .dq

dx

1 1 0 1
1 1 1

1 1
0
1 (34)

At =b 41 the numerator and denominator are both zero. we have
= −x b b( 1)/(2 )1 1 1 and =dq dx/ 00 1 but also since it is a equilibrium

− − =x a b( ) 1 01 1 1 .
For (ɛ )2O in (33) gives

=
+ − −

−
q x q x

x a x a b

a x
( ) ( )

( ) 1
.

dq
dx

dq
dx

2 1 1 1
1 1 1 1 1

1 1

1
1

0
1 (35)

At point T we have = = −x x b b( 1)/(2 )1 1 1 1 where =dq dx/ 00 1 . Conse-
quently, at that point the denominator in the expression for >q x i( ), 0i 1
is zero. Therefore the coefficients >q x i( ), 0i 1 are unbounded when the
numerator is not equal zero. Only when the parameter =b 41 is at the
Hopf bifurcation the numerator is zero and the coefficients q x( )i 1 remain
finite.

3.2.2. Asymptotic expansion in phase-space
The expression for q0 describes the critical manifold 0

1M . This ex-
pression is the inverse (when it exists) of p(x2) in (19). The voluminous
expressions for the higher order qi, i>1 coefficients obtained by
equating the (ɛ )iO terms on the left- and right-hand side of the
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invariance condition (28), are not given here but are available using
Maple, [32]. This yields the approximation of the perturbed slow
manifold ɛ

1M

For =ɛ 0 the limit (16b) prescribes the singular slow flow on 0
1M

with =x q x( )͠ ͠2 0 1 given by (32)

⎜ ⎟= ⎛
⎝

− −
+

⎞
⎠

dx
dt

x x
a q x

b x
1

( )
1

.
͠ ͠

͠
͠

1
1 1

1 0 1

1 1 (36)

For sufficiently small non-zero ε≪ 1 the flow on the perturbed slow
manifold ɛ

1M can be approximated by inserting =x q x( , ɛ)͠ ͠2 1 with q x( , ɛ)͠ 1
given by (29). In order to simulate the model we solve

⎜ ⎟= ⎛
⎝

− −
+

⎞
⎠

dx
dt

x x
a q x

b x
1

( , ɛ)
1

,
͠ ͠ ͠

͠
͠

1
1 1

1 1

1 1 (37)

with properly chosen the initial values.
The results are shown in Fig. 6 for =b 3,1 where the equilibrium E2

is stable. They show that in this case the solution of the original model
on ɛ

1M is already well approximated by the second order approximation
when =ɛ 0.1.

In Fig. 7a and 7b the graph of the function q(x1, ε) is shown for
=b 31 and =b 8,1 respectively. These results show that the asymptotic

expansion for ε>0 is only locally a good approximation for ɛ
1M but

fails at the top of the parabola point T.

At the Hopf bifurcation. In Fig. 7c the graph of the function q(x1, ε) is
shown for =b 41 . While the solution converges to the neutral stable
equilibrium E2 where the rate of convergence becomes slower when
approaching the non-hyperbolic point (see also Fig. 4b,c) the
asymptotic expansion approximation explodes and there is
discontinuity at = =x x x*1 1 1:

= ∞ = −∞
↓ ↑

q x q xlim ( , ɛ) and lim ( , ɛ) .
x x x x

1 1
1 1 1 1 (38)

In the next section we extend the asymptotic expansion in ε by
varying parameter b1 in addition to ε in order to repair this unwanted
property.

3.3. Canard explosion

In this section we analyse the Canard dynamics that occurs for b1
values just above the Hopf bifurcation at =b 41 similar to the analysis
performed in [2]. Other papers on canards are [2,6,8,10,11]. We will
expand the asymptotic expansion discussed in the previous section
where the equilibrium point is unstable and the system itself shows
oscillatory behaviour, a stable limit cycle.

We start with an exploration of this oscillatory behaviour for b1

values just above the Hopf bifurcation by simulation of the full model in
time for small ε values. In order to study the dynamics for small ε in
more detail we re-analyse the continuation as in Fig. 1 where =ɛ 1 in
the region close to the Hopf bifurcation at =b 41 . The results are shown
for =ɛ 0.01 in Fig. 8.

Unexpectedly the amplitude of the limit cycle increases sharply
when b1 passes a value just above =b 4.041 . In Fig. 9 parameter ε is
varied continuously for a number values of b1 just above the Hopf bi-
furcation point. Using (8) these results support the analytical expression
for the amplitude of the unique stable limit cycles emerging from the
Hopf bifurcation for small ε values being: μ b ω b( )/ ( )1 1 .

The continuation of the curves calculated with AUTO [7] failed for
small ε. This is due to the part of the cycle close to the vertical axis
where x1 is small, see Fig. 3bd. In order to avoid this dynamics we study
now an augmented system

⎜ ⎟= + = + ⎛
⎝

− −
+

⎞
⎠

dx
dt

δ f x x δ x x a x
b x

( , , ɛ) 1
1

,1
1 2 1 1

1 2

1 1 (39a)

⎜ ⎟= = ⎛
⎝ +

− ⎞
⎠

dx
dt

g x x x a x
b x

ɛ ( , , ɛ) ɛ
1

1 ,2
1 2 2

1 1

1 1 (39b)

where δ is a small allochthonous input rate of the prey population.
Addition of this extra term removes the transcritical bifurcation at

=x a1/2 1 because it is structurally unstable with respect to such a
perturbation. Fig. 10 is a similar diagram as Fig. 9 where =δ 0.0001
instead of =δ 0. Note that the Hopf bifurcation occurs at values slightly
different form =b 4,1 namely at =b 4.0007113641 and this is taken into
account in what follows. The results in Fig. 10 imply that continuation
is possible toward very low ε values. The results show that the canard is
a robust and smooth phenomenon that occurs for stable limit cycles.
When ε↓0 the canard explosion point converges to the point T.

In Fig. 11 the shape of the limit cycles is show for two values of b1
just below and above the sudden changes: =b 4.040191 and =b 4.040611
where =ɛ 0.01. These results show how the unique stable limit cycle
changes shape very abruptly at b1≈ 4.0403 where b1 is varied keeping
ε fixed: the canard explosion. In Fig. 12 the shape of the limit cycles is
show for four values: =ɛ 0.008, 0.009, big stable limit cycles and

=ɛ 0.01, 0.011, small stable limit cycles with fixed =b 4.0403,1 the value
calculated with the extended asymptotic expansion technique. These
results show the dynamics with ε values above the canard explosion at
approximately =ɛ 0.01, are limit cycles with small amplitudes con-
sisting of two concatenated slow (close to the critical manifold and just
above the parabola) and fast (almost horizontal part of the trajectory
below the parabola). Below the canard explosion the limit cycles with
large amplitudes consist of four episodes, two slow (close to the critical
manifold, one just above the parabola and one close to the vertical axis)
and two fast (almost horizontal, one leaving close from point T and one
leaving the vertical axis and landing close to the parabola).

Carefully examination indicates that there is one point where the
trajectories for the four ε values intersect. Starting at that point and
changing ε gives the unique stable limit cycles calculated and this
shows that these curves change smoothly, only the sensitivity of the
shape of the cycles is very large at the explosion point.

3.3.1. Asymptotic expansion and canard explosion
Following [13] we repeat the extended asymptotic expansion in ε

technique introduced in (29) now near the Hopf bifurcation point. To
that end the expansion is not only taken for the function =x q x( , ɛ)2 1
evaluated at q0(x1) (see (32)) but also in the bifurcation parameter

=b b (ɛ)1 1 and consequently =a b(ɛ) 5/3 (ɛ)1 1 evaluated at the Hopf bi-
furcation point =b 410 with =a 20/301 . This comes with more freedom
which leads to an extra criterion: the singularity of the approximation
at point T is removed. This function is now denoted as r(x1, ε) and the
expansion is evaluated at = =r x x( , ɛ 0)1 1 . When =b b1 10 we have

=r x q x( , ɛ) ( , ɛ)1 1 .

Fig. 6. Results for the original system (2) (solid) describing the RM-model (29)
with =b 31 where =a b5/31 1 and initial conditions =x 0.860381 and

=x (0) 0.1026462 .
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Similar to the invariance condition of the perturbed slow manifold
ɛ
1M we derive now the adapted equation that replaces (28) where we

substitute =a b(ɛ) 5/3 (ɛ)1 1 :

∂
∂

− +

−

= −r
x

x x b x

b r x

r x x b((1 )(1 (ɛ) )

5/3 (ɛ) ( , ɛ))

ɛ ( , ɛ)(2/3 (ɛ) 1) .
1

1 1 1 1

1 1

1 1 1

(40)

The following extended asymptotic expansion in ε for r(x1, ε) is

Fig. 7. Second-order approximation of ɛ
1M results with (a): =b 31 (b): =b 81 and (c): =b 41 where =a b5/31 1 for the RM-model (29). Solid: with =ɛ 0.01. Dotted with

=ɛ 0.1.

Fig. 8. One-parameter bifurcation diagram for b1 and =a b5/31 1 of the RM-
system (1) with =ɛ 0.01. Fig. 9. One-parameter bifurcation diagram for ε with various

=b 4.01, 4.02, 4.03, 4.04, 4.0401, 4.0407, 4.051 values where =a b5/31 1 of the
RM-system (1). For b1> 4 the minimum and minimum populations values
during the stable limit cycle ate show. Also the two dashed curves are shown for

=b 4.04091 and 4.04061. Between these two values the explosion occurs at
=ɛ 0.01 see also Fig. 8. The curves terminates for low ε values. This is due to

numerical problems of the parameter continuation for these low values. Theory
predicts that these curves of maximums and minimums are continuing almost
horizontally.
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introduced as follows:

= = + + +…x r x r x r x r x( , ɛ) ( ) ɛ ( ) ɛ ( ) ,2 1 0 1 1 1
2

2 1 (41)

and

∂
∂

= + + +…r
x

dr
dx

dr
dx

dr
dx

ɛ ɛ ,
1

0

1

1

1

2 2

1 (42)

whereby b1(ε) is given by

= + + + + …b b b b b b(ɛ) ɛ ɛ ɛ ɛ ,1 10 11
2

12
3

13
4

14 (43)

where rj and b1j, = …j 1 are independent of ε and are described by the
invariance condition (40) by equality order by order of powers of ε of
this condition. Equating (1)O terms yields:

= − +r x b x
b

(1 )(1 )
5/3

.0
1 10 1

10 (44)

With =b 410 this gives the zero order approximation of ɛ
1M equal to 0

1M .
Using (44) and substitution of (41), (42) and (43) in (40) and equating
the resulting first order (ɛ)O terms, yields:

=
− − + − − +

+ −
r x

x b x b b x b x b b x b
b x b b x

( )
3(1 )(1 2 ) 3 2 )

5 (1 2 )
.1 1

1 10 1 10 11 1 10 1 10
2

10 1
2

10
3

10
2

1 10 10 1

(45)

It appears that the terms with b11, namely − − =x b b x b3 ( 1 2 ) 0,1 11 10 1 10
are already eliminated when they are evaluated at the Hopf bifurcation
support point with =b 410 and =a 20/310 at the equilibrium E2 with

= = = −x x x a b* 1/( )1 1 1 10 10 . At that point both the numerator and the
denominator are zero but =↓ ↑r x r xlim ( ) lim (x x x x1 1 1 11 1 1 11 and this shows
that function r1(x1) is continuous for all b11.

From this point a recursive procedure can be followed. One by one,
ri, i≥ 2 is determined by taking the ith order term in the invariance
condition (40) equal to zero and thereafter the term −b thi1( 1) by the
condition that this term is continuous at = = −x x b b( 1)/(2 )1 1 10 10 . This
means that the free parameter is chosen such that the singularity is
removed. The requirement that the sum of second order terms is zero
gives

= −

− + + − + +

+ − − −
−

r x

x x b x x b x x b

x x x
x x

(1 )

( 288 108 ) (72 27 ) (96 84 )

256 128 112 16
960 (8 3)

.

2 1

1
4

1
3

12 1
4

1
3

11
2

1
3

1
2

11

1
3

1
2

1

1
3

1

(46)

At the support point T being the Hopf bifurcation point with =b 410 and
=x x1 1 given by (14) we have − + =x x b( 288 108 ) 01

4
1
3

12 . Furthermore
the denominator is zero =b 410 . The expression for b11 is then obtained
by setting also the numerator equal to zero in order to remove the
singularity at that support point.

This is related to the case analysed in the previous section for the
asymptotic expansion =x q x( , ɛ)2 1 at q x( , ɛ)1 for coefficient q1 given in
(34) where this expression was also unbounded. Now, because we have
more freedom we can take b11 so that the expression stays bounded at
this point. The expression =b 100/2711 is obtained by substitution of the
equilibrium value for = =x x 3/81 1 given by (14) into (45).

Further recursion gives higher order approximations, again first rn
with −bn 1 then +rn 1 with bn and so on. We calculated the following fourth
order approximation

= + + +…

= + + + +

b b b b

b

(ɛ) ɛ ɛ ,

(ɛ) 4 ɛ 100
27

ɛ 58700
2187

ɛ 80536900
177147

ɛ 171270040300
14348907

.

1 10 11
2

12

1
2 3 4

(47)

In Fig. 11 besides the shape of the limit cycles for two values
=b 4.040191 (small limit cycle) and =b 4.040611 (big limit cycle) also

the result of the extended asymptotic expansion r(x1, ε), where =ɛ 0.01,

(41) with =b 4.04031 is shown. The approximation for ɛ
1M follows the

limit cycle closely up-to a separation point where the small limit cycle
bends toward the nullcline which is crossed where the rate of x1
changes sign and the rate becomes fast. This occurs for the smallest

=b 4.040191 -value. For the big limit cycle at =b 4.04061,1 from the se-
paration point the trajectory along the cycle continuous to move toward
the vertical axis. The asymptotic expansion for ɛ

1M with b1≈ 4.0403
continuous after the separation point between the two limit cycles be-
fore the approximation becomes unbounded.

These results show how the unique stable limit cycle changes its
shape very abruptly when b1≈ 4.0403 is varied keeping ε fixed, here in
our example 0.01: the canard explosion. That the iteration process
converges to this bifurcation parameter value where the approximation
of the asymptotic expansion r(x1, ε) works for the limit cycle with the
small amplitude that intersect with the parabolic f-nullcline vertically
at the minimum predator size during the limit cycle. This makes in
plausible that the iteration procedure yields indeed the canard point.

However, the extended asymptotic expansion r(x1, ε) (41) is di-
vergent as shown in Fig. 13 where the coefficients b1i as function of i is
depicted. It was shown in [38,39] and reference therein, that the
summation up to the smallest term gives an optimal (and very accurate)
approximation in the case of the van der Pol system. In Fig. 14, again
with allochthonous prey input where =δ 0.0001, the parameter value
where the explosion occurs is plotted. This b1 parameter value is taken
from Fig. 10. Fortunately, the result presented are in agreement.

4. The MB bitrophic food chain model

This section presents the Monod chemostat model [24,26,34,45]. In
this model the nutrients consumed by the prey are modelled explicitly
instead of using a logistic growth model for the growth of the prey in
absence of the predator. Let x0(t) denote the density of the nutrient, and

�∈ +x t( ) ,i t≥ 0, =i 1, 2 the biomass densities of prey and predator,
respectively. The scaled version of the Monod model reads

= − −dx
dt

x x D a x x( ) ,r
0

0 1 0 0 1 (48a)

= − −
+

dx
dt

a x x D x a x x
b x1

,1
0 0 1 1 1

1 1 2

1 1 (48b)

=
+

−dx
dt

e a x x
b x

D x
1

.2
1

1 1 2

1 1
1 2

(48c)

Fig. 10. One-parameter bifurcation diagram for ε with various
=b 4.00125, 4.0025, 4.005, 4.01, 4.02, 4.03, 4.041 values where =a b5/31 1 of

system (39) with prey input rate =δ 0.0001. The parameter continuation is here
successful to very small values of ε.
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where xr is the concentration of nutrient in the reservoir and D1 the
dilution rate, the rate at which the nutrient enters and all trophic levels
are exported from the chemostat reactor. The second term of (48a) and
the first term of (48b) model the Lotka–Volterra functional response at
the prey-nutrient level. The first term of (48c) and the last term on the
right-hand sides of (48b) represent the Holling type II functional re-
sponse. The efficiency e1 is the ratio of these two terms. For simplicity
we assume =e 11 and =a 10 .

It can be shown that all solutions system (48) starting in the non-
negative cone eventually lie in the set

�= = ∈ + + ≤+x x x x x x x xΩ { ( , , ) : } .r0 1 2
3

0 1 2 (49)

So, the asymptotic behavior of system (48) is bounded by xr. It is pos-
sible to decouple this system by the introduction of the function

= + + − ≥H t x t x t x t x t( ) ( ) ( ) ( ) , 0 .r0 1 2 (50)

This gives

= −dH
dt

D H ,1 (51a)

Fig. 11. Phase-space diagram with =ɛ 0.01. Solid lines: stable limit cycle for
two values of =b 4.040191 (small cycle) and =b 4.040611 (big cycle) while

=a b5/31 1 of the RM-system (1). Dashed line: extended asymptotic expansion r
(x1, ε) of ɛ

1M (41) where =b 4.04031 .

Fig. 12. Phase-space diagram with =ɛ 0.008, 0.009, 0.01, 0.011. Solid lines: stable limit cycle for two values =ɛ 0.008, 0.009 (big cycle) and two values =ɛ 0.01, 0.011
(small cycle) of the RM-system (1). Dashed line: extended asymptotic expansion r(x1, ε) of ɛ

1M (41) where =b 4.04031 .

Fig. 13. Coefficients b1i as function of i given by (47) with =ɛ 0.01.

Fig. 14. Distance from parameter value b1 where canard explosion occurs from
=b 4.0007113641 where the Hopf bifurcation occurs with allochthonous prey

input =δ 0.0001 as function of ε. Solid line is graph of the truncated expression
(43) and the dots taken from Fig. 10.
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⎜ ⎟= + − − − + ⎛
⎝ +

⎞
⎠

dx
dt

H x x x x D x D a x x
b x

( )
1

,r
1

1 2 1 1 1 1
1 1 2

1 1 (51b)

⎜ ⎟= ⎛
⎝ +

− ⎞
⎠

dx
dt

D x a x
b x1

1 .2
1 2

1 1

1 1 (51c)

When furthermore =H 0 for the asymptotic dynamics we can study
the two dimensional predator-prey system

⎜ ⎟= ⎛
⎝

− − − −
+

⎞
⎠

dx
dt

x x x x D D a x
b x1

,r
1

1 1 2 1 1
1 2

1 1 (52)

⎜ ⎟= ⎛
⎝ +

− ⎞
⎠

dx
dt

D x a x
b x1

1 .2
1 2

1 1

1 1 (53)

In order to be able to make a clear comparison with the RM-model
formulations possible we use = +x D1r 1. This gives with =D ɛ1

⎜ ⎟= ⎛
⎝

− − −
+

⎞
⎠

dx
dt

x x x a x
b x

1 ɛ
1

,1
1 1 2

1 2

1 1 (54a)

⎜ ⎟= ⎛
⎝ +

− ⎞
⎠

dx
dt

x a x
b x

ɛ
1

1 .2
2

1 1

1 1 (54b)

We call this the MB-model. One main difference with the RM-model
is that the last term of (54a) is proportional to ε and consequently the
efficiency, is constant. Another difference with the RM-model is that the
logistic prey growth equation −x x(1 )1 1 is replaced by the expression

− −x x x(1 )1 1 2 with one extra term namely that of the predator biomass,
x2. In absence of the predator, =x 0,2 both expressions for the prey
growth are the same. For the three trophic system including the nu-
trients, which is used with the derivation of the MB-model, the biomass
allocated in the predator gives a feed-back mechanism so that there is
less nutrient available for the prey. In the food chain the predator has
two adverse effects on the growth of prey population. Firstly the prey is
consumed by the predator and they consume building-block material
not only for themselves but also for their predators population that can
only exists when the prey exists in the absence of inter-guild predation.

The biological interpretation of the − = −D H Hɛ1 term in (51a) is
the difference between the influx rate and the out-flux rate of the total
biomass expressed in the biomass of the predator. In [45] (50) is used to
show that Monod’s model is dissipative and that the system converges
asymptotically to the manifold =H 0 where the influx rate and out-flux
rate of the total biomass are the same. Observe that where =H 0 there
is with respect to the RM-model a new x2 term in the expression for the
prey growth rate.

4.1. Existence and stability analysis of equilibria and limit cycles

For the analysis of model is the chemostat environment we refer to
[45]. The three relevant equilibria are summarized in Table 2. In
Table 3 the bifurcation analysis results are given. Important difference
of these results with those for the RM-model is that while the expres-
sions for the TC bifurcation are the same those for the Hopf H bi-
furcation still depends on ε.

Firstly we calculate by continuation of the parameter b1 the bi-
furcation diagram shown in Fig. 15. This diagram looks very much the
same as Fig. 1 for the RM model. The main difference is that the Hopf
bifurcation occurs at a somewhat higher b1 value.

4.2. Phase-space analysis

Fig. 16 displays the simulation results for the MB-model for three
values of ε where =b 31 . There is convergence to a stable equilibrium,
similar as we found for the RM-model in Fig. 3a,c. For =b 81 the results
are shown in Fig. 17. These results differ much from the RM-model in
Fig. 3b,d case where the equilibrium E2 was unstable. Here this holds

true for =ɛ 1 (Fig. 17a) but for smaller values the equilibrium becomes
stable (Fig. 17b,c).

4.3. The degenerate phase point

With =ɛ 0 substituted in the MB-model (54) there is no input of
nutrients (54a) and also no export of the abiotic and biotic elements
from the reactor environment. The prey grows logistically to the equi-
librium +x x(0) (0)0 1 and the predator population remains constant
x2(0). Hence, the equilibrium E2 is neutral stable. The degenerate phase
curve is just this point which is an equilibrium point x1 together with
the initial predator size x2(0).

This degenerate phase curve differs completely from that of the RM-
model. This is a consequence of the fact that in the MB-model the
second term of (54a) is proportional to ε and therefore the ratio of this
and the first term of (54b), the efficiency, is constant.

4.4. Bifurcation analysis of MB-model

In order to find-out why this happens we calculated a two-para-
meter bifurcation diagram shown in Fig. 18 where besides b1 (whereby

=a b5/31 1), parameter ε is the second variable. In this diagram the
transcritical bifurcation TC, and the Hopf bifurcation H, curves are
drawn (see Table 3 for the expressions that describe the curves).

The transcritical bifurcation TC, is the same for all models. This is
obviously due to the fact that the model for the dynamics of the pre-
dator is the same for all models and furthermore that for the prey-only
( =x 02 ) equilibrium E1 is also the same. For the MB-model the Hopf
bifurcation H terminates at the origin where b1→∞ and ε→ 0. There is
a stable equilibrium E2 in almost the whole b1> 4 range up to limb1↑∞
while in the RM-model there is a stable limit cycle L2.

From this we conclude that in the case of the MB-model the para-
meter ε can not to be used as a single perturbation parameter. We
conclude that the complete model has to be analysed using a straight-
forward phase-space and bifurcation analysis of the local bifurcations H
and TC.

5. Discussion and conclusions

The use of time-scale separation technique has a long tradition in
ecology and biochemistry, starting with the quasi-steady-state approx-
imation (QSSA) used to derive the Holling types functional response
[17] and Michaelis–Menten kinetics.

In this paper we compared two fast–slow versions of predator-prey
models: the RM-model and MB-model. In the classical RM-model the

Fig. 15. One-parameter bifurcation diagram for b1 and =a b5/31 1 of the MB-
system (54) with =ɛ 1.
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small perturbation parameter is proportional to the efficiency of the
predator-prey trophic interaction and the predator death rate. In a
series of papers [35,41,42] the dynamics of this bitrophic systems has
been studied intensively.

In [11] this subject was also studied focusing on the dynamics close
to the critical manifold 0

0M (Fig. 5) (part of the vertical axis where the
prey is absent) and related to a delayed (transcritical) bifurcation
phenomenon. Recently in [16] the analysis technique based on the
geometric singular perturbation theory was applied. This theory can
also be used where the interior equilibrium is unstable and relaxation
dynamics occurs.

We used the invariant manifold criterion together with an extended
asymptotic expansion with respect to both, the perturbation parameter
and the free bifurcation parameter. This gives an iteration process that
approximates the ɛ

1M slow manifold close to the parabolic critical
manifold 0

1M in the neighbourhood of its top. In the parameter range
just above the Hopf bifurcation where stable limit cycles exist, this
process converges to the point where the canard explosion occurs. In
[2] a similar method has been used: here the advantage is that all
calculations are done in Maple, [32] with rational numbers.

Direct application, however, showed that the delayed transcritical
bifurcation dynamics close to the critical manifold 0

0M leads to an
disturbing effect because the prey population becomes very low.
Therefore we introduced a small allochthonous input of prey in which
case the non-generic transcritical bifurcation disappears. In [46] the
uniqueness of the limit cycles in the RM-model with prey immigration
is shown that supports the applicability of this additionally introduced
mechanism.

The canard phenomenon found can be described as follows. Also for
small perturbation parameter values the trajectories follow the stable

limit cycles like in the case where no time scale differences occur =ɛ 1.
However, just above the Hopf bifurcation point depending also on the
perturbation parameter the stable limit cycle with small amplitude
consists of two concatenated slow and fast episodes. In the phase space,
the top part is just above the parabolic stable and unstable critical
manifold and the bottom just below the horizontal line connecting the
two points where the limit cycle intersects with the f-nullcline verti-
cally. At the canard point of the bifurcation parameter, the dynamics
tends abruptly toward the relaxation dynamics. This transition point
resembles what happens due to the delayed bifurcation effect where the
trajectory leaves the vertical axis below the transcritical bifurcation TC
in Fig. 5. For higher bifurcation parameters values the limit cycle with
large amplitude changes smoothly and approaches the degenerated
phase curves consisting of a concatenation of two slow and two fast
episodes (Fig. 5).

Despite the approximate series expansion diverges, we found ac-
curate approximations for small ε of the part the limit cycles originating
from the Hopf bifurcation point. Furthermore, the numerical approx-
imate asymptotic iterative scheme, gives very good approximations of
the bifurcation parameter b1 and perturbation parameter ε values
where a canard explosion occurs (see Fig. 11).

Another mathematical method to analyse a canard explosion is the
blow-up technique [8,9,29,30]. This technique can be used to study the
unfolding of the degenerated Hopf bifurcation where lim ε→ 0. This
will be the subject of a forthcoming paper.

In [11,16,20,35,41,42] the RM-model predator-prey slow–fast
model showed complex relaxation oscillation dynamics, however, no
canard explosion was observed.

In [1,23,26] food chain systems were already studied where the
small parameter, measuring the timescale disparity between the rate of

Fig. 16. Phase-space analysis for system (54) describing the MB-model with =a b5/3 ,1 1 =b 3,1 for three different values of ε: =ɛ 1, =ɛ 0.1 and =ɛ 0.01.
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changes in the prey (fast) and predator (slow) in the MB-model, was
introduced. Then the fast subsystem converges to a critical manifold of
stable equilibria which yields an algebraic relationship between the
state variable leading to a reduced (aggregated) lower dimensional

(DAE) system. Predator prey systems with fast oscillating migrations
were studied in [36] and with slow migrations in [33] wherein re-
duction methods were proposed. In those papers, relaxation oscillations
were not discussed.

In the MB-model, conservation of mass is obeyed and therefore it is
more realistic than the RM-model where nutrients are not modelled
explicitly. An open chemostat environment is assumed with inflowing
nutrients and the outflow of all abiotic and biotic components. Under
specific situations the logistic growth rate of the prey is replaced by a
prey growth model whereby nutrients are not only used for its own
growth but also for its predator. This is a bottom-up effect in addition to
the top–down effect of the prey consumption by the predator. The
consumption occurs with a constant efficiency like in the alternative
fast–slow version of the RM-model introduced in [16, Example 2.2].

Fig. 17. Phase-space analysis for system (54) describing the MB-model with =a b5/3 ,1 1 and =b 8,1 that is at the Hopf bifurcation point for three different values of ε:
=ɛ 1, =ɛ 0.1 and =ɛ 0.01.

Fig. 18. Two-parameter bifurcation diagram with ε and 1/b1 as free para-
meters. The expressions are given in Table 3. The transcritical bifurcation curve
TC is for both models RM-model and MB-model the same. For =ɛ 1 the point of
the Hopf bifurcations differ slightly but for limε↓1 they differ essentially. In the
MB-model there is a stable equilibrium E2 in almost the whole b1> 4 range up
to limb1↑∞ while there is a stable limit cycle L2 in the RM-model.

Table 3
Bifurcation curves for RM-model (2) and MB-model (54). Note that for RM-
model the expression are independent of ε. The arrow indicates the transition of
the steady states that occurs when the parameter crosses the bifurcation point.

Bifs. a1(b1, ε) b1 =a b( 5/3 )1 1 Interpretation

RM-model
TC = +a b 11 1 1.5 E1→ E2
H = +

−
a b b

b1
1( 1 1)

1 1
4 E2→ L2

MB-model
TC = +a b 11 1 1.5 E1→ E2
H

=
+ + + +

−
a

b b

b1
2ɛ 1

2 1 4 1
2ɛ(ɛ 1) 1

2ɛ( 1 1)
= + +b1

4ɛ 16ɛ2 15ɛ
(2ɛ)

E2→ L2
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The introduction of this constant efficiency in the fast–slow RM-model,
however, leads to unrealistic equilibrium population sizes when ε be-
comes small. In the MB-model (54) these sizes remain realistic. A
constant efficiency, instead of the less realistic variable efficiency, was
earlier used in [26] in the fast–slow version of the RM-model and de-
scribed by (2) [16, Example 2.1].

The dynamics of the MB-model was analysed using a classical phase-
space and bifurcation analysis approach where only equilibria and limit
cycles occur in the whole parameter space. Calculations showed that in
this more realistically and mechanistically underpinned model the
complex fast–slow canard explosion does not occur.

Appendix A. Derivation of the dimensionless RM-model

From [48] we recall (after some adjustments of the notation), that the classical RM-model is given as

= − −dX
dT

RX X K AF X X(1 / ) ( ) ,1
1 1 1 2 (55a)

= −dX
dT

CAF X M X( ( ) ) ,2
1 2 (55b)

where = + −F X X AkX( ) (1 )1 1 1
1 is the well-known Holling type II functional response, with Xj the state variables, k handling time, A the attack rate, C

a conversion efficiency, M the predator removal rate (mortality, maintenance, and harvesting), and T is time. A list of symbols is given in Table 4.
This model can be rescaled by using =t TR, =x x K/ ,1 1 and =x X K/2 2 . Note that in the last transformation for the predator biomass differs from

[48] to let the efficiency C not disappear in the dimensionless formulation and to be able to deal with the time-scale difference in the fast–slow
system the subject here.

The non-dimensional model then reads

= − −
+

dx
dt

x x a x
b x

x(1 )
1

,1
1 1

1 1

1 1
2 (56a)

⎜ ⎟= ⎛
⎝ +

− ⎞
⎠

dx
dt

x c a x
b x

d
1

,2
2

1 1 1

1 1
1

(56b)

where =a AK R/ ,1 =b kAK ,1 =c C1 and =d M R/1 .

Appendix B. The slow dynamics on the parabola part of the f-nullcline

We give the results for the slow dynamics in the degenerated case =ɛ 0 where the dynamics is on a part of the f-nullclines critical manifolds.
The slow dynamics on the vertical axis is described again by the system (12). We will now focus on the slow dynamics on the parabola shown in

Fig. 19 where the dynamics of the reduced system (21) is solved numerically, yielding the prey population size x1(τ) while (20) is used to get the
associated predator population size x2(τ). Fig. 19a gives the results for the stable equilibrium E2, =b 31 where = =a b5/3 51 1 case with initial
condition =x (0) 0.2252 . This value is below point T, where =x 0.252 . In this case there are two valid initial points given by (19). Starting at the
largest x1 prey value on the right-hand parabolic branch there is convergence toward the equilibrium E2. But at the lowest prey value on the left-hand
branch there is convergence to the trivial zero-solution where =x 01 and =x 02 .

Hence, the right-hand branch of the parabola is in the basin of attraction of the stable equilibrium of the reduced system equal to that of the
original system E2. On the other hand for the left-hand branch it is in the basin of attraction of the zero solution.

Fig. 19c,d were calculated with parameter values =b 81 and = =a b5/3 40/31 1 where the equilibrium E2 of the original system is unstable. In
Fig. 19c starting at the lowest prey value and =x (0) 0.15,2 the results are similar to that in the above discussed case. However, starting with the
largest prey value on the critical manifold there is convergence to the limit point T for the reduced system, and not to the unstable equilibrium E2 of
the full model. Note that the vector field is not defined at the top T. In Fig. 19d the initial value is =x (0) 0.162 where both simulations terminate at a
limit point T of the reduced system. Hence, the unstable equilibrium E2 of the full system is a separatrix between the two equilibrium points of the
reduced system, being limit point T in (13) and the zero point =E x x( , ) (0, 0)0 1 2 .

For the special case =b 41 at the Hopf bifurcation the results are shown in Fig. 19b. The equilibrium E2 of the full system (2) at point T in (14) is
now for the reduced system restricted to the critical manifold not an equilibrium of the reduced system and there is no convergence to that point.
Starting for =x (0) 0.2252 there is always convergence to the trivial zero solution E0 which is here a global stable equilibrium of the reduced system.

In order to study the dynamics at the critical manifold (the parabola) further we plot dx1/dt versus x1(t) in Fig 20 in addition to x2(t) versus x1(t)

Table 4
List of symbols used for RM-model with dimension with their meaning.the
biomass of both populations have the same dimension.

Symbol Meaning

T Dimensional time
t Dimensionless time
Xj Dimensional state variable, indicated by j
xj Dimensionless state variable, indicated by j
R Intra-specific growth rate
A Attack rate
F(X1) Functional response, non-dimensional
C Efficiency, conversion yield, non-dimensional
M Mortality rate per unit of time
k Handling time
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in the phase space. For the Hopf bifurcation value =b 41 the rate dx1/dt given in (21) is always negative and hence there is convergence always to the
global stable zero solution. Note that the numerator in (21) is zero and this does not hold when b1≠ 4. However, for =b 81 where the equilibrium is
unstable the situation differs. Now when starting on the left side of point T the rate dx1/dt is positive and there is convergence toward the limit point
T given in (13). Similarly starting on the right-side the rate dx1/dt is negative and there is also convergence toward T. Now, the plot shows a vertical
asymptote. Thus, the rate is discontinuous at point T and this is due to the fact that dq/dx1 (20) is zero at T. Calculations showed that the equilibrium

Fig. 19. Phase-space analysis for slow system (19) of the RM-model. (a): At the top-panel left =b 31 and =a b5/3 ,1 1 with initial values =x 0.2252 and =x 0.2562 . The
equilibrium E2 is stable and the right-branch of the parabola is the basin of attraction. On the other hand the left-branch of the parabola is in the attraction basin of
the zero solution. (b): At the top-panel right =b 41 and =a b5/3 ,1 1 with initial values =x 0.2252 . The equilibrium E2 is unstable. (c) and (d): The lower panel with

=b 81 and =a b5/31 1 the two initial values =x 0.152 and =x 0.162 . The associated initial value of the x1(0) is for =x 0.152 below the unstable equilibrium E2 value.
For =x 0.162 the associated initial value of the x1(0) is above the unstable equilibrium E2 value.

Fig. 20. Phase-space analysis for slow system (19) of the RM-model. In the top-subpanels the rate dx1/dt versus x1(t) while in the bottom-subpanel the dynamics x2(t)
versus x1(t) on the critical manifold (see also Fig 19). (a): The left-panel =b 41 and =a b5/3 ,1 1 with initial value =x 0.2252 where the equilibrium E2 is stable. (b): The
right-panel with =b 81 and =a b5/31 1 the initial value is =x 0.162 whereby the associated initial value of the x1(0) is above the unstable equilibrium value.
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point of the reduced system is reached in finite time. This is proved in the Appendix B.
In summary, the computational results show that point T is in the case of the reduced system not a simple tangent bifurcation. When the

parameter equals the Hopf bifurcation value it is not even an equilibrium. Otherwise it is a limit point reached in finite time.
To support this the dynamics of the RM-model (2) on the parabola, the 0

1M part of the f-nullcline (22b) is studied. From Eqs. (20) and (21), one
has

= − − −
− −

dx
dτ

x a b x
b b x

(1 )(( ) 1)
2 1

.1 1 1 1 1

1 1 1 (57)

Since we have :

− + −
− − −

= +
+ − −
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+ − +

+ − − −
b x b

x a b x
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b a x
b b a b a

b a a b x
2 1

(1 )(( ) 1)
1

1
1

1 1
1

( ) 1
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1
2

1 1 1 1
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it follows that Eq. (57) is equivalent to

+
−

+
+ − +

− −
= + −b

x
b b a b a

a b x
dx b a dτ1

1 ( ) 1
( 1 ) ,1

1

1
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⎠
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where x1(T) is the coordinate of the top of the parabola: = = −x T x b
b

( ) 1
21 1

1

1
.

If we consider that the equilibrium point ( =
−

x
a b

* 1
1

1 1
) is at point T, that is at the Hopf bifurcation point when =b 4,1 it follows that:

+ − + =b b a b a 01
2

1 1 1 1 .
We can then express the time tT needed for starting from x1(0) to reach the equilibrium E2 at point T
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1 1

1
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1 (61)

But in this case point T is not an equilibrium. If one assumes that the equilibrium is on the right of point T, that is b1< 4, see Fig. 3a, (60) shows that
the equilibrium is not reach in a finite time.

Finally, if we assume that the equilibrium x *1 is on the left of point T that is b1> 4 and if we consider an initial condition between x *1 and 1, see
Fig. 3d, point T attracts the trajectory. It is, however, not an equilibrium in the usual sense because Eq. (57) does not vanish, it is actually not well
defined. Nevertheless this point is reached in a finite time according to (60), and the time needed to reach this point t *T is
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where = − − − >A a b a b b 01 1 1 1
2

1 under the above mentioned conditions.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.mbs.2018.04.006
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