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The aim of this paper is to analyse the emergence of functional response of a predator–prey system start-
ing from diverse simulations of an Individual-Based Model of schooling fish. Individual characteristics
can, indeed, play an important role in establishing group dynamics. The central question we address is
whether or not aggregation influences predator–prey relationships.

To answer this question, we analyse the consequences of schooling when estimating functional respon-
se in four configurations: (1) no schooling of either prey nor predators; (2) schooling of prey only; (3)
schooling of predators only; and (4) schooling of both prey and predators. Aggregation is modelled using
the rules of attraction, alignment and repulsion.

We find important differences between the various configurations, highlighting that functional respon-
se is largely affected by collective behaviour. In particular, we show: (1) an increased predation efficiency
when prey school and (2) different functional response shapes: Holling type II emerges if prey do not
school, while Holling type III emerges when prey aggregate.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

The scientific community today is called upon to solve many
compelling challenges dealing with crucial issues such as climate
changes, overexploitation of resources and the necessity of sustain-
able economic development. In addition, there is a need for intelli-
gent management of living resources. This goal requires a deep
knowledge of the interactions within different species as well as
between species and the environment. In particular, predation is
one of the most important factors influencing the ecological struc-
ture and the development of communities, as already stressed by
Bax (1998) and Geritz and Gyllenberg (2013), who showed that
predation is a key process in ecosystem functioning which must
not be neglected in longer-term management. This is especially
true in marine ecosystems due to both the complexity of the food
net and to intensive fishing activities, which could cause marked
cascading effects (Scheffer et al., 2005). Predator–prey dynamics
are usually represented by a functional response, which is the
amount of prey eaten per predator and per unit of time. This func-
tion is a proxy of the flux of matter from one trophic level to anoth-
er as it determines the transfer of biomass in the food chain
(Poggiale, 1998). Typically, a predator–prey model focuses on the
interactions between two isolated species (Geritz and Gyllenberg,
2013), taking into account some aspects that are considered nodal
to explain the dynamics. These interactions depend on the nature
of the studied species. Crucial among these characteristics are col-
lective behaviours, especially in the context of marine ecosystems.
In fact, in these ecosystems, schooling and swarming are dominant
features (over 50% of bony fish species school (Shaw, 1978; Major,
1978)).

Over the last three decades, considerable attention has been
paid to this phenomenon in the literature. Aggregates displaying
collective behaviours are present in many different systems, from
non-living ones (such as nanoparticles clusters) to living ones
(schooling fish, swarming ants or flocking birds). Important com-
mon features can be identified in all these cases (Giardina, 2008):

� collective behaviour emerges in the absence of centralised
control;
� the mechanism of group formation is very general and tran-

scends the detailed nature of its components;
� some collective properties, known as emergent properties, arise

from the set of individuals.

From a modelling point of view, the challenge is to build a mod-
el that begins with the description of individual interactions and
goes on to reproduce the group formation and predict its dynamics.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pocean.2015.02.002&domain=pdf
http://dx.doi.org/10.1016/j.pocean.2015.02.002
http://dx.doi.org/10.1016/j.pocean.2015.02.002
http://www.sciencedirect.com/science/journal/00796611
http://www.elsevier.com/locate/pocean
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Many examples of clustering modelling can be found in the lit-
erature. A statistical physics approach was introduced by Vicsek
et al. and became known as the ‘‘Vicsek Model’’ (VM) (Vicsek
et al., 1995; Vicsek and Zafiris, 2012). This model is based on the
assumption that the movements of living organisms are the result
of self-propulsion, of interactions with neighbours and of random-
ness (Vicsek et al., 1999). In the literature, other models presenting
additional rules governing interaction can be found. Hubbard et al.
(2004) add an environmental gradient and Czirok et al. (1999) pro-
vide an extra spatial dimension (3D model). Other authors have
built models characterised by the rules of attraction and repulsion.
Couzin et al. (2002), for example, formulate a model for three-di-
mensional schooling fish (or flocking birds) in which repulsion,
alignment and attraction interactions take place (the so-called
‘‘A/R/A model’’). They test how behavioural differences among
organisms influence aggregation processes. Moreover, they
demonstrate sharp transitions between four collective behaviours
(swarm, torus, dynamic parallel group, highly parallel group) by
changing model parameters. Attraction–repulsion rules are also
present in the work of Inada and Kawachi (2002) and Grégoire
et al. (2003). The first study analyses order and flexibility in the
motion of fish schools by changing the number of interacting
neighbours and the randomness of motion. Simulations show that
school order is strongly affected by randomness and by the number
of interacting fish. High interconnection among fish leads to pat-
terns of escape in the presence of a predator. Grégoire et al.
(2003) combine Lennard-Jones potential with alignment and study
phase transitions in such a system of self-propelled particles.

Improvements in the description of collective behaviours has
been made possible by the huge development of Individual-Based
Models (IBM). These models are interesting because of the novel
way in which they approach the topic: they describe the dynamics
at the individual level, by setting the rules of movement and the
characteristics of every individual agent, while their outputs provide
a representation of the whole system. One can actually see collective
properties emerging from individual behaviours. Moreover, by sim-
ply testing different values of the parameters, it is possible to esti-
mate how a change at individual scale can impact the whole system.

Consequently, IBMs are widely used to study aggregation phe-
nomena of animals. Nevertheless, the majority of individual-based
schooling models presented in the literature rarely focus on func-
tional response to determine whether schooling, or more generally
aggregation, has consequences for predator–prey dynamics.
Attention is often paid to either aggregate behaviour under attack,
such as Inada and Kawachi (2002) and in Lee et al. (2006), or to
evolutionary topics. In this regard, Wood and Ackland (2007) con-
sider the evolution of various aggregating features to examine
which flock configurations may be selected in optimising foraging,
or in defending against predation. They find that two types of
flocks emerge when predators are present. The first is a slow-mov-
ing, milling group, characterised by a low orientation radius and a
high turning angle. The second is a fast moving, dynamic group,
with a large orientation zone.

Concerning functional response, we can cite (Tyutyunov et al.,
2008; Cosner et al., 1999; Poggiale, 1998). The first paper analyses
the way in which different assumptions about individual move-
ments lead to various kinds of functional response. Aggregation
is not explicitly expressed in this IBM, but predator prey-taxis
and evasion of predators by prey individuals is considered, in addi-
tion to random displacement. The taxis stimulus of each species is
the odour of the other species. The distribution of the odour of sev-
eral individuals is obtained by superimposing all individual odours.
Consequently, denser zones exist that mainly attract (or repulse)
individuals. Depending on the intensity of taxis and on predator
density, the predator population exhibits varying degrees of inter-
ference. Hence, functional response results as being prey-
dependent if no directional movements are considered, and preda-
tor-dependent if predators actively hunt the prey. Moreover, for
particular values of predator density and taxis, ratio-dependent
responses appear. The latter two papers do not deal with IBM.
Cosner et al. (1999) examine how existing predator–prey models
(from ‘‘traditional’’ to ratio/dependent models) can be derived in
a unified way from mass action principles. Indeed, the authors start
from a generalisation of the functional response and analyse how
the total encounter rate between predator and prey is influenced
by their spatial heterogeneity. However, this theoretical work does
not explain how individual behaviours lead to different kinds of
clustering. Poggiale (1998) studies spatial heterogeneity effects
on functional response when different time scales occur. By using
aggregation methods, this work links functional response to indi-
vidual behaviour in a multi-patch environment.

Published works have thus either focused primarily on possible
aggregate responses to predator attacks or they have explored the
theoretical formulation of functional response.

The objectives of this paper are: (1) to test the emergence of
functional response and its qualitative properties in the presence
of schooling phenomenon, with no prior hypothesis concerning
defence or attack strategies and (2) to compare these properties
with the emerging functional response in the absence of schooling.

For this purpose, we first consider interactions between two
species, then we define a set of aggregation rules according to
the A/R/A model and finally we analyse the consequences of
schooling in predator–prey dynamics. We make the assumption
that predators are attracted by prey situated within a visual-range
distance.

We analyse four cases: (i) a simple predator–prey model in
which no schooling behaviour is present; (ii) the presence of
schooling prey only; (iii) predators only school; and (iv) both prey
and predators school.

In the first part of this paper we explain the model rules
(Section ‘Material and methods’). In the second part we provide
various model studies and results (Section ‘Results’). Finally, we
discuss the results (Section ‘Discussion’) and conclude
(Section ‘Conclusions’).
Material and methods

State variables and rules

The state variables we are dealing with are agents, virtually rep-
resenting fish, moving in a two dimensional space, a disk of radius
L (see Table 1 for numerical values) and split in two types: prey and
predators. The position of each agent is defined in polar coordi-
nates by a radius and an angle (Eq. (1)):

rp
i

!
ðtÞ ¼ ðrp

i ðtÞ; h
p
i ðtÞÞ i ¼ 1; . . . ;N ð1Þ

rPr
j

�!
ðtÞ ¼ ðrPr

j ðtÞ; h
Pr
j ðtÞÞ j ¼ 1; . . . ; P

where p stands for prey and Pr for Predators. If we note
I � R; I ¼ ½0; L�, we have both rp 2 I and rPr 2 I; hp and hPr 2 ½0; 2p�
and finally t 2 R. Their time evolutions provide information of the
modulus of displacement and the direction of motion respectively.
Predators and prey total numbers are denoted by P and N
respectively.

The spatial domain is limited, so once an individual reaches the
limits of the simulation area, it reappears on the opposite radius,
with the same movement orientation it had in the previous time
step. This individual is regarded as a new one: it has no memory
of the interactions it had before with other agents. By this way,
we can consider a domain in which individuals can enter or exit
randomly as if we were considering a part of the ocean but with



Table 1
Summary of the parameters used in the model and range tested in the sensitivity
analysis.

Parameter Value Sensitivity range Unit of
measurement

Initial T 0 [T]
Dt 1 [T]
Tmax 380 [T]
Tstart for predation 350 [T]
Prey number 10 ? 1260 ] prey
Predator number 20 ] predator
Repetitions 50 –
Spatial domain radius [0;400] [L]
Initial position range

(prey)
[0;250] Initial position

range (predator)
[0;50]

Prey parameters
Attraction range Ratt 100.0 ±10% [L]
Alignment range Ral 50.0 ±10% [L]
Repulsion range Rrep 10.0 ±10% [L]
Empty space Re 0.05 – [L]

Attraction interaction
a 10.0 ±10% ½L�

½T�

b 0.03 ±50% [L]�1

Repulsion interaction
c 5.0 ±10% ½L�2

½T�

Alignment interaction

jv
!

alj 1.0 ±50% ½L�
½T�

kal 200 ±10% –

Noise component

jv
!

rndj 3.0 ±10% ½L�
½T�

krand 200 ±10% –

Predator parameters
Attraction range Ratt 300.0 ±10% [L]
Alignment range Ral 90.0 ±10% [L]
Repulsion range Rrep 60.0 ±10% [L]
Empty space Re 0.05 – [L]

Attraction interaction
a0 10.0 ±10% ½L�

½T�

b0 0.03 ±10% [L]�1

Repulsion interaction
c0 5.0 ±10% ½L�2

½T�

Alignment interaction

jv
!0

alj
1.0 ±50% ½L�

½T�

kal0 200 ±10% –

Noise component

jv
!0

rndj
3.0 ±10% ½L�

½T�

krand 200 ±10% –

Predator–prey interaction
Predation–detection

range Rpred

500 ±10% [L]

Capture range Rcapt 5 ±10% m
m (max number of

ingested prey)
2 ] prey

Prey
k 2.0 ±10% ½L�

½T�

f 0.025 ±50% [L]�1

Predator
/ 1.0 ±50% ½L�

½T�

l 0.01 ±50% [L]�1
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a constant density. Since we are dealing with pelagic aggregates in
a general configuration, we prefer to work with such a no closed
area. On the contrary, a no limited domain (that is, a domain big
enough to guarantee that agents never reach its boundaries during
the simulation time) adds computational complications for the
estimation of agent density, because no fixed area can be defined.
As previously mentioned, we considered four different cases: (a)
predator–prey interaction in absence of any kind of aggregation
(random displacement); (b) predation in presence of schooling
prey; (c) predation of schooling predators on prey which move ran-
domly; and (d) predation of schooling predators on schooling prey.
During the simulation time, agents move according to the follow-
ing rules, detailed in the next sections:

1. two kinds of events describe the interactions among agents of
different types: encounters and consumption. When they meet
each other, they escape (prey) or try to capture the other
(predator) moving in the direction of each other. Predators are
considered hungry while they have not captured a number m
of prey (Table 1);

2. if a predator captures a prey individual, that individual is
removed and the number of prey is set to N � 1 at the following
time step;

3. if schooling process is present, agents are mutually attracted,
they align with neighbours or they repulse each other depend-
ing on their mutual distance, see (Fig. 1(a));

4. agents move randomly in different directions drawn according-
ly from a von Mises distribution (Eq. (4)). This first stochastic
part of the movement expresses the uncertainty in establishing
agent displacement;

5. we hypothesised that individuals do not perfectly perceive
neighbours; therefore, alignment direction has a degree of
uncertainty. This second stochastic component is linked to the
fish’s imperfect perception of the surrounding world.

At the beginning of each simulation, initial positions are uni-
formly distributed. Initial radius moduli are in a range of 0–250
for prey and 0–50 for predators (see Table 1). For every simulation,
the predator–prey dynamics starts only after a certain period of
time (Tstart), in order to allow prey to form schools and avoid arbi-
trary initial condition effects. To be sure of analysing an instanta-
neous phenomena, we stopped simulations after a few time steps
(for t ¼ Tmax, see Table 1).

Instantaneous prey density qinstðtÞ is calculated at each time
step as the sum of prey over the spatial domain. The average den-
sity is then given by Eq. (2):

qðTmaxÞ ¼
1

Tmax � Tstart

Z Tmax

Tstart

qinstðtÞdt: ð2Þ
Random displacement
Animal movements cannot only be described by the action of a

given number of deterministic factors. Since we cannot be aware of
the entire set of forces acting in a defined environment, neither
predict completely the behaviour of living organisms, we prefer
to include a random component which deviates the deterministic
walk of agents. The amplitude of the random component is con-
stant (Eq. (3)), while the direction hrnd is a realisation of a random
variable H following the von Mises distribution g (Fisher et al.,
1993) defined by Eq. (4):

kv!rndk ¼ v0 ð3Þ

gðh;j; hlÞ ¼
1

2pI0ðjÞ
eðj cosðh�hlÞÞ ð4Þ

where I0 denotes the modified Bessel function of the first kind and
order 0 (Eq. (5)):

InðjÞ ¼
1

2p

Z p

�p
ej cos h cosðnhÞdh ð5Þ



Fig. 1. (a) The A/R/A model. Interaction ranges: if two individuals are closer than Ratt they are attracted each other, they align in the range of alignment Ral and repulse each
other in Rrep . The final displacement for an individual i is given by the result of the vectorial sum of the interactions over all the individuals lying in the interaction range. (b)
Predator–prey interaction ranges: if a predator is closer than Rpred to a prey, it is attracted and prey escapes. If they are closer than Rcapt and the predator is hungry, prey is
eaten. The final displacement for a predator (prey) is given by the result of the vectorial sum of the interactions over all prey lying in the predation range.
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The von Mises distribution function (Eq. (4)) can be regarded as
the circular analogue of the normal distribution on the line, cen-
tred at the mean angle hl. In our model, the latter is given by the
direction of the same individual at the previous time step, since
it is quite unlikely to see abruptly changes in the direction of cruis-
ing fish. At each time step, non-interacting individuals will then
deviate from their main cruise direction with a probability that
depends on the concentration parameter j: the higher is j, the big-
ger will be the probability to have an angle h close to the mean hl.

A/R/A model
As we said before, interactions concern the tendency of indi-

viduals to gather and to align with neighbours. Hence two ele-
ments have to be defined: the neighbourhood and the adopted
behaviour among neighbour agents. Different kinds of neighbour-
hood have been already analysed in previous studies. As in the
work of Vicsek et al. (1999), Vicsek et al. (1995) and Couzin et al.
(2002), we consider a symmetric area around agents, without blind
zones (this latter is present, instead, in the work of Couzin et al.
(2002), which is moreover a three dimensional model).

The way of representing interactions have also been widely
explored in literature. As in the paper of Couzin et al. (2002), we
choose to take into account attraction, alignment and repulsion,
but we do not maintain a constant speed for agents. On the con-
trary, we explicitly calculate attraction, alignment and repulsion

speeds (called kv
!

attk; kv
!

alk and kv
!

repk respectively, see below).
Since the goal of this study is to study the behaviour of a general

aggregating species, we try to keep rules as simple as possible, let-
ting an hypothetical future users the possibility of adjusting the
parameters in his/her particular case. We define the attraction,
alignment and repulsion interactions as mechanisms appearing
in different and non overlapping circular zones, centred on the
individual and of fixed different radius Ratt > Ral > Rrep respectively
(Fig. 1(a)).

Attraction is defined as follows: if a fish j enters in the attraction
area of individual i; i starts to move towards it as described by Eq.
(6):

kv!attk ¼ a � peð�bk r!ijkÞ

r!ij ¼ r!j � r!i ð6Þ

where kr
!

ijk is the distance between the two individuals.

Attraction interaction takes place if Ral < kr
!

ijk 6 Ratt . The expo-
nential shape of Eq. (6) has been chosen because attraction in a
school seems to be primarily driven by the sense of sight, which
is exponentially attenuated in water (Aksnes and Utne, 1997): a
fish sees the others and then decides to move towards them
(Partrige and Pitcher, 1980; Hemmings, 1966). The movement
direction is the same as r
!

ij. If several fish are present in the attrac-
tion range, the final movement is given by the vector addition of all
the attraction components.

Furthermore, agents adjust their cruise direction to the mean
direction hmean of all the organisms present in the alignment zone,

that is within a distance Rrep < kr
!

ijk 6 Ral. This distance is smaller
than the previous one since alignment apparently depends on
the pressure receptors of the lateral line (Partrige and Pitcher,
1980). Alignment speed modulus kv

!
alk is constant (Table 1).

Since perception of external world is not perfect, fish do not align
perfectly with the others; consequently, the alignment angle is a
realisation of the von Mises distribution function, centred at
hl ¼ hmean.

Finally, repulsion takes place for Re 6 kr
!

ijk 6 Rrep; also repulsion
depends on pressure stimulations and decreases as distance

increases. The direction of movement is the same of r
!

ij, but in
the opposite sense:

kv!repk ¼
c

kr
!

ijk
ð7Þ

A range of no interaction is defined too (Re), in order to guaran-
tee an empty space around each agent.

Predator–prey interactions
The relationship among different type of agents depends on dis-

tance and on how prey (predators) respond to attacks (detection of
food). We establish a circular domain of radius Rpred centred at each

prey agent (Fig. 1(b)). If the distance kr
!

pPk between a predator (Pr)
and a prey individual (p) (Eq. (8)) is less than Rpred and bigger than
Rcapt , both the organisms start to react. In particular, predator goes
towards prey agent (Eq. (10)), while the latter escapes, as described
by Eq. (9).

r!pPr ¼ r!p � r!Pr ð8Þ

kv!esck ¼ keð�fk r!pPrkÞ ð9Þ

kv!Predk ¼ /eð�lk r!pPrkÞ ð10Þ

The movement direction is the same as r
!

pPr .
Visual speeds are summed up together. So, if e.g. two prey lie

both at a distance Rcapt < kr
!

pPk 6 Rpred, the resulting kv
!

Predk is the
vectorial sum over the two catching speeds. The same rule is
applied if more than two prey are present in the interaction range
Rpred. Likewise, the escape speed of a prey agent is given by the vec-
torial sum over all the interactions with detected predators.
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A predator eats a prey individual when it is close enough (dis-

tance kr
!

pPrk smaller than Rcapt) and if it is still hungry. Again, rela-
tionships have been established in regard to biological features: at
small distance, the main sense leading fish is sight, which decreas-
es exponentially with distance in water. Once simulation time
reaches the Tstart value, predators attack when they are hungry,
while prey always try to avoid predators.

At each time step, the displacement of an agent is defined by the
vectorial sum of all these components: the escape/capture compo-
nent, the random displacement, and the interaction components if
individuals school.

Model outputs and analysis

The outputs of the models we are interested in are the emerging
functional responses in different configurations. To analyse them,
we run the model for different numbers of prey N and estimate the
number of eaten prey per predator and per unit of time for increasing
prey densities. Since simulation time is short, prey density does not
change considerably. Thus, we can consider having a value of func-
tional response that corresponds to a single value of density.

Our main goal is to analyse the model outputs and compare the
emerging functional response to study the influence of schooling
phenomena on predator–prey relationships. First, we effectuate a
non-parametric regression, without any assumption on the shape
of the functional response (Simonoff, 1998). Then, we make a para-
metric regression analysis in order to express our results with sim-
ple equations. In particular, we find that the shapes of our curves
are expressed by the Holling type II Eq. (11) or a two-parameters
Holling type III Eq. (16) (see Appendix B for more details).

Let the Holling type II functional response be:

f HII
ðnÞ ¼ a � n

1þ b � n ð11Þ

where n is the density of prey, a represents the ‘discovery rate’ para-
meter, or the proportion of prey killed by a single predator per unit
of time at low prey density, and finally b is the capturing efficiency.
This functional response, called the disc equation (Holling, 1959), is
built upon the hypothesis that predation time T can be split in
searching and handling time (Ts et Th respectively). Let Y be the
number of prey consumed by one predator during a given time peri-
od T ¼ Ts þ Th, and th the handling time for a single prey individual,
that is, the time spent on processing it. Then:

Y ¼ a � Tsn ð12Þ

Th ¼ thY ð13Þ

Ts ¼ T � Th ð14Þ

Combining Eqs. (12), (14) and (13) one derives Eq. (15),

Y
T
¼ a � n

1þ a � thn
ð15Þ

which represents the amount of prey eaten by one predator per unit
of time and corresponds to the Holling type II functional response.
There is a linear relationship between parameters a and b : b ¼ tha
(Holling, 1959; Dawes and Souza, 2013).

In the other cases, that is when Holling type II equation does not
fit properly the data, we fit a two parameters logistic Eq. (16):

f ðnÞ ¼ c � n2

1þ d � n2 ð16Þ

This is a specific form of the more general Holling type III Eq.
(17):

f HIII
ðnÞ ¼ a � n2

1þ b � nþ c � n2 : ð17Þ
Eq. (17) has not been built upon biological hypothesis as the
previous Eq. (11). However, we know that this kind of functional
response occurs when predators change their behaviour in order
to improve their feeding success. In particular, Eq. (17) arises if
predators learn to handle in a more efficiently way, or they discov-
er where more prey can be found, or they just switch target species
in order to catch the more abundant one (Real, 1977; Cordoleani
et al., 2013). Anyway, we briefly remind that an enzyme-predator
analogy has been actually proposed by Real (1977) in order to give
a biological interpretation to parameters c and d of the simplest Eq.
(16).

Let be the functional response a generic sigmoid function as in
Eq. (18):

f ðnÞ ¼ anm

1þ bnm
ð18Þ

where, following the enzyme reaction analogy, m becomes the
number of encounters (binding sites) a predator (enzyme) must
have with its prey (molecule) before it learns to be efficient at feed-
ing on it (the reaction takes place). L.A. Real named the parameter
c ¼ anm�1 the rate of potential detection of prey. In this way, this
rate depends on the number of encounters m. He then considered
the Holling disc equation as the particular case of Eq. (18) in which
m ¼ 1 and b ¼ anm�1Th ¼ cTh. We have to notice that this kind of
threshold mechanism, common in enzyme reactions, is not neces-
sarily representative of predator–prey interactions. L.A. Real inter-
pretation, indeed, suggests that predators are unable to feed if
they meet a single isolated prey individual.

We perform the Hotelling T-squared test (see Appendix B) in
order to test the difference of the parameter distribution
ða; bÞ ðor ðc; dÞÞ between the cases in which the disc equation (or
the Holling type III equation) fits.
Results

Hereafter we analyse the functional responses obtained from
simulations. We display simulation data for all four cases and data
trend estimated by non parametric regression over 50 simulations
(bandwidth selected by cross validation (Simonoff, 1998)).
Moreover, we present the mean of the 50 Holling type II and III
functional responses.

In Fig. 2(a) the simplest configuration is presented, where no
schooling phenomenon takes place. For schooling predators and
no schooling prey, illustrated in Fig. 2(b), the function increases
slowly, similarly to the simplest no schooling case in Fig. 2(a).
Functional response in the schooling prey case is displayed in
Fig. 2(c). The curve rises quite abruptly. The same situation has
been found for the case in which prey and predator school,
Fig. 2(d).

We note that Fig. 2(a) and (b) have a shape similar to the
Holling type II functional response, while Fig. 2(c) and (d) have a
sigmoid shape. We then make a parametric regression and fit
Eqs. (11) and (17) respectively, as showed in Fig. 3(a)–(d). This
illustrates how our approach can be used to build model formula-
tion at population level by using IBMs.

In Fig. 4(a) an example of the relationship between parameters
a and b (Eqs. (11)) is shown. Fig. 4(b) concerns parameters c and d
(Eq. (16)). Black dots are values of estimated parameters a and b (or
c and d) found with the regression analysis, under the hypothesis
of parameters’ Gaussian distribution. The ellipse represents the
95%-variance isocline. a and b seem to have a linear dependence,
as suggested by model hypothesis (15). Also parameters c and d
show the same linear relationship. In Fig. 4(c) and (d) we compare
parameter values for the four different cases (two by two). These
graphics give a visual highlight of the Hotelling T-squared test
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Fig. 2. Functional responses in the four different cases. Black lines represent the trend of the data (grey points) estimated by non-parametric regression over data generated
from 50 simulations of the IBM with 95% confidence interval (dashed lines). (a) No schooling of either prey nor predators. (b) Schooling of predators only. (c) Schooling of
prey only. (d) Schooling of both prey and predators.
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results. In fact, this test gives a p-value of zero when we compared
the case characterised by the absence of schooling with the one in
which predators school. This means that the distributions of a and
b are different and the two cases give different functional respons-
es. On the other side, the p-value of the test comparing the distri-
bution of c and d is approximately of 0.5. We can say that the case
of schooling of prey and the one of schooling of both prey and
predators are represented by the same curve.

A comparison is conducted between the different configura-
tions (see (Fig. 5)). When prey aggregate functional responses are
higher.

The sensitivity analysis (see Appendix A) highlights the impor-
tance of schooling in predator–prey interactions: among the para-
meters that most influence the models, three of them are linked to
aggregation ða; b;RalÞ and show how attraction among prey and the
increment of functional response are directly proportional, see
Fig. 6(a) and (b). Furthermore, results depend also on /;l and v rnd.

Discussion

Consumer–resource interactions are basic in ecology. In many
modelling studies, attention is primarily focused on collective
behaviour facing a single predator, or on different schooling escape
strategies, or again on the theoretical formulation of functional
response in population dynamics. However, in this paper we focus
on the emergence of functional response using an individual-based
approach. We realise simulations of predator–prey interactions to
verify if the schooling process could affect this response, with no a
priori hypothesis concerning prey defence strategy.

Herein we present two main results. First of all, the model sug-
gests that predation is more efficient when faced with aggregated
prey. Secondly, prey aggregation appears to influence the shape of
the functional response.

We will start our discussion with the first point: when prey
school, predation tends to be more efficient. In fact, our results
show that there is little difference between the case of schooling
predators and the case of a lack of aggregation. Moreover, the
two other scenarios (in which only prey school and in which both
prey and predator school) are different from the previous two.
High density populations attract hungry individuals which are able
to quickly satisfy their food needs, because once a prey agent has
been found, many others will be near. Thus, once a predator has
located an individual, it is able to detect other prey in a short dis-
tance-range, which avoids spending time searching for food, thus
leading to better catch efficiency. It is interesting to note that the
sensitivity analysis (see Appendix A) also highlights this result. In
fact, an increase in attraction among prey favours predation, while
a rise in alignment range causes the opposite tendency. This sug-
gests that the more coordinated the school is, the more difficult
will be the capture. Globally, this analysis also allows us to con-
clude that the presented model is sensitive to a small number of
parameters and that it is therefore fairly robust.

Our results thus suggest that schooling is not the best strategy
to adopt by prey from a population point of view. However, it is
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important to stress that we are analysing only a two-species-sys-
tem and that simulations do not reflect the complexity of animal
interactions. Moreover, even if aggregation is not advantageous
in protecting from predation, collective behaviour could be a good
strategy for other reasons. Indeed, the hypothesis of schooling as a
strategy against predation has to be considered carefully.

First of all, there is no straightforward evidence that the risk of
predation decreases (Ioannou et al., 2012). This is the case in spe-
cial configurations, or for prey situated in the centre of the group.
Riffenburgh (1960) showed that advantage of schooling for prey
depends on both prey sighting ranges in relation to the distance
among prey individuals and on prey number. Major (1978) studied
interactions between the jack Caranx ignobilis and the Hawaiian
anchovy Stolephorus purpureus. The jack is a facultative schooling
species, while the anchovy is an obligate schooling species. Major
concluded that schooling habit confers advantages to both preda-
tors and prey. Predators attacked the easier prey-the ones that
made ‘‘mistakes’’, that is, the prey which appeared or behaved dif-
ferently from the others, and were frequently found on the fringes.
Increasing numbers of predators caused an increasing number of
isolated prey individuals. Those prey became accessible sooner,
because prey schools were broken with greater ease. Moreover, a
recent study on stomach content of the shortfin mako shark
Isurus oxyrinchus found its preferred prey to be the Atlantic saury
Scomberesox saurus (87% of teleost prey), a species which lives in
schools (Porsmoguer et al., 2014).
Secondly, schooling could be an advantage at the individual
level by decreasing the probability of an individual being captured.
However, since aggregates are more easily detected, this may not
be the case at the population level. Further research to analyse
the consequences of schooling at different organisation levels
would undoubtedly be of the utmost interest. Our results thus
show that schooling appears to be unfavourable for prey, so the
natural question to consider is from which point of view is this
unfavourable. In a biological system many species interact.
Perhaps a better feeding strategy offsets losses due to predation.
If not, perhaps schooling developed for other evolutionary reasons.
We know, indeed, that obligate schooling species have large geo-
graphical ranges and that they migrate. Moreover, large aggrega-
tions appear during spawning seasons, to guarantee great
reproductive success within restrict spatial and temporal limits
(Cushing and Harden Jones, 1968). Fully understanding the evolu-
tionary meaning of school formation still remains a challenge to
this day.

As introduced above, the second interesting result of this paper
concerns the shape of functional responses. The parametric regres-
sion shows that two types of function emerge: the Holling disc Eq.
(11) and a sigmoid function. In particular, the Holling type II equa-
tion has been fitted in the two cases of schooling predators and in
the case of no schooling. We chose this function primarily because
its shape was recognisable in our results. Furthermore, only two
parameters determine the shape of this functional response and
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they can be easily linked to biological/behavioural characteristics.
In the other cases, model outputs exhibit patterns similar to the
Holling type III function, represented by Eq. (17). The presence of
prey aggregates thus causes a change in functional response shape.
When prey school, predators become more efficient, once a certain
threshold of prey density has been reached. We suppose that this
shift in functional responses occurs when aggregates appear.
However, we are not yet able to determine why this sigmoid shape
appears, because every behavioural aspect of predation needs to be
confirmed by data whereas the main goal of this paper is to com-
pare emerging functional responses when aggregation occurs.
Nevertheless, it would be interesting to fit a general function to
model data. Indeed, when dealing with high variability, such as
in aggregated populations, using a simple function – namely the
disc equation or the Holling type III equation – is not the best pos-
sible choice (Cordoleani et al., 2011; Morozov et al., 2012). A better
choice might be a linear combination of different classical equa-
tions, with various parameters linked to the model at the indi-
vidual scale. These parameters could be chosen in accordance
with real data. Ideally, different types of functional response
(Holling type II, type III, etc.) would emerge by changing parameter
values. In this way, it would then be possible to link IBMs to
population dynamics. Further analysis in this direction to define
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the best model that fits our results, would undoubtedly be very
enriching.

We compared the parameter distributions among the four
curves using the Hotelling T-squared test. This analysis confirmed
that the distribution of parameters ða; bÞ is significantly different
for the two curves describing predation without aggregated prey.
On the contrary, the distribution of ðc; dÞ is the same for the two
sigmoid curves. Prey schooling is the major factor influencing pre-
dation efficiency.

The IBMs presented in this paper allow to check possible trends
of functional response in different configurations of marine ecosys-
tems in the presence of schooling. This phenomenon, despite its
common occurrence, is still misunderstood and should be studied
further. Although IBMs are powerful tools for achieving this goal,
they alone are insufficient. They can be very useful in two situa-
tions, both of which could be explored starting from our model.
The first situation, linked to the choice of functional response dis-
cussed above, is when IBMs represent a starting point for a larger
spatio-temporal scale work, in order to take into account indi-
vidual-based processes in population dynamics. In this case, the
interpretation of the functional response in population growth
dynamics becomes a crucial point. Indeed, the problem of the rep-
resentation of macroscale interactions starting from a microscale
model is a central topic in theoretical ecology. Other studies have
stressed how a global functional response can emerge from local
functional responses with different shapes (Cordoleani et al.,
2013; Morozov et al., 2012; Poggiale, 1998). In this work we use
classical functional responses (Holling II, III) because even if these
mathematical objects are only approximations of reality, they are
well known and easy to interpret and manipulate. Nevertheless,
they are based on hypotheses that must always be checked to
ensure the best possible approximation. We are referring, in par-
ticular, to hypotheses relating to the different time scales encom-
passing the various processes of an organism’s life. In our cases,
time scales can be considered to be very fast with respect to
population dynamics, because we are dealing with short predation
processes. However, if the aim is to better understand population
dynamics when schooling species are involved, a deeper reflection
upon the form of functional responses is needed.

The second situation in which IBMs are extremely useful is
reached when they are coupled with a conspicuous set of data per-
taining to a particular species. In this case, they are able to simulate
very different and credible configurations, saving researchers from
undertaking expensive and not always feasible laboratory experi-
ments. To this end, a frequently stressed problem concerning mod-
elling of collective behaviour is its degree of abstraction (Vicsek
and Zafiris, 2012): even if there is an attempt to collect data on
aggregating species, our knowledge is still poor and no biological
characteristics can confirm the existence of an attraction–repul-
sion zone or force, and nor can the number or the density of neigh-
bours that an individual can perceive. Some authors have
underlined the importance of describing organisms’ features more
precisely, arguing that in many models their representations, as
well as definitions of their interactions, are so simplified that is
not possible to link them to reality (Schellinck and White, 2011).
It is important to underline that not only sight but other signals
and senses such as olfaction or sound detection should be consid-
ered in the description of aggregation and predation. It would be
interesting, for example, to add a hearing-dependent attraction
to enable predators to hear prey before seeing them.

Some studies linking data and models already exist, but few
deal with fish. Of those which do, experiments with animal beha-
viour in the presence of fish aggregating devices (FADs) (Robert
et al., 2012; Capello et al., 2011), or studies using video tracks of
fish shoaling in a tank (Gautrais et al., 2012; Hemelrijk et al.,
2010) can be cited. To combine a verification of models with speci-
fic measurements is an interesting challenge. For example, beha-
vioural information acquired from acoustic tagging (such as
FADs) and from stomach contents (see Porsmoguer et al., 2014),
could be integrated into the model. In order to adjust aggregation
parameters, in-tank experiments might be required. In this way, it
might be possible to test the coherency of mathematical expres-
sions and to reflect upon the evolutionary meaning of schooling
(Did aggregation appear primarily as a feeding strategy? What
are the energy costs of such behaviour?) To evaluate individual
energy budget and consequently strategies, it might be necessary
to determine the balance between the costs and the benefits of
schooling. Indeed, it is worth remembering that aggregation may
be advantageous if only for hydrodynamic reasons, helping indi-
viduals in long and/or difficult migrations. This, like the above
hypotheses, may explain why fish grouped together despite the
ensuing higher mortality rate due to predation, or why predators
school even when there is no evidence of improved success in
feeding.
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Conclusions

In this paper, our primary aim has been to show the conse-
quences of school formations on predator–prey interactions and
to show that the occurrence of inhomogeneous interacting groups
influences predation efficiency. We propose an IBM describing
predator–prey dynamics in the presence of schooling phenomena.
Our rules have been built with the aim of constructing as simple a
model as possible, one which can be adapted to different species
simply by changing a few parameter values, or which can be gen-
eralised into a state variable model that takes individual interac-
tions into account. Two main results emerge from our work, both
of which are interesting from a modelling point of view and which
underline the importance of biological features when modelling
natural systems.

First, the notion that functional response, which characterises
population dynamics and determines the biomass flux in the
trophic chain, emerges from the description of individual interac-
tions. Indeed, we have shown that the shape of this function
depends on the rules governing agent motion (aggregation plus
predator–prey interactions in movements).

Second, this work suggests that aggregation may be an impor-
tant factor in ecosystem functioning which should thus be taken
into account in future studies, even those concerning ecosystem
management. Further research to put this predator–prey interac-
tion into a larger spatio-temporal scale system, involving other
species, would undoubtedly be constructive.
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Appendix A. Sensitivity analysis

To analyse the sensitivity of our model to all parameters, we
make different tests changing subsequently just one of them by
10–50% of its value, depending on if it was bigger or smaller than
one respectively; in the third column of Table 1 we specified which
increment has been chosen for each one. As for the main model, we
ran 50 simulations for every new configuration and we remark that
the model is sensitive just to a small number of parameters.
Furthermore, in order to fully test the coherence and the stability
of the model, we also check how it responds to wider variations
concerning some crucial parameters. Hereafter we present the
graphics obtained with those parameters that caused a substantial
difference. Since the two cases concerning the presence of school-
ing prey are equivalent, we show the graphics of just one con-
figuration, the one of aggregated prey. Even for the additional
tests we illustrate just one emblematic case, the one of schooling
prey, to briefly show the main results. We made a non-parametric
regression to show the trend of data.

First of all, coefficient a, Eq. (6), which expresses the propor-
tionality between the visual perception and the displacement
due to attraction, shows some changes: the bigger is this para-
meter, the stronger is the attraction among fish in schooling pro-
cess and the higher is the functional response. We tested a series
of a values in order to verify the influence of attraction interactions
among prey upon functional response (Fig. 6(a)).

Coefficient b, Eq. (6), is the second parameter which influences
the strength of intra-species attraction: a low rise of b strongly
attenuates the attraction among prey, because of exponential
nature of the attraction function, and produces a lower functional
response in the situations of aggregation of prey and aggregation of
both prey and predators. Since prey’s aggregation is responsible of
a rise of predation efficiency, we expected this result. We made
some tests concerning b too, see (Fig. 6(b)).

On the other side, changes on b0 coefficient (in predators’ aggre-
gation) does not engender a statistically relevant difference.

Parameter /, Eq. (10), is linked to predation attraction versus
prey. When prey are not aggregated Fig. 7(b)), as well as if they
are schooling Fig. (7(a)), an augmentation of / causes a rise in func-
tional response and conversely a decreases of this parameter
engenders a lower curve.

Concerning the same equation, parameter l has not a big influ-
ence in the dynamics, Fig. 8(a). However, if we halve its value the
shape of the curve changes abruptly. This means that halving its
value is a too strong change for the model. This also stresses the
importance of the choice of parameter values.

Another parameter influencing the behaviour is the alignment
range (Ral): a smaller Ral causes an higher functional response
(Fig. 8(b)). This coefficient is responsible of the amplitude of coor-
dination area, inside which individuals adjust their direction to
their neighbours’ one. Consequently, it seems that the larger is this
region, the more hardly will be to catch a prey.

Parameter v rnd, Eq. (3) has been modified separately in prey’s
and predator’s equations. When prey are concerned and they
school, a bigger random contribution means less aggregation, so
a decrease of the parameter causes a rise in the curve (Fig. 8(c)).
We also paid attention to how does the coefficient v 0rnd influence
predator–prey dynamics, since if the random factor is more impor-
tant than the searching/attacking ones, the latter behaviour could
be hidden by the former ones. However, there were not important
impacts on results.

Furthermore, we tested different values of parameter k, which is
responsible of the escape reaction, thinking that some important
changes of its value in comparison to other predator–prey interac-
tion parameters could influence the behaviour of our model. By the
way, we did not find relevant differences.
Appendix B. Statistical tools

B.1. Non linear regression

Suppose that we dispose of a sample of q observations
ðni; yiÞ; i ¼ 1;2; . . . ; q, and that those data are connected through
Eq. (11) such that

yi ¼
a � pni

1þ b � pni
þ �i ð19Þ

where yi is the number of prey eaten per unit of time per predator
observed in a simulation, ni is the mean prey density over short
length of time and �i are random errors supposed to be Gaussian

and such that E½�i� ¼ 0. Estimations of â and b̂ of parameters a
and b are determined by non-linear regression (Gauss–Newton
algorithm), when minimising the sum of squares of the errors
Sða; bÞ (Seber and Wild, 2003):

Sða; bÞ ¼
Xq

i¼1

yi �
a � pni

1þ b � pni

� �2

ð20Þ

Using the IBM, M ¼ 50 samples of size q have been simulated.

We obtained a set of M pairwise values ðâm; b̂mÞ; m ¼ 1; . . . ;M esti-
mated by non linear regression. Under gaussianity assumptions it
is possible to draw 95% confidence intervals of parameters ða; bÞ
using the M samples to estimate the mean and the variance of

the bivariate distribution of ðâ; b̂Þ.
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Finally, the consequences of schooling when estimating func-
tional responses in the four configurations (absence of schooling,
schooling prey, schooling predators or schooling of both prey and
predators) are studied through the comparison among all the dif-
ferent distributions of parameters a; bf g (Hotelling T-squared test
(Hotelling, 1931)).



Fig. 9. Comparison among the ‘‘frozen’’ configuration and the one in which prey can
escape (the model). Cases of prey aggregation and of absence of collective
behaviours are represented.
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Appendix C. Supplementary test

Potential consequence of non homogeneous prey distribution
on predator–prey interactions has been already suggested several
times (Arditi et al., 1991; Arditi and Saiah, 1992). However, nobody
analysed systematically this topic as we have done in this paper.
We propose here a supplementary test to investigate the influence
of a non homogeneous distribution of prey on functional response.
We calculated the functional response in a situation of ‘‘frozen
prey’’. This means that when T P Tstart , prey do not move any more.
Consequently, predators catch in a patchy environment and their
food is constituted by sessile organisms. In Fig. 9 we compare the
results of this experience to the ones we have with the ‘‘normal
model’’ (that is, when prey are allowed to escape). Both the con-
figurations of schooling prey and of absence of aggregations are
shown. Those tests show an equivalent difference between the
two cases in which prey aggregate or not. Moreover, the figure sug-
gests that the different functional responses found in the model
can be explained to a large extent in terms of homogeneous or
non-homogeneous distribution of prey. We expected this result,
because we do not represent any defence behaviour. We can also
see that there is a quantitatively difference among the frozen expe-
riences and the model ones. The higher functional response in the
first scenario is obviously due to the absence of prey escaping
behaviour.

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.pocean.2015.02.
002.
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