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Chaos in a long-term experiment with a plankton
community
Elisa Benincà1,2*, Jef Huisman1*, Reinhard Heerkloss3, Klaus D. Jöhnk1{, Pedro Branco1, Egbert H. Van Nes2,
Marten Scheffer2 & Stephen P. Ellner4

Mathematical models predict that species interactions such as
competition and predation can generate chaos1–8. However,
experimental demonstrations of chaos in ecology are scarce, and
have been limited to simple laboratory systems with a short dura-
tion and artificial species combinations9–12. Here, we present the
first experimental demonstration of chaos in a long-term experi-
ment with a complex food web. Our food web was isolated from
the Baltic Sea, and consisted of bacteria, several phytoplankton
species, herbivorous and predatory zooplankton species, and
detritivores. The food web was cultured in a laboratory mesocosm,
and sampled twice a week for more than 2,300 days. Despite con-
stant external conditions, the species abundances showed striking
fluctuations over several orders of magnitude. These fluctuations
displayed a variety of different periodicities, which could be attri-
buted to different species interactions in the food web. The popu-
lation dynamics were characterized by positive Lyapunov
exponents of similar magnitude for each species. Predictability
was limited to a time horizon of 15–30 days, only slightly longer
than the local weather forecast. Hence, our results demonstrate
that species interactions in food webs can generate chaos. This
implies that stability is not required for the persistence of complex
food webs, and that the long-term prediction of species abun-
dances can be fundamentally impossible.

The discovery by May in the 1970s that simple population models
may generate complex chaotic dynamics1,2 triggered heated debate
and caused a paradigm shift in ecology. Since May’s findings,
mathematical models have shown that chaos can be generated by a
plethora of ecological mechanisms, including competition for lim-
iting resources6,8, predator–prey interactions3,5 and food-chain
dynamics4,7. In contrast to the overwhelming theoretical attention,
convincing empirical evidence of chaos in real ecosystems is rare13.
What could explain the paucity of empirical support? It might be that
chaos is a rare phenomenon in natural ecosystems, for instance
because food webs contain many weak links between species, which
may stabilize food-web dynamics14,15. Alternatively, one might argue
that there is a lack of suitable data to test for chaos in food webs. For
instance, external variability (for example, weather fluctuations) may
obscure the role of intrinsic species interactions. In principle, labor-
atory experiments provide ideal conditions to obtain high-resolution
data in a constant environment. Chaos has so far been demonstrated
experimentally for a few single species9,10, a three-species food web11

and nitrifying bacteria in a wastewater bioreactor12. Thus far, how-
ever, laboratory studies have not considered the natural complexity
of real food webs, and the time span of experiments has often been
too short to detect chaos in a rigorous manner.

Here, we analyse a time series of a plankton community isolated
from the Baltic Sea. The plankton community was cultured in a
laboratory mesocosm under constant external conditions for more
than eight years16. In total, two nutrients (nitrogen and phosphorus),
one detritus pool and ten different functional groups were distin-
guished (Fig. 1a). The phytoplankton was divided into picophyto-
plankton, nanophytoplankton and filamentous diatoms. The
herbivorous zooplankton was classified into protozoa, rotifers and
calanoid copepods. The rotifers and protozoa were grazed by cyclo-
poid copepods. The microbial loop was represented by heterotrophic
bacteria and two groups of detritivores: ostracods and harpacticoid
copepods. The abundances of these functional groups were counted
twice a week. Our analysis covers a period of 2,319 days, which
yielded 690 data points per functional group. Because most species
in this food web have generation times of only a few days, the time
series spanned hundreds to thousands of generations per species. We
performed several analyses to investigate the dynamics of this food
web.

First, the time series showed fluctuations in species abundances
over several orders of magnitude, despite constant external condi-
tions (Fig. 1). Spectral analysis revealed that the fluctuations covered
a range of different periodicities (see Supplementary Information).
In particular, picophytoplankton, rotifers and calanoid copepods
seemed to fluctuate predominantly with a periodicity of about
30 days, suggestive of coupled phytoplankton–zooplankton oscilla-
tions. Periodicities of about 30 days are consistent with model pre-
dictions of phytoplankton–zooplankton oscillations17, and have been
observed in earlier laboratory experiments with phytoplankton and
zooplankton species18.

Second, a closer look at the species fluctuations revealed several
striking patterns (Table 1). Peaks of picophytoplankton, nanophyto-
plankton and filamentous diatoms alternated with little or no overlap
(Fig. 1d), and picophytoplankton and nanophytoplankton concen-
trations were negatively correlated (Table 1), indicative of competi-
tion between the phytoplankton groups. Predator–prey interactions
could also be discerned. We found negative correlations of picophy-
toplankton with protozoa, and of nanophytoplankton both with
rotifers and calanoid copepods (Table 1). This indicates that pro-
tozoa fed mainly on picophytoplankton, whereas rotifers and cala-
noid copepods fed mainly on larger nanophytoplankton, consistent
with the structure of the food web (Fig. 1a). Conversely, the positive
correlation of picophytoplankton with calanoid copepods may point
at indirect mutualism between prey species and the predators of their
competitors (that is, ‘the enemy of my enemy is my friend’). Other
striking patterns included the negative correlation between bacteria
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and ostracods, and the positive correlation between bacteria and
phosphorus. Although our interpretation of these correlation pat-
terns is somewhat speculative, they correspond with the trophic links

in the food web. This shows that the observed fluctuations in species
abundances were largely driven by species interactions in the food
web, not by external forcing.

Third, we investigated the long-term predictability of the food-
web dynamics. The predictability of a deterministic non-chaotic sys-
tem with uncorrelated noise (for example, a limit cycle with sampling
error) remains constant in time, whereas the predictability of chaotic
systems decreases in time19. We fitted the time series to a neural
network model20 to generate predictions at different time intervals.
For short-term forecasts of only a few days, most species had a high
predictability of R2 5 0.70 – 0.90 (Fig. 2). However, the predictability
of the species was much reduced when prediction times were
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Figure 1 | Description of the plankton community in the mesocosm
experiment. a, Food-web structure of the mesocosm experiment. The
thickness of the arrows gives a first indication of the food preferences of the
species, as derived from general knowledge of their biology. b–g, Time series
of the functional groups in the food web (measured as freshweight biomass).
b, Cyclopoid copepods; c, calanoid copepods (red), rotifers (blue) and
protozoa (dark green); d, picophytoplankton (black), nanophytoplankton
(red) and filamentous diatoms (green); note that the diatom biomass should
be magnified by 10; e, dissolved inorganic nitrogen (red) and soluble reactive
phosphorus (black); f, heterotrophic bacteria; g, harpacticoid copepods
(violet) and ostracods (light blue).

Table 1 | Correlations between the species in the food web

Bacteria Harpacticoid
copepods

Ostracods Nitrogen Phosphorus Picophytoplankton Nanophytoplankton Rotifers Protozoa Calanoid
copepods

Bacteria 1 0.03 20.24*** 0.05 0.19*** 0.03 20.17*** 0.30*** 20.17 0.22***
Harpacticoid copepods 1 0.17** 20.12* 0.09 20.04 20.03 0.02 0.14 20.04

Ostracods 1 20.16*** 20.06 20.04 0.01 20.03 0.19* 20.04

Nitrogen 1 0.08 20.00 20.02 20.04 0.02 0.04

Phosphorus 1 20.04 0.03 0.10* 20.11 20.09

Picophytoplankton 1 20.17*** 20.03 20.22** 0.26***
Nanophytoplankton 1 20.19*** 0.15 20.14*
Rotifers 1 20.02 20.10

Protozoa 1 n.a.
Calanoid copepods 1

Table entries show the product–moment correlation coefficients, after transformation of the data to stationary time series (see Methods). Significance tests were corrected for multiple hypothesis
testing by calculation of adjusted P values using the false discovery rate27. Significant correlations are indicated in bold: ***P , 0.001; **P , 0.01; *P , 0.05; n.a., not applicable. The correlation
between calanoid copepods and protozoa could not be calculated, because their time series did not overlap. Filamentous diatoms and cyclopoid copepods were not included in the correlation
analysis, because their time series contained too many zeros.
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Figure 2 | Predictability of the species decreases with increasing prediction
time. The predictability is quantified as the coefficient of determination R2

between predicted and observed data. Already after a few time steps,
predictions by the nonlinear neural network model (open circles) were
significantly better than predictions by the best-fitting linear model (filled
circles) (see Supplementary Information for further details). a, Cyclopoid
copepods; b, rotifers; c, calanoid copepods; d, picophytoplankton;
e, nanophytoplankton; f, filamentous diatoms; g, soluble reactive
phosphorus; h, dissolved inorganic nitrogen; i, bacteria; k, ostracods;
l, harpacticoid copepods; m, protozoa.
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extended to 15–30 days. This is a characteristic feature of chaos,
where short-term predictability is high, whereas the predictability
decreases when making forecasts further into the future. However,
decreasing predictability can also occur in linear (and therefore non-
chaotic) systems exposed to stochastic perturbations. We therefore
tested19 whether the predictions of the nonlinear neural network
model were significantly better than the predictions generated by
the best-fitting linear model. Already after a few time steps, the non-
linear model yielded significantly higher predictabilities than the
corresponding linear model for all species in the food web (Fig. 2;
see Supplementary Information for the statistics). These findings
demonstrate that (1) the predictability of the species abundances in
the food web decreased in time, and (2) there was a strong nonlinear
deterministic component in the food-web dynamics.

Fourth, we calculated the Lyapunov exponent, the hallmark of
chaos in nonlinear systems. The dominant Lyapunov exponent l is
a measure of the rate of convergence or divergence of nearby traject-
ories21. Negative Lyapunov exponents indicate that nearby traject-
ories converge, which is representative of stable equilibria and
periodic cycles. Conversely, positive Lyapunov exponents indicate
divergence of nearby trajectories, which is representative of chaos.
We used two different methods to calculate the Lyapunov exponent:
a direct method and an indirect method.

The direct method started with a reconstruction of the attractor by
time-delay embedding of each time series21–23. Exponential diver-
gence (or convergence) of trajectories was calculated from nearby
state vectors in the reconstructed state space24. The results show
that the distance between initially nearby trajectories increased
over time, and reached a plateau after about 20–30 days (Fig. 3).
This matches the time horizon of 15–30 days obtained from
the predictability estimates (Fig. 2). Lyapunov exponents were
calculated from the initial slope of the exponential divergence, by
using linear regression. This yielded significantly positive Lyapunov

exponents of strikingly similar value for all species (Fig. 3; mean
l < 0.057 per day, s.d. 5 0.005 per day, n 5 9). This gives much
confidence that the species in the food web were all fully connected,
and that their population dynamics were governed by the same
chaotic attractor.

Direct methods cannot distinguish trajectory divergence caused by
chaos from trajectory divergence due to noise9,20. Therefore, we also
applied an indirect method, which calculates the Lyapunov exponent
from a deterministic model. While indirect methods are not affected
by noise, they rely on the assumption that the deterministic model
provides an adequate representation of the system’s deterministic
skeleton. In our case, the model structure again followed the trophic
structure of the food web (Fig. 1a). The model was used to calculate
trajectory divergence at each time step by evaluation of the jacobian
matrix (see Supplementary Information for details). This indirect
method yielded a global Lyapunov exponent of l 5 0.04 per day,
characterizing the divergence of trajectories across the entire food
web. We ran a bootstrap procedure based on 1,000 replicates to
estimate the uncertainty of this value (see Supplementary
Information). A one-sided confidence interval at the 95% confidence
level yielded a lower bound of l 5 0.03 per day. This confirmed that
the Lyapunov exponent was significantly positive, and that this pos-
itive value was not due to noise.

In total, our analysis revealed several signatures of chaos. Despite
constant external conditions, the food web showed strong fluctua-
tions in species abundances that could be attributed to different
species interactions. We found high predictability in the short term,
reduced predictability in the long term, and significantly positive
Lyapunov exponents. This shows that the population dynamics in
the food web were characterized by exponential divergence of nearby
trajectories, which provides the first experimental demonstration of
chaos in a complex food web.

Compared with other systems, the time horizon for the predict-
ability of our plankton community (15–30 days) is only slightly
longer than the time horizon for the local weather forecast (about
two weeks25). Lyapunov exponents were smaller in our plankton
community (l 5 0.03–0.07 per day) than in recent experiments with
microbial food webs11,12 (l 5 0.08–0.20 per day). This might indicate
that our plankton was ‘less chaotic’. Alternatively, these differences in
Lyapunov exponents might be attributed to differences in generation
times, because most phytoplankton and zooplankton species in our
experiment have longer generation times than the bacteria and cili-
ates used in these microbial food webs. Because the time horizon is
inversely proportional to the Lyapunov exponent21, this suggests that
the time horizon for the predictability of chaotic food webs scales
with the generation times of the organisms involved.

Our findings have important implications for ecology and ecosys-
tem management. First, our data illustrate that food webs can sustain
strong fluctuations in species abundances for hundreds of genera-
tions. Apparently, stability is not required for the persistence of com-
plex food webs. Second, non-equilibrium dynamics in food webs
affect biodiversity and ecosystem functioning. For instance, fluctua-
tions on timescales of 15–30 days, as observed in our experiment,
offer a suitable range of temporal variability to promote species
coexistence in plankton communities26. Hence, our results support
the theoretical prediction that chaotic fluctuations generated by spe-
cies interactions may contribute to the unexpected biodiversity of the
plankton6, which provides a solution for one of the classic paradoxes
in ecology known as the paradox of the plankton. Third, chaos limits
the predictability of species abundances. In our experimental food
web, predictability was lost on a timescale of 15–30 days, which corre-
sponds to 5 to 15 plankton generations depending on the species.
Because many other food webs have a similar structure of plants,
herbivores, carnivores and a microbial loop, it is tempting to suggest
that the observed loss of predictability in 5 to 15 generations is likely
to apply to many other food webs as well.
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Figure 3 | Exponential divergence of the trajectories. The Lyapunov
exponent (l) is calculated as the initial slope of the ln-transformed
exponential divergence versus time, as estimated by linear regression (grey
line). All Lyapunov exponents were significantly different from zero (linear
regression: P , 0.001, n 5 6 or 7 depending on the species).
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LETTERS NATURE | Vol 451 | 14 February 2008

824
Nature   Publishing Group©2008



METHODS SUMMARY
The mesocosm consisted of a cylindrical plastic container (74 cm high, 45 cm

diameter), which was filled with a 10 cm sediment layer and 90 l of water from the

Baltic Sea. This inoculum provided all species in the food web. The mesocosm

was maintained in the laboratory at a temperature of about 20 uC, a salinity of

about 9%, incident irradiation of 50mmol photons m22 s21 (16:8 h light:dark

cycle) and constant aeration. Species abundances were measured twice a week,

whereas nutrients were measured weekly.

We interpolated each time series to obtain data with equidistant time intervals

of 3.35 days. The interpolated time series were subsequently transformed to

stationary time series with mean zero and standard deviation of 1. Long

sequences of zero values were removed from the analysis.

We calculated the predictabilities of the species by fitting a neural network

model to the time series, following ref. 20. For each species, the neural network

predictions were based on the observed population abundances of the species

itself and of those species with which it had a direct link in the food web (Fig. 1a).

We used two different methods to calculate the Lyapunov exponent. The

direct method was based on attractor reconstruction by time-delay embedding
of each time series23,24. We chose an embedding dimension of six and a time delay

of one time step (see Supplementary Information). This direct method yielded

Lyapunov exponents for each species separately. The consistency of these

Lyapunov exponents provided an additional check on the robustness of our

conclusions. The indirect method was based on a neural network approach to

estimate the deterministic skeleton of the dynamics9,20. This deterministic

skeleton was used to calculate one Lyapunov exponent characterizing the

dynamics of the entire food web.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Experimental set-up. The experiment16 started on 31 March 1989, when the

mesocosm was filled with a 10 cm sediment layer and 90 l of water from the

Darss-Zingst estuary (southern Baltic Sea, 54u 269 N, 12u 429 E). Phytoplankton

was divided in three functional groups: picophytoplankton consisting of

1–2mm picocyanobacteria (mostly Synechococcus species); nanophytoplankton

consisting of 3–5mm eukaryotic flagellates (mainly Rhodomonas lacustris

Pascher and Ruttner); and large filamentous diatoms (Melosira moniliformis

(O.F.M.) C. Agardh). Herbivorous zooplankton was classified into three groups:

protozoa (mainly large ciliates such as Cyclidium and Strombidium species);
rotifers (mainly Brachionus plicatilis (O.F.M.)); and the calanoid copepod

Eurytemora affinis (Poppe). Rotifers and protozoa were grazed by predators

belonging to the cyclopoid copepods (unidentified species of the Eucyclops

genus). The microbial loop was represented by heterotrophic bacteria and two

groups of detritivores: ostracods and the harpacticoid copepod Halectinosoma

curticorne (Boeck). Sampling of the mesocosm is described in Supplementary

Information.

From 23 November 1990 to 5 March 1991, the length of the light period

was temporarily reduced from 16 to 12 h per day. Accounting for a brief

period of recovery, we therefore restricted our time series analysis to the

period from 16 June 1991 onwards until the end of the experiment on

20 October 1997.

Data treatment. Several of our analyses required stationary time series, with

equidistant data and homogeneous units of measurement. We therefore inter-

polated each time series by cubic hermite interpolation to obtain data with

equidistant time intervals of 3.35 days. Nitrogen and phosphorus concentrations

were transformed to equivalent units of ‘biomass’ assuming Redfield ratios28.

Some functional groups remained below the detection limit for a long time,
yielding long sequences of zero values. We shortened these time series by remov-

ing these long sequences of zero values. Also, the time series showed sharp ups

and downs in species abundances. Therefore, all time series were re-scaled by a

fourth-root power transformation. This power transformation homogenized the

variances, and eliminated possible bias in the ‘direct method’ calculation of the

Lyapunov exponents (see Supplementary Information). Subsequently, we

removed long-term trends from the data by using a sliding window with a

bandwidth of 300 days and a Gaussian kernel. Finally, the data were normalized

by the transformation (x 2 m)/s, where x is the original datapoint, m is the mean

of the time series and s is the standard deviation. Thus, we obtained stationary

time series with mean zero and standard deviation of 1. The transformed time

series are shown in the Supplementary Information.

Predictability. We developed a model to investigate the predictability of each

species. Ideally, this model would be based on the biology of the species inter-

actions. However, the exact mechanisms of species interaction in this food web

are not known. For instance, we do not know the elemental stoichiometry of the

different species, whether allelochemicals modified the species interactions, or

whether zooplankton followed type II or type III functional responses. We may
even lack information on some food-web components (for example, viruses were

not measured). Using a mechanistically incorrect parametric model can lead to

spurious results in nonlinear time series analysis29. Therefore, we used a semi-

mechanistic approach in which the general model structure is based on bio-

logical knowledge about the food web, whereas non-parametric methods are

used to fit aspects about which little is known.

In our case, we can exploit the food-web structure to make predictions. For

each species, we used the following nonlinear model:

Ni,t 1 T 5 fi,T(Ni,t, N1,t, N2,t, …, Nm,t) (1)

Here, Ni,t is the population abundance (or nutrient concentration) of species i

at time t, T is the prediction time (that is, the number of days that we want to

predict ahead), and fi,T is an unknown function describing the change in the

population abundance of focal species i. The function fi,T uses the focal species i,

and those species 1 to m that have a direct link in the food web to this focal species

(Fig. 1a). For instance, predictions for picophytoplankton are based on pico-

phytoplankton abundance, the nutrients nitrogen and phosphorus, and its her-

bivores (rotifers, protozoa and calanoid copepods) at the preceding time step.
We estimated the unknown functions fi,T by using the neural network algorithm

of Nychka et al.20 (see Supplementary Information for details).

We tested whether the nonlinear neural network model yielded significantly

better predictions than the corresponding linear model. For this purpose, each

nonlinear function fi,T in equation (1) was replaced by a linear function of the

same population abundances. The coefficients of this linear model were esti-

mated by multiple regression. The significance test comparing the predictions of

the linear and nonlinear model is explained in the Supplementary Information.

Lyapunov exponents. We used direct and indirect methods (also called jacobian

methods) to estimate Lyapunov exponents. Direct methods search the data for

nearby pairs of state vectors. In other words, the time series are searched for pairs

of data points at which all species abundances in the food web are in a similar

state. The rate of trajectory divergence at subsequent times, averaged over many
such pairs, is an estimate of the dominant Lyapunov exponent23,24. Because state

vectors that are close in time are often also close in state space, temporal cor-

relation in the data may obscure the divergence of trajectories. Our time series

was sufficiently long to solve this problem by a Theiler window30, which is a

moving window covering data before and after each data point (see

Supplementary Information for details).

Jacobian methods are based on the development of a deterministic model of

the underlying dynamics, called the ‘deterministic skeleton’. The Lyapunov

exponent is here calculated from the sequence of jacobian matrices of the deter-

ministic skeleton, evaluated at the time series of observed or reconstructed state

vectors9,20. Thus, jacobian methods require the preliminary step of estimating the

deterministic skeleton. We estimated the deterministic skeleton by using a

similar neural network model as for the predictability (equation (1)).

Both approaches have advantages and disadvantages. Direct methods cannot

distinguish trajectory divergence caused by chaos from trajectory divergence

caused by noise, and might therefore be less suitable for many ecological time

series. Although our experimental system was maintained under controlled

laboratory conditions, even small levels of environmental or demographic noise

could bias direct methods towards positive estimates of the Lyapunov exponent.

Jacobian methods are not biased by noise; their main problem is uncertainty in

estimation of the deterministic skeleton. If the Lyapunov exponents obtained

from both approaches are consistent, this adds further reliability to the results.

Further details on the calculation of Lyapunov exponents are provided in the

Supplementary Information.
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