Espèces, peuplements et paysages marins remarquables de La Ciotat, de l’Île Verte à la calanque du Capucin. (Bouches du Rhône, France) 2001
ESPECES, PEUPLEMENTS
ET PAYSAGES MARINS REMARQUABLES DE LA CIOTAT,
DE L’ILE VERTE A LA CALANQUE DU CAPUCIN
(BOUCHES DU RHÔNE, FRANCE)

Etude réalisée pour : RAMOGE
Villa Girasole
16 Boulevard de la Suisse
98000 Monaco

Maître d’œuvre : GIS POSIDONIE
Parc Scientifique et Technologique de Luminy, Case 901,
13288 Marseille Cedex 09.
Tél. : 04.91.82.91.35 - Fax : 04.91.41.12.65
E mail : gisposi@com.univ-mrs.fr

Participants aux missions de terrain : BERNARD G., BONHOMME P., CADIOU G.,
CHARBONNEL E., COQUILLARD G., SARTORETTO S., VERLAQUE M.

Ce document doit être cité sous la forme suivante :
BONHOMME P., BOUDOURESQUE C.F., BERNARD G., VERLAQUE M.,
CHARBONNEL E., CADIOU G. 2001. Espèces, peuplements et paysages marins
remarquables de la Ciotat, de l’île Verte à la calanque du Capucin (Bouches du Rhône,
SOMMAIRE

1. INTRODUCTION ... 4

1.1. Contexte de l’étude ... 4

1.2. Caractérisation du site .. 5
 1.2.1. Localisation .. 5
 1.2.2. L’environnement terrestre : l’île Verte et les falaises du Bec de l’Aigle 6
 1.2.3. Le milieu marin environnant ... 7
 1.2.4. Fréquentation et activités humaines ... 9

2. MATERIEL ET METHODES ... 13

2.1. Localisation et caractérisation des peuplements et biocénoses remarquables 14
 2.1.1. Evaluation quantitative des peuplements algaux du médio-littoral et de la frange supérieure de l’infralittoral ... 14
 2.1.1.1. Modalités d’intervention .. 15
 2.1.1.2. Les peuplements algaux sélectionnés ... 15
 2.1.1.3. Méthode d’évaluation quantitative des peuplements algaux 16
 2.1.1.4. Représentation cartographique des espèces inventoriées 17
 2.1.2. Les petits fonds rocheux .. 17
 2.1.3. L’herbier de Posidonie .. 18
 2.1.3.1. Cartographie .. 18
 2.1.3.2. Description de la vitalité de l’herbier ... 19
 2.1.4. Les peuplements du coralligène - Evaluation de l’état de vitalité et de la structure démographique de deux espèces de gorgonaires ... 22
 2.1.4.1. Evaluation de l’état de vitalité et de la structure démographique du gorgonaire Paramuricea clavata ... 23
 2.1.4.2. Evaluation de l’état de vitalité et de la structure démographique du gorgonaire Eunicella singularis .. 25

2.2. Inventaire floristique et faunistique .. 25
 2.2.1. Les espèces protégées ... 25
 2.2.2. Les espèces d’intérêt patrimonial, commercial ou symbolique 26

2.3. Le Formulaire Standard de Données : FSD .. 26

3. PEUPLEMENTS ET PAYSAGES REMARQUABLES .. 28

3.1. Peuplements algaux du médio-littoral et de la frange supérieure de l’infralittoral 28
3.1.1. Données générales sur ces peuplements ... 28
3.1.2. Résultats et discussion ... 30

3.2. Les petits fonds rocheux .. 37

3.3. L’herbier de Posidonia .. 43
3.3.1. Importance de l’écosystème à Posidonia oceanica .. 43
3.3.2. Mesures de protection existantes ... 44
3.3.3. Localisation de l’herbier à Posidonia oceanica sur la zone d’étude 46
3.3.4. Caractérisation de l’herbier de Posidonia ... 49

3.4. Peuplements du coralligène ... 53
3.4.1. Description et localisation ... 53
3.4.2. Vitalité et structure démographique de deux espèces de gorgonaires 58
 3.4.2.1. Le gorgonaire Paramuricea clavata ... 58
 3.4.2.2. Le gorgonaire Eunicella singularis ... 62

3.5. Les grottes sous-marines ... 64

3.6. Les paysages remarquables .. 69

4. INVENTAIRE FLORISTIQUE ET FAUNISTIQUE ... 73
4.1. Les espèces protégées .. 73
4.2. Les espèces d’intérêt patrimonial, commercial ou symbolique 87
4.3. Eléments d’inventaire ... 97

5. FORMULAIRE STANDARD DE DONNEES .. 102

6. CONCLUSION – RECOMMANDATIONS ... 117

7. BIBLIOGRAPHIE .. 120

8. ANNEXES .. 128
1. INTRODUCTION

1.1. Contexte de l'étude

Les activités entreprises dans le cadre de l'accord RAMOGE se regroupent en quatre thèmes principaux : (i) la lutte contre la pollution, (ii) la sensibilisation, l'information et la participation du public, (iii) les aspects juridiques et (iv) la préservation des milieux naturels. Le groupe de travail "création de zones protégées" s'inscrit dans le cadre de ce dernier thème.

Suite à la publication du document sur les "Espaces remarquables d'intérêt écologique dans la zone RAMOGE" (Boudouresque et al., 2000), le groupe de travail a proposé que des études complémentaires soient menées sur deux zones identifiées comme espaces remarquables d'intérêt écologique, mais pour lesquelles les données concrètes étaient rares ou absentes. Les deux zones retenues par le groupe de travail sont les alentours de l'île Verte pour la France et les îles de Palmaria, Tino et Tinetto pour l'Italie.

Le premier objectif de la présente étude est de fournir une description et une évaluation des richesses patrimoniales naturelles des fonds sous-marins situés aux alentours de l'île Verte et des falaises du Bec de l'Aigle (de la calanque du Capucin jusqu'à l'anse du grand Mugel) entre l’étage médiolittoral et 50 mètres de profondeur, en portant une attention particulière aux peuplements et espèces remarquables (rares ou protégés). Un deuxième objectif est de répondre aux questions du FSD, "Formulaire Standard des Données pour les inventaires nationaux de sites naturels d'intérêt pour la conservation", document UNEP (OCA) MED WG. 157/9 (1999), conçu par le CAR/ASP du Plan d'Action pour la Méditerranée, et de présenter une analyse critique du FSD.
1.2. Caractérisation du site

1.2.1. Localisation

La zone d'étude se situe au Sud-Ouest de la Baie de La Ciotat. Elle comprend une partie continentale qui s'étend de la digue des chantiers navals au Nord jusqu'à la calanque du Capucin à l'Ouest et d'une île inhabité, l'île Verte. Le littoral rocheux est très accroché, particulièrement pour la partie continentale : les falaises du Bec de l'Aigle culminent à 154 m et plongent directement dans la mer. Le relief est beaucoup plus modéré au niveau de l'île Verte (49 m) : des parois d'une trentaine de mètres de hauteur bordent le littoral Sud de l'île. L'ensemble du littoral est marqué par la présence d'anses et de calanques plus ou moins profondes (Fugures 1 et 2).

Figure 1. Extrait d'une photo aérienne du secteur d'étude (© Aerial, 1990).

Figure 2. Carte de localisation générale du site d'étude
1.2.2. L'environnement terrestre : l'île Verte et les falaises du Bec de l'Aigle

Le site de l’île Verte et des falaises du Bec de l’Aigle offre un panorama très particulier et relativement inhabituel (Figure 3), appartenant à une même formation géologique "les poudingues". Il s'agit de galets arrondis de taille importante liés par un ciment calcaréo-gréseux (Figure 4). Cette formation originale proviendrait de l'épandage d'alluvions correspondant à un delta torrentiel (Guieu et al., 1996). Ces galets auraient été transportés il y a plus de 90 millions d'années par un torrent provenant du Sud Sud-Est.

Figure 3. Falaises du Bec de l'Aigle vue depuis le haut de la calanque de Figuerolles (Photographie © P. Bonhomme).

Une mer existait alors à l'emplacement actuel des terres et «le continent pyrénéo-corso-sarde» se trouvait à la place occupée par la mer. Par la suite, la Corse et la Sardaigne ont dérivé pour occuper leur position actuelle (Gauthier et Alesandri, 1975).

Figure 4. Poudingue situé à plus de 100 m au-dessus de la mer, dans la calanque de Figuerolles (Photographie © P. Bonhomme).

De nombreuses fissures creusées dans la roche littorale sont présentes sur le site d'étude au sein de cette formation géologique. Les galets du poudingue, consolidés par un ciment très dur, sont particulièrement résistants aux attaques de la mer. Toutefois deux formes principales d'érosion peuvent être observées (Sartoretto, 1996) :
- La première est due aux eaux de ruissellement mettant en saillie les parties les plus dures du poudingue. Cette forme d’érosion évolue très lentement.
- La deuxième forme d’érosion est liée à l’action éolienne qui forme des cavités s’apparentant aux taffonis décrits par Bourcart (1930). Ces formes érosives se rencontrent également sous l’eau jusqu’à une profondeur comprise entre 15 et 20 m de profondeur, où elles se trouvent partiellement voilées par une murette de coralligène (Laborel, 1961). Ces taffonis immergés ont une origine antérieure à la transgression holocène.

L’île Verte est un terrain du Conseil Général des Bouches du Rhône qui en assure également la gestion des ressources sylvicoles, géologiques, faunistiques, paysagères, culturelles et historiques sur près de 12 000 hectares de forêts, plans d’eau, massifs et espaces variés. L’ensemble de ces sites a pour vocation commune d’être des espaces de promenade et de découverte pour un large public.

Le site terrestre correspondant à notre secteur d’étude se situe à l’intérieur d’une ZNIEFF (Zones naturelles d’intérêt Ecologique, Floristique et Faunistique) terrestre qui s’étend de l’île Verte au Cap Canaille.

1.2.3. Le milieu marin environnant

Lorsque les conditions météorologiques sont établies, les masses d’eau se déplacent d’Est en Ouest à des vitesses comprises entre 0.4 et 0.9 km/h ; on parle de courant géostrophique permanent. Ce courant général ne se manifeste qu’au large, à plus de 5.5 km du littoral et n’a aucune influence directe sur les formations meubles du rivage (Blanc, 1975). Par régime d’Est les dérives accélèrent le courant général, mais c’est surtout par régime de Mistral que les dérives orientées du NW au SE sont très rapides (10 à 60 m/min). Le secteur de l’île Verte est
alors très touché. Les dérives d'Est et d'Ouest engendrent des courants de surface rapides et irréguliers, tourbillonnant dans la baie de La Ciotat. La vitesse et les influences sur le fond, relatives à ces courants de dérives sont amplifiées dans la passe du Canonnier entre l'île Verte et le continent. Le sens des courants dominants s'inverse selon qu'il s'agit de régime de Mistral ou d'Est. Les zones du Cap de l'Aigle et de l'île Verte, très exposées, sont l'objet de phénomènes de réflexion et de diffraction des houles et fortes vagues. On note aussi le pivotement des houles au niveau de l'île Verte (Blanc, 1975).

La zone d'étude est comprise dans la zone homogène n°21 (Pointe Cacau à Pointe de l'Eperon) du SDAGE (Schéma Directeur d’Aménagement et de Gestion des Eaux) de l’Agence de l’Eau Rhône-Méditerranée-Corse, caractérisée comme suit :

1. Un milieu écologiquement riche (frayères et nourriceries, ressources halieutiques, herbier de Posidonie, zones protégées, ZNIEFF, etc.) ;
2. Une pression anthropique forte (urbanisation, agriculture, tourisme, ports de plaisance, pêche, chalutage, etc.).

Cette zone littorale est aussi décrite dans les inventaires ZNIEFF. Deux zones ZNIEFF sont concernées, il s'agit de : l'intégralité de la zone 13M27 (Ile Verte et Bec de l'aigle) et de l'extrémité Est de la zone 13M26 (Eboulis du Cap Canaille à la Calanque de Figuerolles). Une bande littorale d'environ 550 mètres s'intercale entre ces deux zones. Les inventaires ZNIEFF citent des paysages sous-marins de "qualité exceptionnelle", plusieurs constructions biologiques et géologiques monumentales (concrétionnements coralligènes, tombants rocheux et grottes), ainsi que plusieurs espèces méritant classement (gorgones, corail).

Six autres ZNIEFF sont présentes à proximité du site d'étude, il s'agit des ZNIEFF (Figure 5) :

13M22 : Herbier de Posidonie de la baie de Cassis
13M23 : Calanque de Marseille à Cassis
13M24 : Seiche de la Cassidaigne
13M25 : Tête du Canyon de la Cassidaigne
13M28 : Baie de la Ciotat et des Lecques (Herbier de Posidonie)
13M29 : Etablissement de pêche de la Ciotat

Les ZNIEFF établies en 1987 sont actuellement en cours de révision dans la Région Provence Alpes-Côte d'Azur.
1.2.4. Fréquentation et activités humaines

La Ciotat, connue dès l'antiquité comme colonie marseillaise sous le nom de Citharista, a toujours eu une activité tournée vers la mer. Situé à moins de 10 minutes en bateau du port de la Ciotat, le milieu naturel de l'île Verte et des Falaises du Bec de l'Aigle constitue un espace privilégié de loisirs et de détente pour les Ciotadins ; il attire et fascine même des gens d'horizons beaucoup plus lointain. L'ensemble des activités régulièrement rencontrées le long du littoral (plongée, chasse, plaisance, pêche amateur et professionnelle) y sont observées. La plongée, activité en plein essor économique, ne compte pas moins de 5 clubs associatifs affiliés la FFESSM (Fédération Française d'Etudes et de Sports Sous-Marins) et de 2 structures commerciales à La Ciotat. Les clubs des communes de Cassis, Saint Cyr sur Mer et des Lecques fréquentent aussi régulièrement les nombreux sites de plongée présents tout autour de l'île Verte. L'association Atelier bleu, implantée dans le parc du Mugel, occupe une place particulière dans le monde de la plongée. Ce centre permanent d'initiation à l'environnement marin (label CPIE obtenu en août 2001) travaille sur des projets "d'éducation à l'environnement", essentiellement avec les scolaires, et assure un ensemble "d'activités
nautiques de découverte". Un sentier de découverteaquatique et un duplex vidéo sous-marin ont été mis en place au niveau de l'anse du Mugel ; la plongée découverte pour les enfants est aussi proposée. Depuis avril 2000, l'Atelier bleu a lancé un projet d'une durée de 5 ans, dont la première phase 2000-2001 consiste en un état des lieux de la baie de La Ciotat. Ce projet devrait permettre, à terme, de rapprocher les différents acteurs du milieu, d'œuvrer pour une gestion cohérente et concertée de la baie et de fournir de nombreux renseignements sur les aspects quantitatifs et qualitatifs de la fréquentation (basés sur des questionnaires et observations).

Les chasseurs sous-marins sont présents sur le site toute l'année, le site étant reconnu comme particulièrement riche. Un chasseur originaire de La Ciotat s'est d'ailleurs illustré dans les championnats de France. La plaisance et la pêche amateur sont deux activités également très pratiquées sur l'ensemble du secteur, en alternance au cours d'une même journée.

La pêche aux petits métiers est une activité ancestrale qui perdure encore, bien qu'elle ait fortement diminué (25% en moins) depuis 1988. On dénombre aujourd'hui vingt patrons pêcheurs basés à La Ciotat. Dix-sept d'entre eux pratiquent la pêche aux petits métiers (dont 1 oursineur et 1 pêcheur fournissant les aquariums en poissons vivants), les trois derniers pratiquant la pêche à partir de grosses unités et plus au large : il s'agit d'un thonier et de deux lamparos (comm. pers. C. Masclef, Atelier Bleu).

La fréquentation au niveau du domaine terrestre se concentre essentiellement au niveau de l'anse du grand Mugel, du parc du Mugel, de la calanque de Figuerolles et de l'Île Verte. L'anse du grand Mugel constitue avec la plage de la calanque de Figuerolles les deux seuls sites où la baignade est vraiment envisageable depuis le continent. Le parc du Mugel, site magnifique à l'abri du massif du Bec de l'Aigle, est entretenu par la Municipalité de La Ciotat. Plusieurs aménagements y sont actuellement en cours. La calanque de Figuerolles, véritable ouverture sur la mer, offre un paysage d'une grande beauté et attire chaque année des milliers de visiteurs. Ses résidents n'en sont pas moins sympathiques et ont créé en 1956 la « République Indépendante de Figuerolles ». Depuis trois générations, ils ont à cœur de protéger et d'embellir la calanque. Couverte d'une forêt de Pins, l'Île Verte (d'ou son nom), havre de sérénité, inhabitée, offre un paysage insolite. Un appontement situé au niveau de la calanque St Pierre permet aux visiteurs de débarquer. La baignade est possible sur la façade Nord de l'île au niveau de trois petites plages de sable grossier. La traversée vers l'île se fait
soit par un service de navette régulier depuis le Vieux Port, soit par des embarcations privées. Plusieurs écoles et associations font régulièrement découvrir l'environnement naturel de ce site particulier aux enfants de la région.

Le site est fortement marqué par la présence des chantiers de construction navale (Figure 6). La digue des chantiers délimite le site d'étude sur sa partie Nord. D'immenses grues porteuses, immobiles, se dressent en avant des falaises du Bec de l'Aigle ; elles rappellent l'activité très florissante des chantiers navals dans les années 1970-1990, activité aujourd'hui très réduite. La construction de la digue la plus externe semble n'avoir eu que peu d'incidence sur le milieu marin ; cependant, cet ensemble portuaire est classé parmi les secteurs pollués (Blanc, 1975). La construction des caissons pour la "digue flottante" de Monaco est actuellement en cours dans les bassins du chantier naval.

En 1985, un établissement de pêche a été créé (Décret du 22 mars 1983) par le Parc marin de La Ciotat, au milieu de la baie (à 3,5 km du site d'étude) ; il constituait, lors de sa création, une des seules zones marines protégées des Bouches du Rhône avec la réserve de Carry-le-Rouet. Cette aire marine protégée avait pour vocation première la protection de la faune et de la flore mais avait aussi pour but de promouvoir la pêche côtière artisanale. 750 m3 de récifs artificiels ont été immergés en 1986 à 30 m de profondeur (3 modules bonna ϖ de 158 m3 et 275 m3 de modules cubiques). Un état initial des peuplements ichtyologiques présents sur les récifs a été réalisé en 1987 par Ody. Cette Aire Marine Protégée est tombée en désuétude depuis 1991, le renouvellement de l'autorisation (concédée pour 5 ans) n'ayant pas été accordé. Toutefois, un suivi du peuplement ichtyologique de ces récifs artificiels a été réalisé en 2000, par l'Atelier Bleu (Ganteaume, 2000) 13 ans après le suivi initial.
L'émissaire des eaux usée de La Ciotat aboutit en mer au niveau de la Calanque du Capucin (Figure 7), à l'Ouest de la Calanque de Figuerolles. Blanc (1975) a noté que la dispersion des effluents était bonne, car l’émissaire est bien situé, débouchant sur un fond à forte pente en eaux profondes bien agitées. Les effluents urbains étaient rejetés sans traitement jusqu'en 1990. Ils ont entraîné une régression importante de l'herbier à Posidonia oceanica sur environ 600 m de part et d'autre du rejet (Ramade, 1986). Depuis 1990, les eaux usées sont traitées par une station physico-chimique, d'une capacité de 50 000 équivalents-habitants. Le panache de dilution s'étend fréquemment au niveau du Bec de l'Aigle, jusque dans l'anse du Sec et à l'intérieur même de la calanque de Figuerolles, suscitant le mécontentement de nombre d'usagers.

Figure 7. Rejet de l’émissaire urbain de La Ciotat dans la Calanque des Capucins (Photographie © P. Bonhomme).
2. MATERIEL ET METHODES

Nous avons recensé les éléments du patrimoine biologique marin de l'île Verte et des falaises du Bec de l'Aigle depuis le médiolittoral jusqu'à l'isobathe 50 m. L'analyse des données bibliographiques a été complétée par la collecte d'informations sur les peuplements sous-marins et leur évolution auprès de personnes (clubs de plongée, etc.) fréquentant la zone d'étude.

Enfin, des plongées en scaphandre autonome ont permis d'acquérir des données sur la bathymétrie, la présence d’espèces protégées, la présence d’espèces patrimoniales et les biocénoses remarquables, permettant d'avoir une idée, zone par zone, de l’état actuel du patrimoine biologique et de le comparer, le cas échéant, à des données anciennes.

Les biocénoses marines et autres types de fonds des différents étages biologiques (médiolittoral, infralittoral et circalittoral) ont été décrits le long de transects d’observation. Ceux-ci partent de la côte vers le large, et sont régulièrement répartis le long du littoral, selon un maillage représentatif de la zone (Figure 8). Ces transects ont été complétés par la prospection des petits fonds le long du linéaire de côte, ainsi que par des plongées ponctuelles sur les sites particuliers tels l’anse de Gaméou, la grotte à Gaby et les pierres du large. Sont aussi signalés les transects effectués dans l'herbier de Posidonie par Charbonnel et Francour (1994) et par Bonhomme et al. (1999). Les données ont été acquises in situ par des méthodes non destructives.

Parmi les biocénoses, celles remarquables, tels l’herbier de Posidonie (Posidonia oceanica) et les peuplements du coralligène, ont fait l’objet d’une attention particulière en raison de la biodiversité qu’elles abritent. Les biocénoses constituant des paysages sous-marins particuliers d'un point de vue patrimonial, culturel et esthétique (perception du paysage par les plongeurs sous-marins) ont été abordées.
2.1. Localisation et caractérisation des peuplements et biocénoses remarquables

2.1.1. Evaluation quantitative des peuplements algaux du médiolittoral et de la frange supérieure de l’infra-littoral

Dans la zone de battement des vagues et des marées (étage médiolittoral et frange supérieure de l’infra-littoral) se trouvent des ceintures étroites d’algues et d’invertébrés spécifiques de ce niveau (Figure 9). Leur présence dans ce milieu, hostile pour les organismes, est conditionnée par une grande résistance à l’hydrodynamisme, ainsi qu’une bonne adaptation aux très fortes variations de température et, pour certaines d’entre eux, de salinité. Les peuplements sont particulièrement exposés aux pollutions de surface, comme les rejets d’émissaires urbains ou les pollutions pétrolières (Arnoux et Bellan-Santini, 1972 ; Belsher, 1974 ; 1979). L’étude de leur répartition géographique, ainsi que leur suivi dans le temps, peut permettre de caractériser la qualité du milieu littoral (Bellan-Santini, 1966) ; on parle alors d’indicateurs biologiques et plus particulièrement d’espèces sentinelles (Pergent, 1991 ; Bellan, 1993 ; Boudouresque, 1995, 1996).
Parmi ces organismes, quelques espèces d’algues, aisément identifiables, ont été sélectionnées pour cartographie linéaire et évaluation quantitative de leur abondance.

Figure 9. Peuplements du médiolittoral observés, sur la face Sud de l’île Verte (R : Rissoella verruculosa ; L : Lithophyllum byssoides ; C : Cystoseira amentacea var. stricta) (Photographie © P. Bonhomme).

2.1.1.1. Modalités d’intervention

Sur la base des cartographies linéaires réalisées, sur ce niveau marin, dans d’autres secteurs de Le littoral situé entre l'anse du petit Mugel et la calanque du Capucin ainsi que le pourtour de l'île Verte ont été étudiés au cours de plusieurs missions en juin et juillet 2000. La zone étudiée a été suivie en zodiac, la côte pouvant être approchée à un mètre de distance. La calanque du grand Mugel (soit 15 secteurs) n’a pu être étudiée à cause de la présence d’une ligne d’eau balisant le secteur de baignade très fréquenté. L’étroitesse de la calanque du Capucin et les eaux noiratres et insalubres s’y déversant (soit 4 secteurs) ont rendu impossible l’étude des 4 secteurs situés en fond de calanque. La zone d’étude a été découpée en deux grands secteurs :

(i) zone continentale de l’anse du grand Mugel jusqu’à la calanque du Capucin ;
(ii) île Verte.

2.1.1.2. Les peuplements algaux sélectionnés

Sur la base des cartographies linéaires réalisées, sur ce niveau marin, dans d’autres secteurs de Méditerranée occidentale (Augier et Boudouresque, 1976 ; Bianconi et al., 1987 ; Blachier et
al., 1998 ; De Vaugelas et al., 1998 ; Mari et al., 1998 ; Meinesz et al., 1999, 2001 ; Soltan 2001) les espèces ou groupes d’espèces suivants ont été inventoriés :

- Lithophyllum byssoides (anciennement L. lichenoides).
- Cystoseira amentacea var. stricta.
- Corallina elongata.
- Ulva spp. et Enteromorpha spp.
- Rissoella verruculosa.

2.1.1.3. Méthode d’évaluation quantitative des peuplements algaux

A partir d’une photographie aérienne (IAP 2000) numérisée, et de zooms sur un écran d’ordinateur, à l’échelle du 1/250ème, le linéaire côtier a été découpé en 171 secteurs de 50 m, longueur de tronçon retenue par Bianconi et al. (1987), ce qui représente au total 8 550 m de littoral examiné.

Pour chacun de ces tronçons, l’évaluation quantitative des espèces et groupes d’espèces retenus a été effectuée d’après les critères suivants :

Les trois types morphologiques de développement caractéristiques de Lithophyllum byssoides (Bianconi et al., 1987) ont été considérés : (i) type I ; thalles isolés les uns des autres (en forme de demi-sphères éparses), (ii) type II ; thalles voisins, localement coalescents (même si cette coalescence n’intéresse qu’une partie du tronçon de 50 m), le relief formé par le placage des thalles ne constituant pas de surplomb, (iii) type III ; la coalescence des thalles et leur mode de croissance détermine la formation d’un surplomb dont la profondeur est supérieure à 5 cm (encorbellement).

L’abondance de Cystoseira amentacea var. stricta, Corallina elongata, Rissoella verruculosa, Ulva spp. et Enteromorpha spp., a été déterminée en fonction du pourcentage du linéaire occupé sur le tronçon (Tableau 1).

<table>
<thead>
<tr>
<th>Classe</th>
<th>Linéaire occupé sur tronçon de 50 m</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 m</td>
<td>0 %</td>
</tr>
<tr>
<td>1</td>
<td>0 à 2.5 m</td>
<td>0 à 5 %</td>
</tr>
<tr>
<td>2</td>
<td>2.5 à 10 m</td>
<td>5 à 20 %</td>
</tr>
<tr>
<td>3</td>
<td>10 à 25 m</td>
<td>20 à 50 %</td>
</tr>
<tr>
<td>4</td>
<td>25 à 45 m</td>
<td>50 à 90 %</td>
</tr>
<tr>
<td>5</td>
<td>45 à 50 m</td>
<td>90 à 100 %</td>
</tr>
</tbody>
</table>

2.1.1.4. Représentation cartographique des espèces inventoriées

Le trait de côte a été digitalisé sous SIG (ArcView®), à partir d’agrandissements de photos aériennes. Chaque secteur de 50 m est désigné par un numéro, et est représenté par la portion de trait de côte correspondant, à laquelle correspondent les côtes d’abondance des différentes espèces échantillonnées, ainsi que différentes informations comme le secteur et la date d’observation. En combinant et triant les informations de la base de données, on peut rapidement produire des cartes thématiques (répartition de telle ou telle espèce, secteurs répondant à plusieurs critères, etc.). Le produit final est une représentation cartographique des peuplements du médiolittoral et de l’étage supérieur de l’infralittoral sur l’ensemble de la zone d’étude, avec une unité géographique de 50 m.

2.1.2. Les petits fonds rocheux

Les petits fonds rocheux, constitués d'éboulis, de blocs et d'arêtes rocheuses appartiennent à l’infralittoral (Pérès et Picard, 1964), zone constamment immergée (par opposition au médiolittoral, zone d’humectation par les vagues et les marées, tantôt submergée, tantôt à sec, qui est située au-dessus de l’infralittoral). Les peuplements de substrat dur de ces petits fonds rocheux sont dominés qualitativement et quantitativement par les végétaux. C’est une biocénose d’une grande richesse, lieu de vie de nombreux poissons et invertébrés, en particulier des juvéniles. Il s’agit d’un milieu d’autant plus vulnérable qu’il est en première ligne face aux dégradations éventuelles (rejets urbains et aménagements).
La localisation cartographique et la description des petits fonds rocheux de la zone d'étude ont été réalisées par l'utilisation de photographies aériennes et par des observations en plongée sous-marine.

2.1.3. L’herbier de Posidonie

Parmi les peuplements différenciés, l'herbier à *Posidonia oceanica* occupe une place importante en raison de son rôle écologique et de son étendue dans la zone d'étude. Sa préservation est en effet un élément majeur du maintien des équilibres littoraux, tant biologiques que physiques. Une caractérisation de l'herbier de Posidonie, de ses limites (typologie, dynamique apparente, peuplements de contact et substrat) et de son état de vitalité global a été effectuée, au moyen de différents descripteurs (recouvrement, densité, proportion de rhizomes plagiotropes).

2.1.3.1. Cartographie

A partir d'une photographie aérienne de juillet 2000 d'IAP, les limites présumées des types de fonds et des structures benthiques visibles ont été repérées. Ces limites correspondent sur le cliché aux changements brusques de teinte ou de densité lumineuse, de part et d'autre d'un contour plus ou moins régulier. Toutefois, si une zone claire correspond généralement à une étendue de sable, une zone foncée peut traduire différents types de fonds, confondus entre eux sur la photographie (Boudouresque et al., 1987) : herbier de Posidonie, mattes mortes, peuplements d'algues sur roche ou tout simplement accumulation de feuilles mortes de Posidonie (litière) ou de macro-déchets. Il est donc indispensable de procéder à des vérifications sur le terrain, au moyen de plongées ponctuelles d'observations ("vérités-terrain"), pour confirmer et compléter les données obtenues par photo-interprétation (Bertrandry et al., 1986 ; Charbonnel et al., 1993 ; Nieri et al., 1993). Ces vérités-terrain permettent en outre de préciser les limites des structures remarquables (matte morte, tombant de matte, intermatte, sable, roche, etc.). La limite inférieure ne pouvant être repérée sur les photographies aériennes.

2. Plagiotropes : se dît des rhizomes de Posidonie à croissance horizontale. Ils témoignent d'une dynamique de recolonisation de l'herbier sur le substrat.

3. Ces feuilles, qui se déplacent d'un mois à l'autre en fonction des tempêtes et des courants, peuvent être facilement confondues avec un herbier de Posidonie vivant.
ont été tracées à partir des observations effectuées en plongée et de la carte des fonds établie par Laborel (1986).

2.1.3.2. Description de la vitalité de l’herbier

La densité de l’herbier de Posidonie correspond au nombre de faisceaux de Posidonies présents par unité de surface, généralement le mètre carré. Celle-ci varie en fonction de la profondeur et des conditions du milieu (lumière, type de substrat où l’herbier est implanté). Du fait de l’intensité lumineuse élevée près de la surface, un herbier présente des valeurs de densité très élevées dans des secteurs superficiels, alors qu’elles sont beaucoup plus faibles en profondeur (limite inférieure) ou dans des zones présentant une turbidité élevée (Pergent et al., 1995). La densité est mesurée au hasard dans l’herbier, au moyen d’un quadrat de 20 cm de côté (surface minimale garantissant la représentativité de la mesure in Panayotidis et al., 1981), avec cinq répliques.

Ces mesures de densité permettent de classer l'herbier en six différents types (Giraud, 1977) : herbier très dense, dense, clairsemé, très clairsemé, semi-herbier, faisceaux isolés (Tableau 2).

<table>
<thead>
<tr>
<th>Densité par m²</th>
<th>Type d’herbier</th>
</tr>
</thead>
<tbody>
<tr>
<td>- plus de 700 faisceaux/m²</td>
<td>Type I, herbier très dense</td>
</tr>
<tr>
<td>- de 400 à 700 faisceaux/m²</td>
<td>Type II, herbier dense</td>
</tr>
<tr>
<td>- de 300 à 400 faisceaux/m²</td>
<td>Type III, herbier clairsemé</td>
</tr>
<tr>
<td>- de 150 à 300 faisceaux/m²</td>
<td>Type IV, herbier très clairsemé</td>
</tr>
<tr>
<td>- de 50 à 150 faisceaux/m²</td>
<td>Type V , semi herbier</td>
</tr>
<tr>
<td>- moins de 50 faisceaux/m²</td>
<td>Faisceaux isolés</td>
</tr>
</tbody>
</table>

Une seconde classification, intégrant la profondeur, a été proposée par Pergent-Martini (1994) et Pergent et al. (1995). En effet, la variabilité du facteur densité est expliquée à 54% par la profondeur (qui intègre également la pénétration de la lumière). Une grille de lecture simplifiée

4 - Les 46% de variabilité restant sont liés à d'autres paramètres comme la turbidité moyenne, la pollution, l'hydrodynamisme ou la nature du substrat (Pergent-Martini, 1994).
a été proposée et classe l'herbier en quatre catégories, selon les valeurs de densité mesurées en fonction de la profondeur : densité anormale, sub-normale inférieure, normale, et sub-normale supérieure (Tableau 3).

Pourcentage de rhizomes plagiotropes : en limite d’herbier ou en bordure des taches et îlots de Posidonies, la présence de nombreux rhizomes plagiotropes traçants (croissance horizontale) est un indice de bonne vitalité de l'herbier, car elle traduit une tendance à la progression5. La position majoritaire des rhizomes de Posidonies est donc notée et la proportion (en pourcentage) de rhizomes plagiotropes est estimée en bordure d’herbier.

Tableau 3. Classification des herbiers de Posidonies en fonction de la profondeur (Prof., en mètres). DA = densité anormale, DSI = densité sub-normale inférieure, DN = densité normale, DSS = densité sub-normale supérieure (d'après Pergent-Martini, 1994 et Pergent et al., 1995).

<table>
<thead>
<tr>
<th>Prof</th>
<th>DA</th>
<th>DSI</th>
<th>DN</th>
<th>DSS</th>
<th>Prof</th>
<th>DA</th>
<th>DSI</th>
<th>DN</th>
<th>DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>822</td>
<td>?</td>
<td>934</td>
<td>1158</td>
<td>21</td>
<td>48</td>
<td>?</td>
<td>160</td>
<td>384</td>
</tr>
<tr>
<td>2</td>
<td>646</td>
<td>?</td>
<td>758</td>
<td>982</td>
<td>22</td>
<td>37</td>
<td>?</td>
<td>149</td>
<td>373</td>
</tr>
<tr>
<td>3</td>
<td>543</td>
<td>?</td>
<td>655</td>
<td>879</td>
<td>23</td>
<td>25</td>
<td>?</td>
<td>137</td>
<td>361</td>
</tr>
<tr>
<td>4</td>
<td>470</td>
<td>?</td>
<td>582</td>
<td>806</td>
<td>24</td>
<td>14</td>
<td>?</td>
<td>126</td>
<td>350</td>
</tr>
<tr>
<td>5</td>
<td>413</td>
<td>?</td>
<td>525</td>
<td>749</td>
<td>25</td>
<td>4</td>
<td>?</td>
<td>116</td>
<td>340</td>
</tr>
<tr>
<td>6</td>
<td>367</td>
<td>?</td>
<td>479</td>
<td>703</td>
<td>26</td>
<td>?</td>
<td>106</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>327</td>
<td>?</td>
<td>439</td>
<td>663</td>
<td>27</td>
<td>?</td>
<td>96</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>294</td>
<td>?</td>
<td>406</td>
<td>630</td>
<td>28</td>
<td>?</td>
<td>87</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>264</td>
<td>?</td>
<td>376</td>
<td>600</td>
<td>29</td>
<td>?</td>
<td>78</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>237</td>
<td>?</td>
<td>349</td>
<td>573</td>
<td>30</td>
<td>?</td>
<td>70</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>213</td>
<td>?</td>
<td>325</td>
<td>549</td>
<td>31</td>
<td>?</td>
<td>61</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>191</td>
<td>?</td>
<td>303</td>
<td>527</td>
<td>32</td>
<td>?</td>
<td>53</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>170</td>
<td>?</td>
<td>282</td>
<td>506</td>
<td>33</td>
<td>?</td>
<td>46</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>151</td>
<td>?</td>
<td>263</td>
<td>487</td>
<td>34</td>
<td>?</td>
<td>38</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>134</td>
<td>?</td>
<td>246</td>
<td>470</td>
<td>35</td>
<td>?</td>
<td>31</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>102</td>
<td>?</td>
<td>214</td>
<td>438</td>
<td>37</td>
<td>?</td>
<td>16</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>88</td>
<td>?</td>
<td>200</td>
<td>424</td>
<td>38</td>
<td>?</td>
<td>10</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>74</td>
<td>?</td>
<td>186</td>
<td>410</td>
<td>39</td>
<td>?</td>
<td>3</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>61</td>
<td>?</td>
<td>173</td>
<td>397</td>
<td>40</td>
<td>?</td>
<td>?</td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>

5 - Inversement, un pourcentage élevé de rhizomes plagiotropes au sein même de l’herbier peut traduire une réponse à un stress, causé par exemple par une pression de mouillage élevée (Francour et al., 1998).
Recouvrement de l’herbier de Posidonie : le recouvrement de l’herbier correspond au pourcentage de couverture du substrat par les feuilles de Posidonies, par rapport aux zones non couvertes (sable, mat de vase, roche). Les valeurs de recouvrement varient selon l’état de vitalité de l’herbier. Dans le cas d’un herbier continu, présentant une vitalité élevée, le recouvrement atteint 80 à 100%. Ce recouvrement peut présenter des valeurs beaucoup plus faibles lorsque l’herbier est soumis à des conditions de développement défavorables. Les valeurs diminuent également avec la profondeur (au niveau de la limite inférieure, le recouvrement est généralement compris entre 5 % et 40 %) et avec la proximité de zones perturbées par des aménagements ou des rejets.

La méthode pour mesurer le recouvrement est basée sur l’utilisation d’une plaquette de PVC transparente de 30 cm x 30 cm, divisée en un carroyage de 10 cm de côté (9 carreaux au total). Cette plaquette permet à l’observateur d’effectuer un comptage du nombre de carreaux occupés par de l’herbier (entre 0 et 9, à un demi-carreau près, cette valeur étant ensuite exprimée en pourcentage). Cette méthode mise au point et standardisée par le GIS Posidonie permet d’éviter les variations de mesures dues à "l’effet observateur".

La mesure est réalisée à la verticale du point observé, à 3 mètres au-dessus du fond et les points d’échantillonnage sont déterminés de manière aléatoire au sein des stations (Figure 10). Une échelle d’évaluation du recouvrement (faible, moyen, fort) est proposée (Tableau 4), en fonction des valeurs moyennes mesurées ou estimées (Gravez et al., 1995).

Figure 10. Méthode d’évaluation du recouvrement de l’herbier de Posidonie sur le substrat. Dimensions de la plaquette transparente (en cm) et exemple de notation lors de l’évaluation. Au dessus, un observateur situé à 3 m au dessus de l’herbier (d’après Gravez et al., 1995).
Tableau 4. Interprétation de la vitalité de l’herbier en fonction du recouvrement moyen et de la profondeur.

<table>
<thead>
<tr>
<th>Pourcentage de recouvrement (valeurs seuil)</th>
<th>Limite supérieure</th>
<th>Limite inférieure</th>
<th>Interprétation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inférieur à 40%</td>
<td>Inférieur à 20 %</td>
<td>Faible recouvrement</td>
<td></td>
</tr>
<tr>
<td>40 % à 80 %</td>
<td>20 % à 50 %</td>
<td>Recouvrement moyen</td>
<td></td>
</tr>
<tr>
<td>Supérieur à 80 %</td>
<td>Supérieur à 50 %</td>
<td>Fort recouvrement</td>
<td></td>
</tr>
</tbody>
</table>

2.1.4. Les peuplements du coralligène - Evaluation de l'état de vitalité et de la structure démographique de deux espèces de gorgonaires

Les peuplements du coralligène font partie de l’étage circalittoral qui débute à la limite inférieure des herbiers de phanérogames entre 20 et 40 m de profondeur, selon la transparence de l’eau (Figure 11). Ces peuplements sont constitués d’un bio-concrétionnement principalement édifié par des algues calcaires, sur lequel se fixent de nombreux autres organismes le plus souvent filtreurs : scléactinaires, bryozoaires, éponges et gorgones. Ce bio-concrétionnement, très anfractueux, procure habitats et nourriture à une faune vagile variée (poissons, crustacés, mollusques, échinodermes, etc.). Certaines espèces du coralligène peuvent toutefois être observées à plus faible profondeur, dans l’étage infralittoral, lorsque la luminosité est faible, par exemple sous les surplombs rocheux ou le long des parois des failles.

Figure 11. Répartition bathymétrique des principales biocénoses littorales.

Outre leur richesse faunistique et floristique, les peuplements coralligènes constituent des sites de choix pour les plongeurs sous-marins, ils représentent donc un patrimoine sous-marin qu’il convient de connaître et le cas échéant de protéger. La caractérisation et la localisation des peuplements du coralligène profond de la zone d’étude ont été réalisées à partir d’observations en plongée sous-marine, sur les sites les plus représentatifs.
2.1.4.1. Evaluation de l'état de vitalité et de la structure démographique du gorgonaire *Paramuricea clavata*

La méthodologie utilisée pour quantifier l'état des peuplements de *Paramuricea clavata* a été calquée sur la méthode de recensement élaborée par les scientifiques du Centre d'océanographie de Marseille pour les plongeurs amateurs, suite à l'épisode de mortalité massive, décrit par Perez *et al* (2000), qui s'est produit à partir du mois d'août 1999, en Ligurie et sur les côtes de Provence. Cette méthodologie a été retenue de façon à compléter les données déjà acquises sur d'autres sites, à les comparer entre elles et à tester le nouveau protocole.

Le recensement doit s'effectuer sur une centaine de colonies de *Paramuricea clavata* ; trois paramètres sont systématiquement notés sur chacune d'entre elle :

1. Taux de nécrose : les différents stades de nécrose sont représentés (Figure 12) à l'aide d’un gabarit, utilisé en plongée lors des observations. L’échelle utilisée est la suivante :
 - 0 : colonie entièrement morte : 100 % de la colonie nécrosés
 - 1 : 75-99 % de la colonie nécrosés
 - 2 : 50-74 % de la colonie nécrosés
 - 3 : 25-49 % de la colonie nécrosés
 - 4 : 10-24 % de la colonie nécrosés
 - 5 : 0-9 % de la colonie nécrosées.

2. Colonisation des axes dénudés des gorgones par des organismes vivants. Elle permet d'avoir une estimation de la date de la nécrose. L'échelle utilisée est la suivante :
 - N : le squelette est nu ; la nécrose est récente.
 - C : le squelette est colonisé par des algues et des bryozoaires ; la nécrose est alors plus ancienne.
 - N et C : on observe, sur une même colonie, une partie de l'axe nu et une autre partie colonisé ; ceci peut être dû à une colonisation en plusieurs phases.

3. Classes de taille

Nous n'avons pas retenu la limite entre une grande et une petite classe de taille, fixée à 15 cm, comme ceci est le cas dans le protocole destiné aux plongeurs amateurs. L'ensemble des colonies ont été mesurées à 10 cm près, à l'aide d'une pipe en PVC graduée tous les 10 cm.
Ces données, plus précises, permettent de dresser les histogrammes de distribution des tailles de chaque peuplement étudié.

Quatre séries de mesures ont été effectuées, chacune étant réalisée dans une tranche bathymétrique n'excédant pas deux mètres d’amplitude verticale, il s’agit de :

- Levant 31 m
- Levant 34 m
- Rosier-Levant 35 m
- Rosier-Levant 38 m

Figure 12. Représentation des stades de nécrose 10%, 50% et 75%. En haut : gabarit utilisé en plongée ; en bas : photographie d’une colonie illustrant le taux de nécrose (d’après Perez et al., 2000 – Photographies © T. Perez et J.-G. Harmelin).
2.1.4.2. Evaluation de l'état de vitalité et de la structure démographique du
gorgonaire Eunicella singularis

L'observation de nombreux juvéniles *d'Eunicella singularis* sur d'anciens peuplements de
gorgones complètement dévastés, suite à l'épisode de mortalité, nous a conduit à nous
 intéresser de près à cette espèce. Il est apparu non seulement important d'évaluer l'état de
santé de cette espèce mais aussi de quantifier et d'établir un point zéro sur ces colonies, peut
être postérieures à l'épisode de mortalité, de façon à pouvoir suivre leur évolution dans le
temps.

Les mesures d'*Eunicella singularis* ont été effectués à l'aide d'un quadrat de 50cm*50cm, soit
sur une surface de 0.25 m². Les mesures ont été réalisées au niveau d'une station située sur un
plateau sub-horizontal, à flanc de paroi rocheuse, entre 15 et 17.5 m de profondeur. De
manière analogue à *Paramuricea clavata*, les paramètres taux de nécrose, colonisation des
axes dénudés et classe de taille (évaluée au centimètre près), ont été mesurés pour chaque
colonie.

2.2. Inventaire floristique et faunistique

L’inventaire floristique et faunistique n’a pas cherché à être exhaustif mais s’est attaché à
rechercher les espèces présentant un statut légal de protection, les espèces présentant un
intérêt patrimonial et les espèces bio-indicatrices.

2.2.1. Les espèces protégées

Les espèces protégées que nous avons recherchées au cours des interventions en plongée
sont :

(i) Les espèces protégées par les arrêtés ministériels du 19 juillet 1988 et du 26
novembre 1992 : la patelle géante (*Patella ferruginea*), la grande nacre (*Pinna
nobilis*), l’oursin diadème (*Centrostephanus longispinus*), la grande cigale
(*Scyllarides latus*), la Posidone (*Posidonia oceanica*), la datte de mer (*Lithophaga
lithophaga*).

(ii) Les espèces protégées par le décret du 7 juillet 1999, correspondant à la
publication des amendements aux annexes I et II, de la convention de Berne, plus
particulièrement : les hippocampes (*Hippocampus hippocampus* et *Hippocampus

2.2.2. Les espèces d'intérêt patrimonial, commercial ou symbolique

Les espèces d’intérêt patrimonial ont été abordées par Harmelin et al. (1996) au cours de l’évaluation du patrimoine biologique de l’archipel de Riou. Il s’agit d’espèces sans protection juridique particulière, mais sensibles à la pression humaine s’exerçant sur le milieu marin par le biais des différentes activités socio-économique (pêche professionnelle et amateur, pêche sous-marine, plongée, etc.). Nous pouvons citer parmi ces espèces : le corail rouge (Corallium rubrum), les grands crustacés (l’araignée Maia squinado, la langouste Palinurus elephas, le homard Homarus gammarus) et des poissons comme le loup (Dicentrarchus labrax), le corb (Sciaena umbra), la dorade (Sparus aurata), le denti (Dentex dentex), les sars (Diplodus spp.), la girelle (Coris julis), les serrans, le chapon (Scorpaena scrofa) et le saint-pierre (Zeus faber).

Il s’agit aussi d’espèces considérées comme symboliques à cause de leur rareté ou de leur raréfaction actuelle mais aussi de par leur qualité esthétique. Certaines de ces espèces sont des espèces cibles déjà citées comme le corail rouge, les grands crustacés et les poissons comme le mérou et le corb.

2.3. Le Formulaire Standard de Données : FSD

Le groupe de travail RAMOGE "Initiation d'une concertation sur les propositions de création de zones protégées dans la zone RAMOGE" a élaboré une réflexion technique sur le "Formulaire Standard des Données pour les inventaires nationaux de sites naturels d'intérêt pour la conservation" (document UNEP (OCA) MED WG. 157/9, 1999), conçu par le CAR/ASP du Plan d’Action pour la Méditerranée. Les experts ont transmis les résultats de cette réflexion sous la forme d'un document intitulé "Avis RAMOGE sur le Projet de Formulaire standard des données pour les inventaires nationaux de sites naturels d'intérêt pour la conservation". Les experts ont relevé tout l’intérêt d’un tel document et ont jugé opportun que les futurs inventaires soient réalisés avec le souci de collecter l’information nécessaire au FSD.
En effet, ce FSD est une adaptation aux spécificités de la Méditerranée des outils développés dans le cadre des réseaux de surveillance NATURA 2000 et EMERAUDE, en cours d'être mis en place respectivement au niveau de l'Union Européenne (Directive 74/409/CEE et 92/43/CEE du Conseil) et du Conseil de l'Europe (Résolution n°3 (1996) du Comité permanent de la Convention de Berne), et s'intègre donc dans la problématique de la présente étude. Conformément aux objectifs généraux des inventaires, le questionnaire a été conçu pour assister la prise de décision concernant la gestion et, le cas échéant, la protection du site décrit; et fournir un outil pour la surveillance à long terme du site.

De manière complémentaire aux investigations décrites précédemment, nous nous sommes donc employés, au cours de cette étude, à remplir le formulaire FSD. Cet exercice débouche sur une réflexion sur la faisabilité et la pertinence de l'utilisation de ce formulaire, exposant les difficultés rencontrées sur le terrain.
3. PEUPLEMENTS ET PAYSAGES REMARQUABLES

3.1. Peuplements algaux du médiolittoral et de la frange supérieure de l'infralittoral

3.1.1. Données générales sur ces peuplements

(ii) *Cystoseira amentacea var. stricta*. De nombreuses espèces de cystoseires (Chromophyta, Fucales, Cystoseiracées) sont observées en Méditerranée occidentale. Ce sont des algues de grande taille, de couleur brun-rouge, constituées d’un ou plusieurs troncs, portant de nombreuses ramifications. Les plus grandes des cystoseires méditerranéennes peuvent dépasser 1m de hauteur ; ce sont des espèces très longévives (plusieurs dizaines d’années) (Ballesteros *et al*., 1998). Du fait de leur grande taille, les cystoseires constituent des habitats remarquables en terme de biodiversité et de productivité (de nombreux invertébrés trouvent abri entre les feuilles), analogues aux forêts du domaine terrestre. Les cystoseires se rangent parmi les espèces à forte valeur patrimoniale de Méditerranée (Delepine *et al*., 1987 ; Boudouresque *et al*., 1996). En Méditerranée trois grands types de peuplements de cystoseires se distribuent entre la surface de l’eau et 50 m de profondeur : les peuplements de mode battu (dont les peuplements de *Cystoseira amentacea var. stricta* et *C. mediterranea*, à très faible profondeur, moins de 1 m), ceux de mode calme, qui occupent les substrats durs jusqu’à 10-15 m de profondeur, et les peuplements de profondeur (jusque vers 50 m pour *C. zosteraoides*). Seule *Cystoseira amentacea var. stricta*, est signalée dans la frange supérieure de l'infra littoral (zone de subsurface) dans le secteur d'étude (Astier, 1975 ; Astier et Taillez, 1978 ; Verlaque et Tiné, 1979 a et 1979 b ; Thomas, 1983). Leurs caractéristiques biologiques font des cystoseires des espèces très vulnérables, incapables de supporter de trop fortes perturbations du milieu. Elles sont toutes très sensibles à la pollution et à la turbidité des eaux, ainsi qu’au surpâturage, comme en témoigne leur régression dans toute la Méditerranée (Boudouresque *et al*., 1990 ; Verlaque, 1990). Une fois détruites, les chances d’une restauration naturelle sont faibles. En effet, elles ne se reproduisent que de façon sexuée, par des œufs relativement lourds qui ne sont disséminés que sur quelques mètres (ou dizaines de mètres) : la recolonisation ne peut donc se faire que de proche en proche, à partir d’une population survivante (Soltan *et al*., 2001). Plusieurs Cystoseires de Méditerranée (*C. amentacea var. stricta*, *C. mediterranea*, *C. spinosa*, *C. zosteraoides*) sont inscrites dans l’annexe I de la Convention de Berne (1996) et l’annexe I de la Convention de Barcelone (1996). Leur présence peut donc témoigner de la bonne qualité des milieux littoraux.

(iii) *Corallina elongata*. L’exubérance des peuplements à *Corallina elongata* peut témoigner d’une eau polluée. En effet, en cas de pollution, sur les portions de côte rocheuse, les espèces les plus caractéristiques de la biocénose sont éliminées (les cystoseires en particulier, car leurs exigences sont très strictes). Les espèces à large potentialités écologiques et fortement tolérantes à la pollution, comme les corallines (ou les moules) colonisent alors la surface
laissée libre. Toutefois, des peuplements abondants de coralline peuvent également être présents dans des zones totalement exemptes de pollution. *Corallina elongata* constitue par exemple des peuplements denses dans des stations où l'hydrodynamisme (très fort) ou l'éclaircissement (très faible) élimine ses concurrents (Boudouresque 1971, 1984). De même il est à noter qu'un très fort hydrodynamisme peut permettre l'installation de peuplements denses de moules, y compris en l'absence de source particulière de matière organique.

iv) Les ulves et les entéromorphes. Les ulves (*Ulva* spp.) et les entéromorphes (*Enteromorpha* spp.) sont des algues vertes (*Chlorophyta*) particulièrement abondantes dans les eaux dessalées et/ou enrichies en matière organique : elles sont donc souvent indicatrices de pollution, directement (matière organique) ou indirectement (dessalure consécutive aux émissaires) et se développent à proximité des rejets des émissaires urbains.

3.1.2. Résultats et discussion

L’abondance des peuplements du médiolittoral et de la frange supérieure de l’infralittoral a été estimée le long du linéaire côtier, par tronçons de 50 m, au niveau de l’île Verte (secteurs 1 à 62, Tableau 5) et des falaises du Bec de l’Aigle (secteur 100 à 209, Tableau 6). Le regroupement de certaines classes d’abondance entre elles, permet de déterminer quatre grandes catégories de densité linéaire : absence, peuplements clairsemés (classe 1 et 2), densité linéaire moyenne (classe 3), densité linéaire forte (classe 4 et 5).

Le peuplement à *Lithophyllum byssoides* est relativement bien représenté sur l’ensemble du secteur d’étude, il est présent sur plus de 88 % des tronçons de 50 m étudiés. Le peuplement de type I est présent sur plus de la moitié des secteurs, les densités sont majoritairement faibles. Le développement du *Lithophyllum byssoides* de type I se rencontre dans les secteurs
relativement abrités de la face Nord de l’île Verte, de l’anse du Sec et de la calanque de Figuerolles (Figure 13). On observe au sein de ce type de développement un gradient de densité entre les zones les plus calmes (fond de calanque) et les zones plus agitées (les pointes, les caps), notamment de part et d’autre de l’anse du Sec, ainsi que sur les deux parois de la calanque de Figuerolles. Le peuplement à Lithophyllum byssoides de type II s’installe dans les zones soumises à une forte agitation, il s’agit des côtes exposées aux eaux du large : falaises du Bec de l’Aigle, face Sud de l’île Verte (Figure 14). Le développement de Lithophyllum byssoides passe généralement du type I au type II au niveau des pointes et caps (tronçons 10-11 ; 47-48 ; 142-143 ; 177-178). Le développement en thalles coalescents implique que les conditions environnementales (morphologie de la paroi, exposition, etc.) sont satisfaisantes. Les densités linéaires observées sur ces secteurs y sont fortes. Le développement de Lithophyllum byssoides sous forme d’encorbellements, développement de type III, a généralement été observé, sur le secteur d’étude, au niveau de fissures ou de failles dans la roche, et dans les secteurs soumis à un très fort hydrodynabisme. Les encorbellements sont présents au niveau de 18 tronçons de 50 m (Figure 15). Les encorbellements présents sur le site d’étude sont beaucoup moins développés que ceux rencontrés sur l’archipel de Riou (Harmelin et al., 1996), mais sont tout de même remarquables au niveau de la face Sud de l’île Verte et à l’intérieur de l’anse Gaméou.

Tableau 5. Nombre de tronçons de 50 m pour chaque classe d’abondance et densité linéaire en pourcentage de Lithophyllum byssoides de type I, II et III, de Cystoseira amantacea var. stricta, de Rissoella verruculosa, de Corallina elongata, de Ulva spp. et d’ Enteromorpha spp., autour de l’île Verte.

<table>
<thead>
<tr>
<th>Classes d’abondances</th>
<th>Lithophyllum type I</th>
<th>Lithophyllum type II</th>
<th>Lithophyllum type III</th>
<th>Cystoseire</th>
<th>Rissoella</th>
<th>Coralline</th>
<th>Ulves Entéromorphes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>43</td>
<td>50</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>20</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>23</td>
<td>15</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>12</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>22</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Densité linéaire (%)</th>
<th>Lithophyllum type I</th>
<th>Lithophyllum type II</th>
<th>Lithophyllum type III</th>
<th>Cystoseire</th>
<th>Rissoella</th>
<th>Coralline</th>
<th>Ulves Entéromorphes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
<td>69</td>
<td>81</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>1-2</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>37</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>21</td>
<td>32</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>4-5</td>
<td>3</td>
<td>29</td>
<td>19</td>
<td>44</td>
<td>24</td>
<td>76</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classes d’abondances</th>
<th>Lithophyllum type I</th>
<th>Lithophyllum type II</th>
<th>Lithophyllum type III</th>
<th>Cystoseire</th>
<th>Rissoella</th>
<th>Coralline</th>
<th>Ulves Entéromorphes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
<td>66</td>
<td>89</td>
<td>26</td>
<td>14</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>23</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>31</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>24</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>15</td>
<td>1</td>
<td>21</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>16</td>
<td>0</td>
<td>63</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Densité linéaire (%)</th>
<th>Lithophyllum type I</th>
<th>Lithophyllum type II</th>
<th>Lithophyllum type III</th>
<th>Cystoseire</th>
<th>Rissoella</th>
<th>Coralline</th>
<th>Ulves Entéromorphes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>52</td>
<td>69</td>
<td>94</td>
<td>27</td>
<td>15</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>1-2</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>57</td>
<td>10</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>25</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4-5</td>
<td>12</td>
<td>31</td>
<td>6</td>
<td>39</td>
<td>3</td>
<td>69</td>
<td>21</td>
</tr>
</tbody>
</table>

Le peuplement de *Cystoseira amantacea* var. *stricta* est un peuplement globalement dense sur le secteur d’étude (Figure 16). Il est présent sur tout le poutour de l’île Verte mais disparaît ou devient clairsemé en fond de calanques, particulièrement au niveau des deux calanques les plus fréquentées : la calanque S’Pierre et la calanque de Seynerolles. Le long des falaises du Bec de l’aigle, le peuplement de cystoseire présente de fortes densités linéaires sauf au fond de l’anse du Sec, derrière les Pierres de Nègue Foum et au fond de la calanque de Figuerolles où il devient clairsemé. Il est aussi absent ou clairsemé sur les secteurs à forte pente (faille de l’anse Gaméou, grande-Calanque), lorsque le contexte géomorphologique ne permet pas son installation. *Cystoseira amantacea* var. *stricta* n’a pas pu être évaluée dans la calanque du Capucin, exutoire des eaux usées, du fait de la présence d’une eau opaque, insalubre, nous empêchant de plonger ou de s’approcher en bateau. Cependant, nous n’avons pas observé (à l’aide de jumelles), de cystoseires à l’intérieur de la calanque ; seules des ulves et des entéromorphes ont pu être distinguées. A l’Ouest de la calanque le peuplement de cystoseires est clairsemé, il redevient dense à environ 100-150 m de la sortie de la calanque (secteur 209). A l’Est, la cystoseire est dense jusqu’au secteur 200, secteur marquant l’entrée de la calanque. L’impact de l’émissaire urbain sur le peuplement de cystoseire est donc très localisé. Ce résultat est très nettement inférieur à celui observé par Bellan-Santini (1966) sur les côtes de la région marseillaise, à proximité de l’émissaire urbain de Cortiou. La ceinture de cystoseires avait, avant la mise en place de la station d’épuration en 1987, totalement disparu jusqu’au
Cap Croisette. Soltan (2000) a montré que depuis, la cystoseire est réapparue ponctuellement à 3 km à l’Ouest de l’émissaire.

L’algue calcifuge *Rissoella veruculosa* est relativement rare dans les Bouches du Rhône, département où dominent les massifs rocheux calcaires. Le secteur de l’île Verte constitue certainement une des rares enclaves où cette algue y est présente. On la rencontre sur plus de 90 % des tronçons de 50 m étudiés. Sur l’île Verte, l’algue forme des peuplements denses devenant localement clairsemés (Figure 17). Le long des falaises du Bec de l’Aigle, le peuplement est majoritairement clairsemé mais continu. Il devient dense à fort à l’intérieur de l’anse de Gaméou et à l’entrée de la calanque de Figuerolles.

Le caractère ubiquiste de l’algue calcaire *Corallina elongata* lui permet de se développer sur la quasi-totalité du secteur d’étude (93 % des tronçons), à l’exception du fond de la calanque de Figuerolles et de la calanque St Pierre, avec de fortes densités linéaires (Figure 18).

![Figure 13. Abondance de *Lithophyllum byssoides* de type I dans le secteur d’étude.](image)
Figure 14. Abondance de *Lithophyllum byssoides* de type II dans le secteur d’étude.

Figure 15. Abondance de *Lithophyllum byssoides* de type III dans le secteur d’étude.
Figure 16. Abondance de *Cystoseira amentacea* var. *stricta* dans le secteur d’étude.

Figure 17. Aabondance de *Rissoella verruculosa* dans le secteur d’étude.
Figure 18. Abondance de *Corallina elongata* dans le secteur d’étude.

Figure 19. Abondance d’*Ulva* spp. et *Enteromorpha* spp dans le secteur d’étude.
Les ulves et les Entéromorphes, algues à affinités nitrophiles et à forte tolérance pour les variations de salinité, sont présentes le long des falaises du Bec de l’Aigle et sur la côte Nord de l’île Verte (Figure 19). On observe un gradient décroissant de l’abondance de ces algues, en s’éloignant de l’émissaire, sur toute la façade sud des falaises du Bec de l’Aigle. Les densités linéaires sont fortes à l’intérieur de la calanque des Capucins mais restent également élevées à l’intérieur de la Calanque de Figuerolles et de l’anse Gaméou ; elles deviennent ensuite clairsemées vers l’Est. Sur le pourtour de l’île Verte, les plus fortes densités s’observent à proximité des deux calanques les plus fréquentées, secteurs sur lesquels nous avions déjà noté la disparition des cystoseires. On retrouve aussi ces algues de manière clairsemée à l’intérieur de l’anse du Sec. Il aurait été intéressant de voir si la présence de ces algues se confirmait à l’intérieur de l’anse du Mugel, secteur aussi fortement fréquenté. Le développement de ces algues vertes s’effectue préférentiellement à proximité des zones anthropisées ou fortement fréquentées.

3.2. Les petits fonds rocheux

Les peuplements infralittoraux des petits fonds rocheux peuvent se subdiviser en deux grands groupes : les peuplements photophiles et les peuplements sciaphiles. Les premiers se rencontrent généralement sur les faces supérieures des blocs et des arêtes rocheuses alors que les seconds sont observés sur les parois verticales, dans les cavités et sous les surplombs.

Le site de l’île Verte comprend une bande de petits fonds rocheux (de la surface jusque vers 10-15 m de profondeur) constituée par le prolongement sous l’eau des falaises littorales et de la côte rocheuse (Figure 20). Les petits fonds rocheux sont présents le long du littoral continental sur l’ensemble de la zone étudiée, occupent tout le pourtour de l’île Verte et se rencontrent également au niveau d’importantes remontées rocheuses et de haut fonds, notamment dans la passe entre l’île Verte et la terre au niveau des Canonniers Nord et Sud, mais aussi sur la façade Sud-Est de l’île au niveau des Pierres des Rosiers et de Rousteau. La structure géologique particulière du poudingue, visible sur terre, se retrouve aussi sous l’eau, facilement observable dans les zones de forte agitation au niveau des caps ou bien mise à nu par les oursins dans des faciès de surpâturage. Etant donné la structure de la roche, les zones d’éboulis sont relativement peu abondantes sur la zone d’étude, comparativement à ce que l’on peut observer le long des côtes calcaires. On n’observe surtout de gros blocs détachés des
Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

Falaises, posés au pied des roches, sur des fonds sableux, mais également sur l’herbier de Posidonia lorsque la limite supérieure remonte en placage jusqu’à la roche. L’ensemble de la zone est particulièrement découpée et regorge de cavités, failles et surplombs favorables au développement des peuplements sciaphiles.

Les peuplements d'algues photophiles se rencontrent sous la forme d'un tapis généralement dense, sur la face exposée à la lumière des blocs et brondes rocheuses. Les algues photophiles n’ont pas fait l’objet de prélèvements ni d’identification systématique lors de cette étude, cependant, on peut citer les plus communes de la biocénose des substrats durs photophiles, ce sont :

(i) pour les algues vertes (Chlorophyceae) : les acétabulaires (*Acetabularia acetabulum*), les peuplements à codium (*Codium bursa, C. effusum, C. vermilara*) et les Halimèdes (*Halimeda tuna*) ;

(ii) pour les algues brunes (Fucophyceae) : les padines (*Padina pavonica*), les dictyotales (*Dictyota fasciloata, Dictyota spp.*), les Halopteris (*Halopteris spp.*), les cystoseires (*Cystoseira compressa*) ;

(iii) pour les algues rouges (Rhodophyceae) : les asparagopsis (*Asparagopsis armata*), les corallines (*Corallina elongata*), les laurencia (*Laurencia microcladia* (horizon 0-1m)), les Jania (*Jania spp.*).

La zone rocheuse de l’île Verte est particulièrement découpée, et regorge de petites cavités, d’arêtes, de failles et surplombs, auquel se mêle l’herbier de Posidonia. Ces zones (entre 0-20 m) forment un ensemble très hétérogène d’un point de vue topographique, elles sont riches en abris et en nourriture (tapis d’algues, éponges, invertébrés, petits crustacés) et accueillent donc une ichthyofaune très diverse. Les labres (*Symphodus spp.*, *Coris julis, Labrus merula*, et *L. viridis*) forment avec les sars la fraction dominante du peuplement ichthyologique. Ces derniers sont surtout représentés par le sar commun (*Diplodus sargus*) et le sar vérade (*D. vulgaris*). Toutefois, le sar à museau pointu (*D. puntazzo*) est fréquemment observé sur les petits fonds rocheux mais ne constitue pas de grands bancs comme c’est le cas pour le sar
vérade. La pointe Est de la calanque d’Isserot se prolonge en mer par la bronde rocheuse du grand Moure. Cette avancée rocheuse vers le large est souvent soumise à de forts courants. D’importants bancs de sars vérade, comptant plus de 500 individus, ont été observés en de nombreuses occasions, se déplaçant au-dessus du fond en bancs serrés, dans cette zone agitée. Le sar tambour (*Diplodus cervinus*) et la daurade (*Sparus aurata*) peuvent aussi être observés dans ces petits fonds. Il s’agit souvent pour ces poissons, affectionnant généralement des fonds plus profonds, de brèves incursions. De la même manière, le mérou (*Epinephelus marginatus*) préfère les zones plus profondes ; il est le plus abondant sur les pierres au Sud-Est de l’île Verte (GEM, 1999). Toutefois, nous avons pu l’observer dans des zones moins profondes, correspondant à la zone des petits fonds, sur le site du Canonnier Nord, à proximité de la grotte de la Vierge (Grotte à Gaby), sur le Canonnier Sud ainsi que dans les anfractuosités des arêtes rocheuses au-dessus des tombants du grand et du petit Moure. Le corb (*Sciaena umbra*) est relativement rare ; il a été observé à plusieurs reprises sur le Canonnier Nord, ainsi qu’à proximité des tombants du grand et du petit Moure. Cette espèce de poisson à forte valeur patrimoniale se tient souvent immobile au-dessus du fond ou se cache à l’intérieur des failles et des anfractuosités. Les rascasses sont fréquentes : la rascasse brune (*Scorpaena porcus*) et la rascasse pustuleuse (*Scorpaena notata*), ainsi que les petits serrans (*Serranus cabrilla, S. scriba*). Dans les niveaux les plus superficiels, on note la présence de la girelle paon (*Thalassoma pavo*), espèce méridionale qui s’est installée depuis peu dans la région. Les petits fonds, surtout les plus exposés aux courants, permettent aussi de découvrir différentes espèces de poissons non inféodés au substrat rocheux comme les sérieles (*Seriola dumerili*) et les barracudas (*Sphyraena sphyraena*), ainsi qu’un céphalopode, le calmar (*Loligo vulgaris*).

Les peuplements de poissons des zones rocheuses reflètent bien, d’une part le niveau de pression des activités de pêche, et d’autre part les capacités de récupération d’un site. En particulier, les peuplements ichthyologiques des zones protégées présentent de nettes différences en terme de fréquence, taille moyenne, taille maximale et comportement des individus, par rapport aux zones non protégées. Ce phénomène est particulièrement évident chez des espèces les plus sensibles à la prédation humaine, dites «espèces cibles», parmi lesquelles on peut citer le mérou, le corb, le denti ou la dorade mais également des espèces plus banales comme les sars, la girelle et les serrans. Ces dernières espèces sont indicatrices de l’effort de la pêche à la ligne, les autres indiquant plus particulièrement l’impact de la chasse sous-marine (Harmelin *et al.*, 1995).
- faciès à Flabellia petiolata et Halimeda tuna ;
- faciès à Peyssonnelia spp.

Ces deux faciès ont été observés régulièrement sur les surplombs rocheux de la zone.

Parmi la faune rencontrée sur ces surplombs sciaphiles de faible profondeur, plusieurs peuplements dominent. On observe des faciès formés par des éponges, en particulier l’éponge orange encroûtante (Crambe crambe). D’autres éponges ont été fréquemment rencontrées, les éponges encroûtantes rouge et bleue (Hamigera hamigera et Anchinoe tenacior), les clathrines jaunes (Clathrina clathrus), l’éponge-ronron (Chondrosia reniformis) ainsi que les agelas orangé (Agelas oroides), les éponges pierres (Petrosia ficiformis), les éponges de toilettes (Spongia officinalis), les éponges épineuses orange (Acanthella acuta) et les éponges à cratères (Hemimycaule columella). Les bryozoaires sont aussi très communs, on peut noter : le faux corail (Myriapora truncata), la dentelle de neptune (Sertella septentrionalis), la rose de mer (Pentapora fascialis), l’adéonelle (Adeonella calvetti) et le bryozoaire bois de cerf (Porella cervicornis).

Sous de nombreux surplombs, l’anémone encroûtante jaune (Parazoanthus axinellae) forme de véritables tapis de polypes, parfois de plusieurs mètres carrés. Plusieurs autres espèces de cnidaires ont été fréquemment observées : l’anémone de mer verte Anemonia viridis, l’anémone charnue (Cribrinopsis crassa), les aiptasies (Aiptasia spp.), etc. L’ascidie rouge (Halocynthia papillosa) est très régulièrement présente sous les surplombs rocheux ; quelques
individus de violets (*Microcosmus sabatieri*), espèce d’intérêt commercial, ont également été observés.

Les gorgones rouges (*Paramuricea clavata*) et orange (*Eunicella cavolinii*) sont deux espèces indissociables de ce milieu, même si on a souvent tendance à les associer au monde plus profond du coralligène. Ces espèces affectionnent les fonds à très forte pente. Les gorgones peuvent constituer de beaux peuplements même à faible profondeur le long de tombants et de surplombs ; elles remontent jusque vers 6-7 m de profondeur. On les rencontre dans les petits fonds, principalement le long du littoral Sud de l’île Verte, les Canonniers Nord et Sud, le tombant du petit Moure et à la sortie des calanques de Figuerolles et de Gaméou.

De nombreuses espèces animales vagiles (mobiles) évoluent parmi ces différents peuplements fixés. Les mollusques nudibranches, ou limaces de mer, sont très fréquemment observés, en particulier la coryphelle mauve (*Coryphella pedata*), la flabelline mauve (*Flabellina affinis*) ou encore le doris dalmatien (*Peltodoris atromaculata*). Plusieurs individus de la grande porcelaine (*Luria lurida*), espèce à forte valeur patrimoniale, ont également été rencontrés au fond de petites anfractuosités sciaphiles.

La crevette rose, ou bouquet (*Palaemon elegans*) est présente, depuis la zone superficielle jusque sous les surplombs vers 10-15 m de profondeur. Un nombre très important de langoustes (*Palinurus elephas*), signalées sur l’ensemble des sites de plongée, occupent les cavités formée par la roche. Beaucoup étaient de taille inférieure à 20 cm ; cette abondance laisse supposer que le site d’étude est un lieu de recrutement pour ce crustacé. Les juvéniles de langoustes se rencontrent principalement à faible profondeur ; les individus adultes migrent plus en profondeur. Effectivement, les plus gros individus ont été rencontrés sur les pierres du large en dessous de 55 m.

Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

Ces données sont le résultat de plongées d’observation ponctuelles et ne prennent pas en compte les variations saisonnières de répartition et de déplacement des espèces.

3.3. L’herbier de Posidonia

3.3.1. Importance de l’écosystème à *Posidonia oceanica*

La Posidonie, *Posidonia oceanica* (Linnaeus) Delile, est une phanérogame marine (plante à fleurs) endémique de la Méditerranée (Figure 21). Elle constitue de vastes prairies sous-marines, appelées herbiers, qui se développent depuis la surface de l’eau jusqu’à 25 à 40 m de profondeur, selon la transparence des eaux. La formation des herbiers, leur dynamique et leur densité dépendent étroitement du milieu environnant : nature du substrat sur lequel les Posidonies se fixent, hydrodynamisme, courants, profondeur, qualité des eaux, etc. (Molinier et Picard, 1952 ; Boudouresque et Meinesz, 1982 ; Boudouresque et al., 1994b).

Figure 21. Vue sous-marine d’un herbier de Posidonia (Photographie © E. Charbonnel).

Les feuilles de Posidonia mesurent généralement de 40 à 80 cm de long et 1 cm de large ; elles sont regroupées en faisceaux de 4 à 8 feuilles environ, et tombent surtout à l’automne (Figure 22). Chacun de ces faisceaux de feuilles est situé à l’apex d’un axe appelé rhizome (tige souterraine), qui croît horizontalement (rhizome plagiotrope) ou verticalement (rhizome orthotrope). La vitesse de croissance\(^6\) de l’herbier est très lente, en moyenne de l’ordre de 3 à 6 cm par an pour les rhizomes plagiotropes (Caye, 1980 ; Molenaar, 1992).

Figure 22. Aspect général d’une Posidonia.

\(^6\) : L'étude de la vitesse de croissance des rhizomes de Posidonia est réalisée grâce à la lépidochronologie. Cette méthode, apparentée à la dendrochronologie pour le domaine terrestre, est basée sur l'étude des variations cycliques (annuelles) de l'épaisseur des pétiloles des feuilles le long des rhizomes (Pergent, 1987).
L’herbier édifie au cours du temps un enchevêtrement complexe et extrêmement compact de rhizomes et de racines, dont les interstices sont comblés par du sédiment, que l’on nomme « mattes ». Ces mattes stabilisent les fonds meubles ; elles peuvent atteindre une épaisseur de plus de 8 m (Molinier et Picard, 1952), à raison d’un mètre par siècle à un mètre par millénaire (Boudouresque et Meinesz, 1982). À la mort de l'herbier de Posidonie, ces mattes restent en place, car elles sont peu putrescibles, et sont alors dénommées "mattes mortes". Selon les conditions du milieu et en particulier de l’hydrodynamisme, la Posidonie peut également édifier des paysages et reliefs particuliers comme les récifs barrières, les “herbiers tigrés”, les “herbiers de colline” et les “herbiers ondoyants”.

L’herbier de Posidonie est considéré comme l’un des écosystèmes les plus importants, voire l'écosystème-pivot, de l'ensemble des espaces littoraux méditerranéens (Molinier et Picard, 1952 ; Boudouresque et Meinesz, 1982, Boudouresque et al., 1994b). Au même titre que la forêt en milieu terrestre, l’herbier de Posidonie est le terme ultime d’une succession de peuplements et sa présence est la condition sine qua non de l’équilibre écologique et de la richesse des fonds littoraux méditerranéens, en terme de biodiversité et de qualité des eaux littorales.

L’herbier joue également un rôle fondamental dans la protection hydrodynamique de la frange côtière et des plages, par atténuation de la puissance des vagues, de la houle et des courants. Les fonds sableux sont ainsi stabilisés par la fixation des sédiments dans le lacs des rhizomes constituant la matte (Boudouresque et Jeudy de Grissac, 1983 ; Jeudy de Grissac, 1984 ; Jeudy de Grissac et Boudouresque, 1985). Sans cette protection contre l'érosion, le profil d'équilibre des rivages sableux est fortement modifié. C’est le cas de nombreuses communes littorales confrontées au problème d'érosion des plages, suite à la régression des herbiers situés au large. Des budgets conséquents sont alors annuellement consacrés par les communes à un apport régulier de sable pour compenser le lessivage de leurs plages.

3.3.2. Mesures de protection existantes

L’importance écologique des herbiers de Posidonies rend leur régression particulièrement préoccupante. C’est la raison pour laquelle la Posidonie apparaît sur les listes d’espèces menacées, bien que ce ne soit pas l’espèce en elle même mais l’écosystème qu’elle édifie qui soit menacé (Boudouresque et al., 1994 a).
La nécessité d'une protection légale et d'une gestion raisonnée du domaine littoral a débouché sur plusieurs initiatives législatives au niveau national et communautaire, concernant Posidonia oceanica :

2. Prise en considération de l'herbier de Posidonie en tant que biotope dans le décret d’application (n°89.694 du 20 septembre 1989) de la "Loi littorale" n°86.2 du 3 janvier 1986. Ce décret d’application impose notamment la réalisation d’une notice d'impact spécifique sur le milieu marin, et en particulier sur l'herbier de Posidonie, pour tout projet d’aménagement littoral. De plus, la présence d’herbiers doit également être prise en compte dans les dossiers d’aménagement et les études d'impact (Loi sur l'eau n° 92.3 du 3 janvier 1992 ; Loi relative à la protection de la nature n°76.629 du 10 juillet 1976).

3. La Directive de l’Union Européenne du 21 mai 1992 (92/43/CEE) sur la conservation des habitats naturels et de la faune et la flore sauvage (dénommée "Directive Habitats") inclut les herbiers de Posidonies dans son Annexe I (“Natural habitat types of Community interest whose conservation requires the designation of special areas of conservation”), avec la mention "priority habitat type".

4. La Posidionie apparaîtra dans les Annexes de la Convention de Barcelone (adoptées en décembre 1995) et de la Convention de Berne (adoptées en février 1996);

3.3.3. Localisation de l'herbier à *Posidonia oceanica* sur la zone d'étude

L'herbier de Posidonie est présent sur l'ensemble de la zone d'étude, sauf sur la partie Sud du littoral de l’île Verte (Figure 23). L’herbier se développe dès les faibles profondeurs en bordure de côte peu escarpée ; par contre, vers les falaises littorales, on ne le rencontre pas avant 15-20 m de profondeur. L’herbier de Posidonie est présent dans la zone d’étude au niveau de tous les secteurs (secteurs A à G).

Secteur A : de la calanque du Capucin jusqu’au tombant du bec de l’Aigle. À l’aplomb des falaises, l’herbier ne parvient pas à se développer sur les parois quasi verticales, plongeant directement dans la mer jusqu’à une quinzaine de mètres de profondeur. Les fonds très pentus (pente supérieure à 20 %) limitent le développement de l’herbier à une fine bande parallèle au trait de côte n’excédant pas 40 à 50 m de largeur. La limite inférieure de l’herbier se situe entre 28 et 31 m de profondeur. La calanque de Figuerolles, véritable enclave au milieu du massif rocheux, permet à l’herbier de remonter et de se développer jusqu’à 8 m de profondeur. La calanque n’est plus occupée que par quelques îlots de Posidonies épars sur un fond de matte morte, vestige d’un ancien herbier. Face à la calanque du Capucin (calanque à l’intérieur de laquelle débouche en surface l’émissaire des eaux usées de La Ciotat) l’herbier s’interrompt sur une distance de 40-50 m.

Secteur B : tombant du bec de L’Aigle. Dans ce secteur, on ne rencontre que quelques rares îlots de Posidonies, le long du tombant.

Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

Figure 23 : cartographie de l’herbier de Posidonie sur la zone d’étude et localisation des secteurs A à G

Herbier de Posidonie

Secteurs de l’herbier de Posidonie

Limites non vérifiées sur la carte élaborée par Laboré en 1986
Secteur D : du Canonnier Sud au Canonnier Nord. L’herbier s’étend entre ces deux remontées rocheuses sur un fond sub-horizontal. Il englobe entièrement le Canonnier Nord, haut fond dont le sommet est à 6m et la base à 20 m. La passe située entre les Canonniers et l’île Verte est constituée par un fond sableux instable, soumis à un important hydrodynamisme (présence de ripple mark), limitant le développement de l’herbier.

Secteur E : côte Nord de l’île Verte à la digue des chantiers navals. Il s’agit de la zone d’herbier la plus vaste de tout le secteur d’étude. L’herbier se développe depuis le pied de la digue des chantiers navals, à 14 m de profondeur et s’étend vers l’Ouest sur un fond en pente douce jusqu’à la limite inférieure, située à 27 m de profondeur.

Secteur F : de la pointe Nord de l’île Verte à la calanque de Seynerolles. Une vaste étendue de matte morte s’étend de la côte jusqu’à 20 m de profondeur sur la face Nord de l’île Verte, à l’Ouest de la calanque St-Pierre. Seules quelques petites taches d’herbier sont présentes sur la matte morte juste à la sortie de la calanque. Cette zone a aussi été cartographiée (Charbonnel et Francour, 1994) dans le cadre de la pose d’une canalisation d’alimentation en eau sur le fond (Annexe 5). Au large et à l’Est de la calanque S’Pierre, l’herbier est continu. Vers l’Est, l’herbier se développe sous la forme d’une étroite bande littorale, la forte pente des fonds limitant de fait son extension vers le large. La limite inférieure de l’herbier face à la calanque de Seynerolles n’a pu être tracée par manque de données sur ce secteur.

Secteur G : de la Calanque de Seynerolles à la Calanque d’Isserot. L’herbier se présente sous la forme de taches se développant sur une quinzaine de mètres de largeur au pied du socle rocheux. Il est relativement peu représenté dans ce secteur.
3.3.4. Caractérisation de l’herbier de Posidonie

Secteur A : de la calanque du Capucin jusqu’au tombant du bec de l’Aigle. La limite supérieure de l’herbier est franche mais présente parfois un morcellement sur quelques mètres. Sur ce secteur, la limite supérieure de l’herbier est relativement profonde, comprise entre 15 et 20 m. L’herbier ne parvient pas à se développer à de plus faibles profondeurs. Son développement y est limité soit par la présence d’un plateau en pied de falaise, couvert par un sédiment grossier instable, soit par un petit tombant rocheux (Figure 24).

La pente le long de laquelle se développe l’herbier est importante mais régulière. Le recouvrement de l’herbier est fort, compris entre 50 et 80 %. La limite inférieure est de type régressive. Les derniers faisceaux de Posidonie se trouvent à 31 m de profondeur, mais la limite effective, se trouve autour de 28 mètres. On note toutefois la présence de rhizomes plagiotropes traçants, signe de la tendance actuelle de l’herbier à la progression. Les densités sont comprises entre 200 et 250 faisceaux /m² en limite supérieure et se situe autour de 100 faisceaux/m² pour la limite inférieure. Ces valeurs de densités correspondent, dans les deux cas, à des valeurs normales d’après la classification de Pergent *et al.* (1995).

Le développement de l’herbier dans la calanque de Figuerolles se résume à quelques îlots épars vers 3 m de profondeur. On ne rencontre l’herbier que vers la sortie de la calanque, sous forme de petits îlots à partir de 8m de profondeur et en continu vers 11 m de profondeur. L’herbier s’interrompt en avant et à l’Est de la calanque du Capucin sur une bande d’herbier.
d’environ 50 m de large depuis sa limite supérieure jusqu’à sa limite inférieure. L’herbier ne s’est probablement jamais développé sur cette langue de sable instable sortant de la calanque. L’herbier se développe à proximité même de la calanque, entre 19 et 30 m de profondeur, et est relativement clairsemé ; Ramade (1986) notait la présence d’un herbier clairsemé et à faible vitalité sur une distance de 600 m de part et d’autre de l’axe de la calanque. La densité est respectivement pour la limite inférieure et supérieure de 212 et 112 faisceaux /m², soit un herbier présentant une densité normale. Des investigations supplémentaires sur ce secteur semblent nécessaires, notamment la mise en place de points de surveillance de l’herbier à l’aide d’un balisages de ces limites.

De manière générale, l’herbier présente une bonne vitalité d’ensemble dans ce secteur, sauf à l’intérieur même de la calanque de Figuerolles où l’herbier à quasiment disparu, peut être en raison d’une pression d’ancrage trop élevée dans la calanque. La proximité de l’exutoire des eaux usées a aussi pu contribuer à la disparition de l’herbier.

Depuis une trentaine d’années, le problème de l’impact des mouillages forains sur l’herbier de Posidonie à été soulevé (Astier, 1972 ; Blanc et Jeudy de Grissac, 1978 ; Robert, 1983 ; Blanc et Jeudy de Grissac, 1984 ; Porcher, 1984 ; Garcia Charton J.A. et al., 1993;). L’étude précise de l’impact des ancrages sur l’herbier a été récemment abordée (Francour, 1994 ; Boudouresque et al., 1995 ; Charbonnel, 1996 ; Poulain, 1996 ; Francour et al., 1998 ; Roy et al., 1999). L’action des ancrages sur le fond peut ainsi arracher des portions d’herbier (faisceaux et rhizomes), en particulier lorsque celui-ci présente certaines caractéristiques comme un important déchaussement. Une fois cette "blessure" occasionnée dans l’herbier, l’action de l’hydrodynamisme continue d’éroder la matière et de creuser l’herbier. L’herbier est capable de "cicatriser", mais la vitesse de croissance des rhizomes est très lente, quelques centimètres par an au maximum (Caye, 1982). Au-delà d’un certain seuil de densité et de fréquence des ancrages, la croissance des rhizomes ne permet plus de reconquérir les trous et les brèches ouverts dans la matière : la capacité de régénération naturelle est dépassée (Boudouresque et Meinesz, 1982).

Secteur C : de l’anse du Sec à l’anse du grand Mugel. A l’intérieur de l’anse du Sec, l’herbier est agencé en taches plus ou moins éloignées les unes des autres et son état est assez dégradé (Ganteaume, 1994). L’herbier semble avoir fortement régressé en certains endroits.
Les mattes mortes recouvertes d’un sédiment grossier sont fortement représentées et dominent nettement, notamment dans la partie Nord-Est de la calanque. La densité des faisceaux de Posidonie est comprise entre 270 et 338 faisceaux/m², densités considérées comme sub-normales inférieures pour des profondeurs inférieures à 10 m. Seule la tache située au fond de la calanque, la mieux préservée, présente des valeurs normales de densité, autour de 700 faisceaux/m². Une importante étendue de matte s’étend à partir de 10 mètres de profondeur en direction de la calanque du Mugel et des Canonniers.

D’une manière générale, l’herbier à Posidonia oceanica est bien développé dans l’anse du Mugel (comprenant l’anse du petit Mugel et l’anse du grand Mugel). Il est continu dans la partie centrale (axe Nord-Sud), jusqu’au niveau de la digue, avec un recouvrement compris entre 70 et 80%. La majorité des rhizomes sont en position orthotrope et assez déchaussés (5 à 10 cm). Le déchaussement des rhizomes est un phénomène que l’on retrouve dans l’anse du Sec, où il atteint au maximum 17 cm, ainsi que dans la passe de l’île Verte où il dépasse 20 cm le long de la digue des chantiers navals (la mise en place de la digue des chantiers navals pourrait avoir entraîné un déficit sédimentaire sur ces zones par modification de la courantologie locale). La densité moyenne varie de 350 à 400 faisceaux/m², soit un herbier présentant une densité sub-normale inférieure. La présence de bancs de saupe (Sarpa salpa, poisson herbivore) semble assez fréquente dans cette anse pour entraîner un broutage important de l’herbier. Les bancs importants de saupes sont le plus souvent observés dans des baies calmes et abritées (Verlaque, 1990) et leur présence peut se traduire par un herbier aux feuilles très courtes (Laborel-Deguen et Laborel, 1977). La partie Nord et Est de l’anse présente de nombreuses zones de matte morte au sein de l’herbier. La faible profondeur de ce secteur peut expliquer la structure en mosaïque de l’herbier. Une zone de sable s’étend en fond de baie sur une largeur de 80 m. Les sondages ponctuels réalisés par Charbonnel et Francour (1994) n’ont pas mis en évidence de matte morte sous les 40 premiers centimètres de sable de cette étendue.

L’anse du Mugel ainsi que l’anse du Sec sont des lieux privilégiés pour le mouillage forain durant la saison estivale. Le mitage de l’herbier pourrait être dû à un ancrage excessif, combiné aux effets de l’hydrodynamisme.

Secteur D : du Canonnier Sud au Canonnier Nord. Ce secteur a été relativement peu étudié et mériterait que des observations supplémentaires soient menées. Toutefois, un transect a été...
réalisé à partir du Canonnier Sud sur une longueur de 200 m vers le Nord. Le substrat rocheux occupe les 50 premiers mètres du transect, et on n’y trouve que quelques taches d’herbier. C’est à partir de 18-19 m de profondeur que l’herbier devient continu ; le recouvrement de l’herbier sur le fond est compris entre 80 et 90 %. Des taches de sable et des blocs rocheux de 3 à 5 m de diamètre prennent place au milieu de l’herbier, installé sur un fond sub-horizontal.

Secteur E : de la côte Nord de l’île Verte à la digue des chantiers navals. Le long de la digue des chantiers navals, l’herbier présente un recouvrement supérieur à 80 % sur environ 150 m de longueur, à partir de la sortie de la calanque du Mugel. L’herbier devient ensuite progressivement plus clairsemé, avec un recouvrement compris entre 50 et 80 %, sur environ 180 m de longueur. L’herbier n’est plus continu et présente de nombreuses zones de matte morte sur les 100 mètres suivants. De nombreux blocs et éboulis rocheux sont présents, ainsi que des macrodéchets : ferrailles, plaques de fer et béton, épaves de barges, etc. Ces déchets résultent certainement des rejets de dragages, réalisés en particulier en 1985 (Laborel, 1986). La présence de ces matériaux a entraîné un mitage de l’herbier. L’herbier n’est plus continu en certains endroits : il se présente sous la forme d’une mosaïque avec de la matte morte. De la digue des chantiers navals à la calanque St Pierre, l’herbier est présent depuis le pied de digue sur une distance de 400 m. On rencontre ensuite, du côté de l’île Verte, une vaste zone de matte morte suivie d’une grande étendue de sable. L’herbier est entrecoupé par des taches de mattes mortes n’excédant pas 6 à 7 m de diamètre. Le recouvrement de la Posidonie est compris entre 50 et 90 % sur l’ensemble du secteur, sauf au niveau d’une bande d’herbier de 50 m de largeur, orientée Nord-Sud, au milieu de la passe où il est inférieur à 50 %. Sur l’ensemble de la zone, l’herbier présente des valeurs de densité normales. Dans le cadre de l’étude réalisée par Charbonnel et Francour (1994) et par Bonhomme *et al.* (1999), une carte représentant les différents recouvrements de l’herbier a été établie et est présentée en Annexe 6. Le déchaussement des rhizomes s’atténue progressivement en s’éloignant de la digue pour atteindre les valeurs minimales observées de 5-10 cm. L’influence des courants, accélérés au niveau de la passe de l’île Verte par effet Venturi, diminue en effet avec l’éloignement et la profondeur.

Secteur F : de la pointe Nord de l’île Verte à la calanque de Seynerolles. Du côté de la « plageolle », située à l’Ouest de la calanque S Pierre, une grande zone d’herbier d’environ 1500 m² se développe à faible profondeur et jouxte la zone rocheuse. Vers le large (direction Nord), on rencontre une vaste étendue de matte morte se prolongeant en profondeur, scindant
l’herbier en deux parties Est et Ouest. A l’intérieur de la calanque St Pierre, une quinzaine d’îlots de Posidonia, d’un diamètre variable compris entre 1 et 5 m, sont présents. Autour des îlots se trouvent des zones de matte morte et des dalles rocheuses. Au large de la calanque, la taille des îlots de Posidonia augmente avec la profondeur. L’herbier devient ensuite continu. A l’Est de la calanque St Pierre, l’herbier ne se développe plus sur un fond sub-horizontal comme au milieu de la passe de l’île Verte ou au large de la calanque St Pierre, mais sur un fond à forte pente. Le recouvrement de l’herbier sur le fond est compris entre 70 et 80 %. La limite inférieure de l’herbier se situe vers 25-26 m de profondeur et est en progression. On observe en effet de nombreux rhizomes plagiotropes traçants se développant parfois sur plus d’un mètre de distance. A partir de 12 m de profondeur, l’herbier pousse en placage sur le poudingue affleurant.

3.4. Peuplements du coralligène

3.4.1. Description et localisation

Les tombants rocheux et le concrétionnement coralligène constituent deux milieux parmi les plus appréciés des plongeurs sous-marins. Les animaux fixés offrent en effet une diversité de formes, des couleurs et une richesse biologique unique. Cette richesse spécifique se traduit par des paysages sous marins remarquables en grande partie composés de peuplements de gorgones rouges (*Paramuricea clavata*) et jaune (*Eunicella cavolinii*).

Le nom de coralligène a été donné par Marion, premier scientifique qui a étudié ce milieu (spécifique à la Méditerranée) ; il pensait en effet que cette formation était l’habitat principal du corail rouge, ce qui n’est pas le cas. Il s’agit en fait d’un concrétionnement de Rhodobiontes calcaires (*Corallinacées*) formant des massifs anfractueux (Figure 25) (Laborel, 1961).

Figure 25. Aspect morphologique d’un encorbellement de Corallinacae dans le coralligène (d’après Müller, 1993 in Sartoretto, 1996).
Ces constructions forment soit des massifs, sur les fonds horizontaux, soit des bourrelets au pied des tombants, soit des encorbellements le long des tombants rocheux sous-marins. Leur croissance est lente : moins de 1 mm/an. Les particules terrigènes qui tombent de la surface colmatent les petits interstices et consolident ainsi la construction qui, à la longue (plusieurs centaines d’années), se transforme en roche (phénomène de lithification) et est colonisée par de nombreuses espèces d’invertébrés fixés. Comme tout substrat calcaire en mer, le coralligène subit une érosion qui est l’œuvre de nombreux organismes destructeurs endolithes (= à l’intérieur de la roche) tels les éponges perforantes, les mollusques lithophages, mais également les oursins qui broutent les algues vivantes du coralligène. Une perpétuelle compétition dynamique s’engage donc entre les organismes destructeurs et constructeurs du coralligène (Laborel, 1961 ; Laubier, 1966 ; Sartoretto, 1996).

Le "coralligène de paroi" se rencontre sur des roches où les algues calcaires ne peuvent édifier de concrétionnement épais du fait d’une pente trop importante. Il est précédé à faible profondeur (à moins de 15 m) par le précoralligène, assemblage de transition avec les peuplements infralittoraux plus photophiles (Pérès et Picard, 1964). Le coralligène de paroi est marqué physionomiquement par l'abondance de grands invertébrés sessiles à port dressé (Harmelin, 1984). La plupart des animaux fixés se nourrissent du plancton et des particules en suspension dans l'eau. La compétition pour accéder à la masse d'eau et au flux de nourriture qu'elle représente est donc très forte et le peuplement à la surface des blocs s'organise en plusieurs strates. Les grands invertébrés dressés constituent la strate supérieure : grandes gorgones (gorgone blanche Eunicella singularis, gorgone orange E. cavolinii et gorgone rouge Paramuricea clavata), éponges corne-de-cerf (Axinella polypoides), grands vers spirographes et certains grands bryozoaires branchus (Myriapora truncata, Pentapora fascialis). Les gorgones, généralement en éventail plan, s'orientent de manière à être perpendiculaires au courant, augmentant ainsi leurs chances de capture de la nourriture apportée par celui-ci (Figure 26). Ces grands invertébrés marquent la physionomie des "tombants", plus que celle du coralligène proprement dit. En sous-strate se développent des organismes plus petits : d'autres vers fixés, des ascidies, des bryozoaires comme les dentelles de Neptune, des hydraelres et des petits coraux solitaires. Des éponges, des bryozoaires encroûtants et les algues calcaires édificatrices constituent la dernière strate, constituée d'une mosaïque de plaques.

Le secteur de l’île Verte et des falaises du Bec de l’Aigle comportent plusieurs sites profonds sur lesquels sont présents d’importants concrétionnements coralligènes : les pierres du Levant et des Rosiers, la pierre du Jas, le pain de sucre, Rousteau, le tombant du grand Moure, le tombant du petit Moure, le Canonnier Sud et le tombant du bec de l’Aigle. Nous ne décrirons pas ici l’ensemble de ces sites, mais seulement les plus remarquables.

La pierre du Levant, site le plus profond du secteur d’étude, est constituée par un éperon rocheux qui plonge en direction du large depuis une vingtaine de mètres jusqu’à 64 m de profondeur. Ce site est relativement peu fréquenté par les plongeurs, à l’exception des plongeurs très expérimentés ; la roche est en effet balayée par des courants forts et fréquents. Le tombant NW ainsi que le sommet de l’éperon sont couverts par une prairie dense de Paramuricea clavata depuis 25 m jusque vers 55 m. Le tombant SW, vertical, est recouvert par la gorgone jaune Eunicella cavolini et présente en profondeur de magnifiques zones de coralligène en enclave jusqu’à son extrémité la plus profonde. Plusieurs individus de l’oursin diadème (Centrostephanus longispinus), de l’oursin melon (Echinus melo), ainsi que de nombreuses langoustes (Palinurus elephas) se tiennent à l’intérieur des cavités, tapissées par des branches de corail (Corallium rubrum). Les plus gros individus de langoustes observés se situent en dessous de 55 m. Cette profondeur, limite sans doute les captures par les chasseurs sous-marins. Le grand Bryozoaire Hornera lichenoides a également été rencontré par 55 m de profondeur, où il se développait en boule de 20 à 30 cm de diamètre. Quelques individus de la gorgone orange (Lophogorgia ceratophyta), mêlés au peuplement de gorgones rouges, ont été rencontrés vers 30 m de profondeur, sur le sommet de la roche. Ce site, comme l’ensemble des sites des Pierres situées au large de l’île Verte, est fréquenté par une population croissante de mérou (c.f. § 4.1). Les sérioles (Seriola dumerlli), liches (Lichia amia) et les barracudas (Sphyraena sphyraena).

La Pierre des Rosiers présente de nombreuses arrêtes rocheuses le long desquelles Paramuricea clavata se développe, entre 20 et 40 m. Cette pierre porte le nom de « rosiers » à cause de la Rose de mer (Pentapora fascialis), bryozoaire rencontré en grand nombre accroché aux branches de gorgones. Plusieurs plongeurs ont mentionné la diminution apparente de cette espèce sur le site. Toujours bien présente, elle peut effectivement être l’objet de prélèvements par les plongeurs (souvenir, trophée). Son déclin peut également être une des conséquences de l’augmentation de fréquentation du site. En effet, de simples coups
de palmes suffisent pour décrocher ces organismes et endommager en même temps la colonie de gorgone leur servant de support. L’éponge corne de Cerf (Axinella polypoides) n’a été rencontrée qu’en de rares occasions sur le site d’étude, sauf sur cette roche, où elle est présente en grand nombre sur tout son pourtour. Nous en avons recensé 47 individus en une seule plongée ; les plus grands atteignaient 1 m de hauteur. Comme les gorgones, ces éponges de grande taille peuvent être arrachées par les ancras de bateaux ; plusieurs individus arrachés ont effectivement été trouvés libres sur le fond.

Le tombant du grand Moure forme un mur vertical impressionnant qui s’étire sur environ 200 m de longueur, entre 18 et 42 m de profondeur. La strate dressée est majoritairement occupée par Paramuricea clavata; toutefois Eunicella cavolinii est aussi présente. Les colonies de gorgones de ce site semblent semblent avoir été moins affectée par l’épisode de mortalité de l’été 1999 que sur les autres stations étudiées. En effet les gorgones jaunes présentent des taux de nécroses de l’ordre de 50 % alors que, sur le tombant du petit Moure (site voisin de quelques centaines de mètres), les nécroses touchent la quasi-totalité des colonies présentes sur l’ensemble du tombant. Le bas du tombant présente de larges cavités où l’éponge Aplysina cavernicola se développe en abondance.

Le tombant du Bec de l’Aigle ne présente pas une très grande richesse biologique. Le peuplement à Paramuricea clavata y est peu étendu et de faible densité. La zone la plus intéressante se trouve à l’Ouest du tombant sur le site des « cheminées », appellation qui lui est donnée par les plongeurs. Entre 20 et 32 m de profondeur se développe un tombant en arc de cercle présentant de belles concrétions isolées de coralligène. L’herbier de Posidonie forme une corniche sur la partie supérieure du tombant, où descendent en cascade les rhizomes. En plus de l’intérêt paysager que confère cet assemblage au site, nous avons pu observer dans les enclaves formées par le coralligène, entre 23 et 27 m de profondeur, 4 individus du petit labre profond Acantholabrus palloni. Deux individus avaient déjà été observés sur la balise du Canonnier Nord par 40 m de profondeur en 1996 (Sartoretto et al., 1997). Cette espèce se rencontre sur des fonds durs, généralement entre 27 et 90 m de profondeur (Sartoretto et al., 1997), dans le même habitat que Lapanella fasciata. Cet autre labre profond, généralement présent dans le coralligène riche en gorgones, n’a pas été rencontré lors de nos plongées, mais a été signalé sur les Pierres des Rosiers et du Levant, en 1995 et 1996 (Sartoretto et al., 1997). Les quatre individus observés d’Acantholabrus palloni avaient tous une taille inférieure à 10 cm. Un individu mâle présentait des patrons de couleurs différents de ceux habituellement
rencontrés, laissant supposer qu’il s’agissait de colorations prises pendant la période de reproduction (patrons de couleur encore jamais observés). Cette observation constitue la signalisation la moins profonde actuellement effectuée pour cette espèce.

Nous avons rencontré dans le coralligène deux espèces d’algues Rhodobiontes qui sont observées pour la première fois dans les Bouches du Rhône : *Chondrymenia lobata* (Tombant du Bec de l’Aigle) et de *Tricleocarpa fragilis* (Falaises du bec de l’Aigle) sont des espèces rares à affinité chaude.

3.4.2. Vitalité et structure démographique de deux espèces de gorgonaires

Depuis la fin de l’été 1999, entre la Ligure et Marseille, on a pu observer des mortalités massives sans précédent d’invertébrés marins. Au total, 28 espèces ont présenté des mortalités importantes (Perez *et al.*, 2000), il s’agit pour l’essentiel d’espèces de cnidaires et de spongiaires. Ce phénomène de mortalité se traduit chez les gorgones par une disparition des tissus vivants (nécrose) laissant le squelette à nu. Selon l’importance des dommages subis, la colonie est capable de régénérer les parties endommagées ou finit par mourir ; elle est alors colonisée par d’autres organismes. La température de l’eau, anormalement élevée pendant l’été 1999, semble avoir été le facteur déclenchant ; toutefois, ses effets ont pu être combinés à l’action d’organismes planctoniques (phytoplancton, bactéries). Des recherches sont en cours pour essayer de mieux comprendre ce phénomène et tenter de préciser les menaces qui pèsent sur ces organismes.

Les observations sur la vitalité et la structure démographique des peuplements de gorgones ont été menées durant les mois de septembre et octobre 2000, afin de faire le point un an après l’épisode de mortalité et éventuellement d’observer un nouvel épisode de mortalité.

3.4.2.1. Le gorgonaire *Paramuricea clavata*

Les peuplements de gorgones rouges *Paramuricea clavata* ont été étudiés au niveau de 4 stations réparties sur les Pierres du Levant et des Rosiers. Au total, 343 colonies de gorgones rouges ont été mesurées.
Les classes de taille sont toutes représentées, mais les plus petites classes de taille 0-10 cm et les grandes classes de taille 100-109 cm et 110-119 cm sont absentes de certaines stations (Figure 27). Les sites du Levant 34 m et du Rosier 35 m sont caractérisés par une distribution de type normale décalée vers les petites classes de taille, le maximum étant situé dans les classes de taille de 20 à 49 cm. Ces distributions ne sont pas régulières, on note, en effet, des irrégularités au niveau des classes de taille 50-59 et 60-69 cm sur les deux sites, ainsi que l’absence des plus jeunes individus sur le site du Levant 34 m. Les deux autres sites du Levant 31 m et des Rosiers 38 m présentent des distributions beaucoup plus aplaties. Les petites classes de tailles sont mieux représentées. Des 4 stations étudiées, il ne se dégage pas de schéma unique de structure de taille. Il n’est pas possible de faire correspondre une taille donnée avec un âge. Toutefois, dans une même station, les gorgones sont sans doute d’autant plus âgées qu’elles sont grandes, et les irrégularités dans la structure de taille (par exemple 50-69 cm) pourraient correspondre soit à des années où le recrutement a été médiocre, soit à des épisodes anciens de mortalité.

Figure 27. Histogramme des fréquences des classes de taille des peuplements de *Paramuricea clavata* étudiés sur la pierre du Levant à 31 m et à 34 m, et sur la pierre des Rosiers à 35 m et à 38 m.
Les nécroses ont été estimées au niveau de chaque colonie. Des 4 sites étudiés, seul le site du Levant à la profondeur de 31 m, présente une distribution des taux de nécrose différente de celles enregistrées sur les autres sites (Figure 28). Sur ces sites, les colonies présentent principalement des nécroses de faible importance. Toutefois, il existe au sein de ces peuplements, des colonies dont les nécroses sont comprises entre 75 et 100%. Pour le site du Levant à 31m, on observe que la majorité des colonies présentent des nécroses supérieures à 25%. Ce site apparaît donc nettement plus affecté que les autres.

Le taux naturel de nécrose chez *Paramuricea clavata* est généralement compris entre 0 et 10%. Les sites étudiés présentent tous des nécroses dont le taux est supérieurs à 10% ; ils ont donc tous été affectés par l’épisode de mortalité de 1999. Toutefois, il existe des différences notables en fonction de la profondeur (Figure 29), mais aussi de l’exposition des sites aux courants.
Le site du Levant 31m, site le moins profond, apparaît comme le site le plus touché. Plus de 90% des colonies du site présentent des nécroses dont l'origine n'est pas naturelle, mais probablement liée à l’épisode de mortalité massive de 1999. Sur les autres sites ce sont 28% des colonies qui sont touchées à 38 m de profondeur et 50% à 34 mètres. Il existe une relation entre le pourcentage de colonies touchées au sein d'un site et la profondeur. La variation d’intensité des nécroses que l’on observe entre les deux sites étudiés sur la Pierre du Levant (sites situés sur le même tombant et distants de moins de 20 m) met en évidence le rôle de la température et de la thermocline, limite entre les eaux réchauffées de surface, en été, et les eaux plus froides de profondeur : plus les gorgones sont situées en profondeur, moins longtemps elles se sont trouvées au dessus de la thermocline. Ce résultat corrobore les observations réalisées sur l’ensemble des côtes de Provence et de Côte d’Azur (Balesteros et al., 1999 ; Perez et al., 2000).

La profondeur n’est cependant pas le seul facteur dont dépend le taux de nécrose de *Paramuricea clavata*. Leur taille influe également (Figure 30). Les colonies de petite taille sont toujours moins affectées que les grandes.
3.4.2.2. Le gorgonaire *Eunicella singularis*

Les peuplements d’*Eunicella singularis* ont été étudiés au niveau d’une station, située entre 15 et 17 m de profondeur, sur un substrat sub-horizontal, à flanc de paroi, à la sortie de la grande calanque. Au total, 239 colonies de gorgones ont été mesurées sur 46 quadrats de 0.25 m² (Tableau 7). La structure de taille du peuplement d’*Eunicella singularis* présente deux modes (Figure 31).

Tableau 7. Nombre, densité et taille moyenne des colonies d’*Eunicella singularis* mesurées à la sortie de la grande calanque, entre 15 et 17 m de profondeur. Entre parenthèses, écart type.

<table>
<thead>
<tr>
<th>Clas de taille</th>
<th>Grands (> 10 cm)</th>
<th>Petits (< 10 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de colonies</td>
<td>159</td>
<td>80</td>
</tr>
<tr>
<td>Densité/m²</td>
<td>11,0 (7,9)</td>
<td>7,0 (6,2)</td>
</tr>
<tr>
<td>Taille moyenne (cm)</td>
<td>21,8 (6,5)</td>
<td>3,9 (2,3)</td>
</tr>
</tbody>
</table>
On observe, d’une part, la population de colonies de grande taille (>10 cm de hauteur), d’autre part la présence de nombreuses colonies de petites tailles, peut être issues du recrutement de l’année. La taille moyenne et la densité sont respectivement de 21.8 cm et de 11 colonies par m² pour les colonies de grande taille et de 3.9 cm et 7 colonies par m² pour celles de petite taille. Les colonies de moins de 10 cm de hauteur représentent 35 % de la population des colonies en place. En fait, cette proportion est nettement plus importante si l’on ne considère que les colonies vivantes : cette proportion dépasse alors 80 %. En effet, la majorité des colonies de plus de 10 cm sont mortes (88 % des colonies étudiées) suite à l’épisode de mortalité ou présentent d’importantes nécroses (Figure 32), alors que les colonies de petite taille sont toutes vivantes et présentent des taux de nécroses très faibles. Les colonies mortes sont encore en place, mais finiront avec le temps par disparaître. L’augmentation de la biomasse en épiphytes, sur le squelette mis à nu des gorgones, entraîne, en effet, la fragilisation du pied des colonies et leur chute.
Figure 32: Classes de nécrose des colonies d’Eunicella singularis étudiées. A gauche les colonies de grande taille (>10 cm), à droite les colonies de petite taille.

L’avenir du peuplement d’Eunicella singularis repose sur la capacité de régénération, encore mal connue, des colonies de grande taille fortement nécrosées et surtout sur le succès de l’installation et de la survie des colonies nouvellement recrutées. En l’absence d’observation ancienne sur le site, il est difficile de déterminer si la phase de recrutement, matérialisée par les colonies de petite taille, est antérieure ou postérieure à l’épisode de mortalité. Il est possible que le stress, ayant entraîné la mort des colonies de grande taille, ait provoqué la libération de gamètes dans le milieu par les polypes survivants.

3.5. Les grottes sous-marines

Les grottes sous-marines sont des milieux particuliers, de par les conditions extrêmes qui y règnent : absence de production primaire, oligotrophie, circulation hydrologique très faible, etc. De la topographie de la grotte dépendent la circulation de l’eau et son renouvellement qui apportent nourriture et oxygène aux espèces du fond de la grotte. La circulation de l’eau dépend de la largeur de la grotte et de son entrée, ainsi que de sa pente. La plupart des grottes sont souvent de longs boyaux où la circulation de l’eau est extrêmement réduite.

8 Oligotrophe se dit d’un milieu pauvre en nutriments (sels nutritifs).
Les grottes sous-marines constituent également des sites de choix pour les plongeurs sous-marins. Toutefois, une fréquentation trop importante, en particulier par des plongeurs peu expérimentés (coup de palmes), peut engendrer des dégradations des peuplements des grottes. En outre, l’accumulation de bulles au plafond, et l’éclairage artificiel peuvent également être sources de perturbations.

Les grottes sous-marines présentent la particularité d’abriter des espèces habituellement rencontrées à grande profondeur. Deux communautés y sont généralement présentes : la biocénose des grottes semi-obscurcs et la biocénose des grottes obscures (Péreè et Picard, 1964 ; Laborel et al., 1994) suivant l’intensité lumineuse disponible. Tandis que le peuplement des grottes obscures, très sélectif, ne recouvre que partiellement les parois (10 à 40 %), le peuplement des grottes semi-obscurcs est très riche et recouvre totalement les parois. Il est dominé par les éponges qui forment des revêtements épais (Harmelin et al., 1985), et est caractérisé par la disparition progressive des grandes formes érigées. Près de l’entrée, on trouve en particulier le corail rouge *Corallium rubrum*. Les peuplements cavernicoles sont fragiles, leur reconstitution peut prendre plusieurs siècles (pour les grottes obscures) en raison de la productivité extrêmement réduite du milieu et de son isolement.

La côte provençale compte de nombreuses anfractuosités plus ou moins profondes qui peuvent former des grottes mesurant plusieurs dizaines de mètres, parfois plusieurs centaines de mètres : certaines grottes sont encore partiellement explorées comme la résurgence de Port Miou à Cassis. La grotte Cosquer, située dans le massif des Calanques (Marseille) a été quant à elle rendue célèbre par les peintures rupestres qu’elle abrite (Clottes et Courtin, 1994). Plusieurs grottes sont présentes sur le site d’étude, trois d’entre elles présentent un intérêt tout particulier : la grotte des 3PP, la grotte de Gaméou, la grotte à Gaby (ou grotte de la Vierge).

(i) **Grotte des 3PP.** La grotte des 3 PP est située le long des falaises du bec de l’aigle. C’est un tunnel de 120 m de longueur dont l’entrée est située à 15 m de profondeur et son extrémité à 25 m de profondeur. La particularité de cette grotte est de s’être formée le long d’une faille et de présenter un profil descendant alors que la plupart des grottes de la région, d’origine karstique, présentent un profil ascendant. La grotte est située dans une zone d’upwelling très puissant, à seulement 7 km du canyon de la Cassidaigne, profond de 3000 m. Les eaux froides, remontées des grands fonds, sont piégées de par la configuration particulière de la grotte, dans la partie basse, sous une thermocline. La température y est stable et ne dépasse pas 14°C même durant l’été (Harmelin et Vacelet, 1997). L’obscurité est totale à 50 m de
l’entrée de la grotte. Ces conditions, semblables à celles des grands fonds, permettent le développement de propagules importées depuis le proche canyon par les upwellings. Le terme d’abysses méditerranéens à 20 m de profondeur et donc à portée de main à souvent été utilisé pour qualifier l’importance de l’existence de cette grotte pour les scientifiques, véritable laboratoire des grands fonds, facilement accessible à l’observation.

Figure 33: Photographies des éponges de la grotte des 3 PP (La Ciotat). A : Asbestopluma hypogea ; B : Myceliospongia araneosa ; C : Thymosiopsis cuticulatus ; D : Oopsacas minuta. (Photographies © J. Vacelet).
L’éponge carnivore *Asbestopluma hypogea* est un animal de petit taille (20 mm), formé d’un corps muni de filaments porté par un pédoncule, ressemblant plus à un hydraire qu’à l’éponge de toilette bien connue. Le genre *Asbestopluma* détient le record de profondeur chez les éponges : une espèce ressemblant à celle de la grotte vit par 8840 m de profondeur dans le Pacifique. La possibilité de disposer d’individus facilement accessibles a permis d’étudier la biologie des organismes de cette famille, alors encore inconnue. Le système aquifère (ouverture inhalante et exhalante, cellules flagellées) commun à l’ensemble de ces organismes filtreurs et point majeur de la définition de l’embranchement des spongiaires, est totalement absent chez cette espèce cavernicole. La nutrition de cette éponge paraissait impossible jusqu’à ce que des expérimentations *in situ* mettent en évidence que ces éponges étaient capables de piéger des petits crustacés, à l’aide de spicules en crochet disposés sur les filaments et de les digérer en quelques jours. Le régime alimentaire carnivore de ces éponges est certainement similaire pour les espèces de Cladorhizidae des grands fonds. Cette adaptation à des conditions de vie extrême, où les particules nutritives sont très peu abondantes révèle les possibilités d’évolution des éponges (Vacelet et Boury-Esnault, 1995). Hormis les éponges, d’autres organismes habituellement rencontrés en profondeur, sont présents dans la grotte ; il s’agit du bryozoaire *Puellina setiformis* (Harmelin, 1997), de nouveaux genres de Tardigrades et de Polychètes (Villora-Moreno, 1995, 1996) et de nouvelles espèces de Chaetognathes (Casanova, 1992).

(ii) **Anse de Gaméou.** L’anse de Gaméou abrite deux failles longues de 43 et 33 mètres débouchant dans une même grotte. Ces fissures orientées selon un axe Nord-Sud sont parallèles et distantes de 50 m. Seule la faille située à l’Ouest, la plus longue, comporte le long de ses deux parois, entre 3 et 9 m de profondeur, des constructions biologiques (bioconstruction) verticales remarquables, formant des concrétionnements en forme de piliers, (Figure 34). Ces formations ont été étudiées, décrites et datées par Sartoretto (1996). Les piliers se sont édifiés au cours du temps par l’accumulation, l’empilement, des thalles de l’algue Corallinacae *Mesophyllum lichenoides*. La taille des piliers varie entre 15 et 70 cm de longueur : seule l’extrémité du pilier présente des thalles vivants.

Figure 34 : Coupe transversale de la faille de l’anse de Gaméou, répartition bathymétrique des piliers de *Mesophyllum lichenoides*. L : corniche à *Lithophyllum lichenoides* ; P : pilier à *Mesophyllum lichenoides* (d’après Sartoretto, 1996).
L’espèce *Mesophyllum lichenoides* est habituellement connue pour construire des coussinets croissant en position photophile dans les zones de mode calme. La formation des piliers à *Mesophyllum lichenoides* résulte de la croissance de l’espèce dans les conditions écologiques particulières, inhabituelles pour l’espèce, régnant dans la faille : hydrodynamisme important et très faible luminosité. Cette formation est présente à la Ciotat, uniquement au niveau de cette faille. Cette curiosité biologique est connue dans deux autres sites, présentant des caractéristiques similaires à celle de la faille de l’anse de Gamiou : dans la calanque de Cala-Litizzia à Scandola et la Calanque du Blé sur la presqu’île de Giens. La datation au 14C a montré que la base des piliers étudiés date de 2 500 ans ; la vitesse d’édification est en moyenne de 0.19 mm/an (Sartoretto, 1996).

(iii) **Grotte à Gaby (Grotte de la Vierge).** La grotte à Gaby se situe sur la remontée rocheuse du Canonnier Nord, à 14 m de profondeur. A l’entrée de cette grotte, une statue de la vierge Marie a été immergée par un pêcheur de la Ciotat : Gabriel Berenger, d’où le nom de ce site de plongée. Il s’agit d’un tunnel, mesurant 12 m de long et 3 à 6 m de diamètre, traversant la roche. Le plafond de la grotte est couvert par des branches de corail (*Corallium rubrum*). L’état des colonies présentes est variable. Nous avons pu observer des colonies saines, des colonies nécrosées et des colonies mortes en place au plafond ou tombées sur le fond. La mortalité des colonies n’a pas fait l’objet de comptages spécifiques ; toutefois, elle ne semble pas dépasser 50 %. Ce site relativement accessible est visité par des plongeurs de tous niveaux. Outre le corail, on peut y observer des langoustes (*Palinurus elephas*) et des porcelaines (*Luria lurida*).
3.6. Les paysages remarquables

La notion de paysage est relativement récente dans le milieu sous-marin. En effet, l’étude des peuplements marins et de leur écologie se réfère généralement à des répartitions spatiales relativement restreintes. Un paysage sous-marin tel que nous l'entendons ici fait donc référence, d’une part à la dimension esthétique que constitue la qualité du décor : topographie, éléments architecturaux (tels les arches, les surplombs, les grandes parois verticales, les grands blocs, etc.), couleur, visibilité ; d’autre part aux espèces de grande taille (méga-espèces) que le plongeur peut apercevoir (telles les grandes éponges, les gorgones, les grands échinodermes, les poissons abondants, les grandes Cystoseira) ; et enfin la combinaison des communautés réunies dans le champ de vision du plongeur.

Parmi les paysages sous-marins remarquables dans le secteur d’étude, les petits fonds rocheux et les grottes sous-marines sont les plus accessibles. Les petits fonds rocheux du site s’étendent de la surface jusqu’à 15-20 m de profondeur ; la roche, de forte pente, est particulièrement découpée, surtout sur la façade Sud de l’île Verte. Par ailleurs, l’herbier à Posidonia oceanica forme des placages qui remontent sur la roche. Un herbier de Posidonia sur des roches accidentées constitue un paysage de qualité, en particulier en eau claire. Cette hétérogénéité structurale favorise la diversité et la richesse écologique en offrant de nombreux substrats aux organismes fixés, ainsi que de la nourriture et des abris aux crustacés et aux poissons. Par ailleurs la présence de l’herbier dans ces petits fonds est un signe de qualité du milieu (en cas de déséquilibre, les zones d’herbier sur roche régressent beaucoup plus vite que l’herbier installé sur substrat meuble). Cette richesse biologique, l’abondance des petits poissons de roche, des échinodermes (oursins, étoiles de mer) et des mollusques (poulpes, seiches, nudibranches), les espèces remarquables que l’on peut observer (langoustes, corbs, murènes), la luminosité et les couleurs des peuplements d’algues photophiles, des tapis d’éponges et des gorgones présentes à faible profondeur, font des petits fonds rocheux du secteur un paysage sous-marin très intéressant. Leur accessibilité à tous est un critère supplémentaire pour en faire le lieu privilégié des sentiers sous-marins de découverte. Ces petits fonds rocheux sont toutefois fragiles et sont donc particulièrement sensibles aux perturbations d’origine anthropique (aménagements, rejets, etc.). Leur bonne gestion est donc primordiale.
L’intérêt paysager des **grottes sous-marine**, tient à une ambiance particulière et aux décors architecturaux variés (parois verticales, surplombs, ouvertures), aux jeux de lumière et à l’habillage coloré d’espèces aux couleurs très vives (anémones jaunes, gorgones oranges, corail rouge, éponges oranges et bleues, etc.). L’exploration d’une grotte sous-marine s’accompagne du caractère supplémentaire qu’apporte l’observation d’espèces particulières, camouflées dans la pénombre et découvertes au fur et à mesure de la progression.

Le coralligène au sens propre (massifs de concrétionnements algal) est très abondant sur le site. Les peuplements associés au coralligène (grandes éponges dressées, gorgones, etc.) sont très développés, et constituent certainement l’attrait le plus important pour les plongeurs.

L’herbier de Posidonie est particulièrement bien représenté sur l’ensemble du secteur d’étude. Bien qu’il soit considéré comme relativement banal par les plongeurs sous-marins, un herbier de Posidonie sur des roches accidentés constitue un paysage de qualité, en particulier en eau claire.

Dans le paysage tel qu’il est perçu par le plongeur sous-marin, la dimension esthétique et la richesse biologique l’emportent souvent sur l’intérêt patrimonial. Une grille des critères d’appréciation des sites de plongée par les plongeurs, a été proposée dans le cadre du Plan de gestion du Parc national de Port-Cros (Tableau 8). Elle prend en compte plusieurs paramètres, la présence de poissons (de grande taille ou en forte abondance), la visibilité, le décor (accidenté si possible) mais également la difficulté d’accès (le danger est considéré comme un «plus»). On peut, à titre indicatif, comparer aux critères de cette grille les paysages sous-marins les plus caractéristiques de notre site d’étude.

Tableau 8 : Critères d’appréciation par les plongeurs des paysages sous-marins du site étudié. Valeur : - : faible richesse / décor sans intérêt / aucune difficulté ; + : richesse moyenne / décor d’intérêt moyen / difficulté moyenne ; ++ : bonne richesse / décor d’intérêt certain / accès difficile ; +++ : très riche / décor spectaculaire / accès dangereux

<table>
<thead>
<tr>
<th>Eléments de paysages</th>
<th>Richesse biologique perçue par le plongeur</th>
<th>Qualité du décor</th>
<th>Difficulté d’accès</th>
</tr>
</thead>
<tbody>
<tr>
<td>La roche littorale à algues (entre 0 et 5 m)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>La roche littorale à algues (entre 5 et 20 m)</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Les éboulis</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Les herbiers de Posidonie</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Les tombants profonds</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Les auvents, boyaux et grottes</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Les peuplements du coralligène</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

Le site d’étude comporte une importante variété de paysages sous-marins, qui va des secteurs les moins profonds, facilement accessibles, aux zones les plus profondes plus difficiles d’accès (Figure 35):

- La roche littorale à algues (entre 0 et 5 m) : frange côtière occupant le pourtour de l’île Verte et comprise de l’anse du Sec à l’anse du grand Mugel.
- La roche littorale à algues (entre 5 et 20 m) : Falaises du Bec de l’Aigle et pourtour de l’île Verte.
- Les auvents, boyaux et grottes : Grotte des 3 PP, Anse de Gaméou, Grotte à Gaby, Pierres au large de L’île Verte.
Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

Figure 35 - Localisation des espèces sous-marines remarquables de la zone d’étude
4. INVENTAIRE FLORISTIQUE ET FAUNISTIQUE

4.1. Les espèces protégées

Les espèces protégées et d’intérêt patrimonial observées sur le site d’étude sont localisées par grandes zones d’observation (Figure 36).

Tableau 9 : Liste des espèces marines protégées (nom scientifique et nom vernaculaire) présentes ou dont la présence est possible sur le site d’étude. Annexe I de la Convention de Berne : espèces de la flore strictement protégées ; Annexe II de la Convention de Berne : espèces de la faune strictement protégée ; Annexe III : espèces de la faune protégées (exploitation réglementée). Les mammifères marins et les tortues marines n’ont pas été détaillés.

<table>
<thead>
<tr>
<th>Nom scientifique</th>
<th>Nom vernaculaire</th>
<th>Texte Ministériel</th>
<th>Convention de Berne</th>
<th>Effectivement observées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplysina cavernicola</td>
<td>Eponge cavernicole jaune</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Asbestopluma hypogea</td>
<td>Eponge carnivore</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Asterina panceri</td>
<td>Astérine d'herbier</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Axinella polypoides</td>
<td>Axinelle commune</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Centrostephanus longispinus</td>
<td>Oursin diadème</td>
<td>Acte 26 novembre 1992</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Charonia rubiconga</td>
<td>Triton à bosses</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Corallium rubrum</td>
<td>Corail rouge</td>
<td>Acte 26 novembre 1992</td>
<td>Annexe III</td>
<td>X</td>
</tr>
<tr>
<td>Cymodocea nodosa</td>
<td>Cymodocée</td>
<td>Arrêté du 19 juillet 1988</td>
<td>Annexe I</td>
<td>X</td>
</tr>
<tr>
<td>Cystoseira amentacea var. stricta</td>
<td>Cystoseire stricte</td>
<td></td>
<td>Annexe I</td>
<td></td>
</tr>
<tr>
<td>Cystoseira spinosa</td>
<td>Cystoseire épineuse</td>
<td></td>
<td>Annexe I</td>
<td></td>
</tr>
<tr>
<td>Cystoseira zosteroides</td>
<td>Cystoseire zostère</td>
<td></td>
<td>Annexe I</td>
<td></td>
</tr>
<tr>
<td>Epinephelus marginatus</td>
<td>Mérou brun</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Erosaria sparca</td>
<td>Porcelaine pure</td>
<td></td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Espèces</td>
<td>Peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippocampus hippocampus</td>
<td>Cheval marin à bec court</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Hippocampus ramulosus</td>
<td>Cheval marin</td>
<td>Annexe II</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hippopuspongia communis</td>
<td>Eponge commune</td>
<td>Annexe III</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hommarus gammarus</td>
<td>Homard européen</td>
<td>Annexe III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litophaga lithophaga</td>
<td>Datte de mer</td>
<td>Arrêté 26 novembre 1992</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Litophylum byssoides</td>
<td>Pierre vermiculée</td>
<td>Annexe I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luria lurida</td>
<td>Porcelaine livide</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Maia squinado</td>
<td>Araignée de mer</td>
<td>Annexe III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammiferes marins</td>
<td>Arrêtés du 20 octobre 1970 et 28 février 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitra zonata</td>
<td>Mitre zonée</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Ophiidiaster ophidianus</td>
<td>Etoile de mer pourpre</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Palinurus elephas</td>
<td>Langouste</td>
<td>Annexe III</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paracentrotus lividus</td>
<td>Oursin-pierre</td>
<td>Annexe III</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Petrobiona massiliiana</td>
<td>Eponge calcaire de Marseille</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Pholadys dactylus</td>
<td>Pholade</td>
<td>Arrêté 26 novembre 1992</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Pinna nobilis</td>
<td>Grande nacre</td>
<td>Arrêté 26 novembre 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinna pernula = P. rudis</td>
<td>Nacre rude</td>
<td>Arrêté 26 novembre 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posidonia oceanica</td>
<td>Posidonie</td>
<td>Arrêté du 19 juillet 1988</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ranella olearia</td>
<td>Ranelle géante</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td>X</td>
</tr>
<tr>
<td>Scinae umbra</td>
<td>Corb</td>
<td>Arrêté 26 novembre 1992</td>
<td>Annexe III</td>
<td>X</td>
</tr>
<tr>
<td>Scyllarides latus</td>
<td>Grande cigale</td>
<td>Arrêté 26 novembre 1992</td>
<td>Annexe III</td>
<td>X</td>
</tr>
<tr>
<td>Scyllarus arctus</td>
<td>Petite cigale</td>
<td>Annexe III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongia agaricina</td>
<td>Eponge de toilette</td>
<td>Annexe III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongia officinalis</td>
<td>Annexe III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomna galea</td>
<td>Tonne cannelée</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Tortues</td>
<td>Arrêté 17 juillet 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonaria pyrum</td>
<td>Porcelaine poire</td>
<td>Décret 7 juillet 1999</td>
<td>Annexe II</td>
<td></td>
</tr>
<tr>
<td>Zostera noltii</td>
<td>Zostère naine</td>
<td>Arrêté du 19 juillet 1988</td>
<td>Annexe I</td>
<td></td>
</tr>
</tbody>
</table>
Figure 36 : Localisation des espèces bénéficiant d'un statut légal de protection ou d'intérêt patrimonial.
Le Mérou brun

Epinephelus marginatus (Lowe, 1834)

Systématique : Poissons, Serranidés, Epinephelinés

Figure 37 : *Epinephelus marginatus* (Photographie © E. Charbonnel).

Le mérou brun est avant tout le poisson emblématique de la Méditerranée ; il est très recherché des plongeurs pour sa familiarité. Il fréquente les fonds rocheux riches en abris : gros éboulis, failles et cavités dans lesquels il peut se réfugier. C'est un puissant prédateur qui peut atteindre 1.20 m (1.50 m) de long pour un poids de 35 (65 kg) ; il chasse à l’affût, il s'alimente au lever et au coucher du soleil, de poulpes, crustacés et poissons (Chauvet, 1991b ; Louisy *et al.*, 1997 ; Harmelin et Harmelin-Vivien, 2000). Jusqu'au milieu du 20ème siècle, le mérou était assez commun en Méditerranée. Très prisé pour sa chair et sa valeur de trophée (chasse sous-marine), il s'est rapidement raréfié. L’espèce est protogyne : d’abord femelle, le changement de sexe pour devenir mâle intervient entre 4 et 7 ans, soit environ 80-90 cm. Jusqu’au début des années 1990s, c’étaient généralement des individus de grande et moyenne taille, les plus chassés, qui se rencontraient sur les côtes françaises. Depuis, des petits individus (< 45 cm) et même des juvéniles sont régulièrement observés (Chauvet, 1991 ; Louisy *et al.*, 1997 ; Louisy et Culioli, 2000 ; Zabala *et al.*, 1997a, 1997b).

L’accroissement des effectifs de cette espèce est largement signalé par l’ensemble des plongeurs fréquentant la zone d'étude. Les comptage réalisés par le GEM (Groupement d’Etude du Mérou) montrent que le nombre de mérous est passé de 24 à 26 individus sur 5 des sites étudiés entre 1997 et 1999. Au total, 43 individus ont été dénombrés sur les 8 sites étudiés en 1999 (Tableau 10, Figure 38 ; GEM, 1999).
Tableau 10 : nombre de mérous Epinephelus marginatus comptabilisés sur les différents sites de l’île Verte en 1999 (GEM, 1999)

<table>
<thead>
<tr>
<th>Sites</th>
<th>Pierre du Levant</th>
<th>Pierre du Rosier</th>
<th>Pierre de Rousteau</th>
<th>Pierre du Jas</th>
<th>Grotte de la vierge</th>
<th>Canonnier Sud</th>
<th>Grand Moure</th>
<th>Bec de l’Aigle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d’individus</td>
<td>14 à 16</td>
<td>11</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 38 : localisation des individus de mérous bruns Epinephelus marginatus dénombrés par le GEM (1999) sur les pierres situées au Sud-Est de l’île Verte (Fond de carte © Semantic-TS). A droite, code couleur de la bathymétrie (en m).

Les pierres situées au Sud-Est de l’île Verte constituent la zone la plus riche (91 % des observations). Les autres sites de la zone étudiée sont nettement moins riches. L’importante fréquentation des ces sites par les plongeurs sous-marins et les pêcheurs sous-marins peut, en partie, l’expliquer. Il est vrai que le potentiel d’habitats disponibles pour le mérou est très élevé sur la zone située au Sud de l’île Verte (abris sous roche, failles et cavités, etc.) et la nourriture apprécie des mérous (poulpes, poissons, crustacés) y est abondante. Pour autant qu’une surveillance effective soit mise en place, une population encore plus importante de mérous pourrait s’y développer ; le danger du braconnage reste en effet important. Des captures de mérous par les pêcheurs sous-marins (donc illégales) nous été signalées en plusieurs occasions sur le site d’étude. De nombreux cas ont aussi été rapportés, notamment
dans l’archipel de Riou (Harmelin et al., 1996 ; Harmelin et al., 1998). La réglementation en vigueur protégeant le mérou brun n’est donc pas complétement respectée.
La grande cigale

Scyllarides latus (Latreille, 1803)

Systématique : Crustacés, Malacostracés, Décapodes, Scyllaridés

Protection : arrêté du 26 novembre 1992 ; Annexe III de la convention de Berne (1996) ; Annexe IV de la directive Habitats.

Figure 39 : *Scyllarides latus* (Dessin © N. Muller-Sbriglio).

La grande cigale *Scyllarides latus* peut mesurer jusqu’à 45 cm de long ; sa carapace est de couleur brun-orangée sur le dos. On la rencontre dans toute la Méditerranée (surtout dans le Sud et l’Est jusqu’à l’Adriatique). Elle vit entre 0 et 10 m de profondeur sur des fonds rocheux et sableux, et semble affectionner plus particulièrement les herbiers de Posidonie et les grottes (Baghdiguian *et al.*, 1987 ; Holthuis, 1987). D’un comportement grégaire et plutôt nocturne, elle se nourrit principalement de mollusques. Bien que ce soit une espèce peu commercialisée, rare sur les marchés du littoral, elle est appréciée pour la bouillabaisse et fait parfois donc l’objet d’une pêche illégale (en scaphandre autonome). Elle fait également partie des prises accessoires des pêcheurs professionnels. On a observé une nette régression de ses populations, due à la surexploitation, et elle avait presque disparue du Golfe du Lion et en région Provence-Alpes-Côte d’Azur dans les années 1980s et 1990s. Les signalisations sont maintenant un peu plus nombreuses (Boudouresque *et al.*, 1996).

Plusieurs individus de grandes cigales ont été observés sur la zone d'étude, en particulier à proximité des pointes rocheuses du Sud de l'île Verte. D’autres grands crustacés, tel le homard, ont été observé sur le site, principalement à proximité de boyaux situés le long des falaises de Bec de L’Aigle.
La grande nacre

Pinna nobilis (Linnaeus, 1758)

Systématique : Mollusques, Bivalves, Ptérimorphes, Mytiloïdes, Pinnacées.

La grande nacre de Méditerranée est un mollusque bivalve dont la coquille, au bord antérieur arrondi, est de forme triangulaire avec une pointe très effilée. Elle figure parmi les plus grands coquillages existant dans le monde (elle peut dépasser 1 m de longueur). Les grandes nacres vivent à demi enfoncées dans le sédiment des baies calmes, principalement dans les herbiers à *Posidonia oceanica* entre la surface et 35-40 m de profondeur. L’animal est fixé dans le sable par son byssus, sécrétion filamentueuse du pied dont chaque brin, très résistant, est attaché à un corps solide (Vicente et Moreteau, 1991). On peut observer un petit crabe commensal (*Pinnotheres pinnotheres*) et une crevette (*Pontonia*) vivant entre les valves des grandes nacres ; ils utilisent les déchets organiques rejettés par le coquillage pour se nourrir, faisant ainsi office de nettoyeurs (Zavodnik *et al.*, 1991). Comme d’autres coquillages, la grande nacre peut élaborer des perles mais celles-ci sont peu abondantes et n’ont aucune valeur marchande.

Pinna nobilis abondait autrefois sur le littoral. Brisée par les ancre et les chaluts et récoltée par les plongeurs amateurs, elle est devenue rare. Le recul des herbiers à Posidonia, son habitat d’élection, constitue également une cause de régression (Baghdiguian *et al.*, 1987 ; Boudouresque, 1996).
La grande nacre est relativement peu représentée sur l’ensemble de la zone d’étude ; elle a été observée en plusieurs endroits, dans l’herbier de Posidonie : sur la face Nord de l’île Verte, très proche de la côte. Peu d’individus ont été observés à proximité des sites de plongée, peut-être en raison d’une trop importante pression de mouillage ou du ramassage.
L’oursin diadème
Centrostephanus longispinus (Philippi, 1845)

Systématique : Echinoderms, Echinoides, Autodontes, Diadèminés.

Ses longs piquants (plus de 7 cm) permettent d’identifier facilement l’oursin diadème. Il est présent dans l’ensemble de la Méditerranée, mais rare en Méditerranée occidentale, car c’est une espèce relativement thermophile. Les individus que l’on rencontre le long des côtes françaises, qui sont en majorité des individus de grande taille (diamètre du test supérieur à 4 cm) pourraient provenir de larves émises dans le sud de l’Italie et portées par le courant liguro-provencal (Francour, 1991). L’oursin diadème fréquente le plus souvent les substrats rocheux (anfractuosités) sur la partie inférieure des tombants sous des surplombs ou à l’abri de la lumière (on le rencontre jusqu’à 200 m de profondeur). Il se déplace de nuit pour chercher sa nourriture qu’il racle sur la roche ; il s’agit essentiellement de bryozoaires, de lamellibranches, de débris d’éponges mais également de feuilles de *Posidonia oceanica* (Paul *et al.*, 1983). Déjà peu commun dans nos eaux, l’oursin diadème est surtout menacé par le ramassage par les plongeurs (Baghdiguian *et al.*, 1987 ; Boudouresque, 1996).

Plusieurs oursins diadèmes ont été observés sur les sites des Rosiers, du Levant et du grand Moure ainsi qu’à plus faible profondeur (< 20 m) sur les roches coralligènes situées au pied des falaises du Bec de l’Aigle et sur les roches de Nègue Foum.
Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

Le Corail rouge
Corallium rubrum (Linnaeus, 1758)

Systématique : Cnidaires, Anthozoaires, Octocoralliaires, Gorgonaires, Coralliidés.

Protection : espèce exploitée commercialement, inscrite dans l’Annexe III de la convention de Berne (Boudouresque et al., 1996).

Figure 41. Corallium rubrum (Photographie © Pierre Martini).

Le corail rouge, espèce endémique de Méditerranée (observations ponctuelles en Atlantique entre le Portugal et les îles du Cap-Vert), est bien représenté sur tout le littoral rocheux de la région Provence-Alpes-Côte-d’Azur (Rivoire, 1991). Les Bouches-du-Rhône et Marseille en particulier connaissent une activité importante (qui a débuté au moyen-âge) de collecte du corail (Harmelin et al., 1996). Vivant, il forme des colonies rigides ramifiées dont les polypes, blancs et transparents, possèdent huit tentacules. La distribution du corail rouge est conditionnée par la luminosité et le substrat. On ne le trouve que sur substrat rocheux dans des conditions d’éclairement réduit ; il caractérise ainsi, dès les faibles profondeurs, la biocénose des grottes semi-obscures. Plus bas, on le rencontre sur les falaises et les tombants rocheux, entre 15 et 120 m de profondeur, exceptionnellement 250-280 m (sur les roches du canyon de Cassidaigne) (Laborel et Vacelet, 1961). La croissance est très lente, de l’ordre de 2 à 8 mm/an pour l’allongement dans les grottes (Harmelin, 1984), mais on suppose qu’elle est plus rapide dans les zones soumises à une meilleure circulation des eaux.

Le corail rouge est utilisé pour l’industrie joaillière, les colonies mortes, sorties de l’eau, ont un aspect rouge foncé. Leur taille peut atteindre 20 cm de hauteur (exceptionnellement 40 cm), mais la pêche intensive a fait disparaître les plus belles colonies. La technique très destructive de la « croix de Saint-André » (croix métallique équipée de filets raclée sur le fond, Baghdiguian et al., 1987) est actuellement remplacée par la récolte en scaphandre.
autonome (système de licences d’exploitation en nombre limitées). L’exploitation ne menace pas l’espèce elle-même (les colonies peuvent se reproduire dès la taille de 3 cm), ni son aire de distribution. Elle a seulement entraîné une raréfaction des grandes branches, qui s’est accentuée avec le développement de la plongée.

Dans le secteur étudié, le corail est très abondant sur l’ensemble des sites où se développe le coralligène. On le trouve même en abondance à faible profondeur sous les surplombs sciaphiles. Le corail a été victime comme les autres gorgonaires de l’épisode de mortalité ayant touché l’ensemble de la région Provence Alpes-Côte d’Azur en 1999. A faible profondeur, les colonies ont été particulièrement touchées : on observe en de nombreux endroits des taux de mortalité supérieurs à 50 %. De manière analogue aux gorgones les nécroses sont de moins en moins nombreuses quand la profondeur augmente.
La grande Porcelaine

Luria lurida (Linnaeus, 1758)

Systématique : Mollusque,
Gastéropodes, Cypraeoides,
Cypraeidés.

Protection : espèce inscrite dans

Figure 42. *Luria lurida* (Photographie © P. Francour).

La grande porcelaine est présente dans l’ensemble de la Méditerranée. Elle est facilement reconnaissable car c’est l’espèce de porcelaine la plus grande (jusqu’à 6 cm) et la plus commune en Méditerranée. Elle est de coloration brune avec des bandes transversales plus claires. *Luria lurida* vit en milieu peu profond, entre 1 et 30 m, ce qui en fait une proie facile pour les plongeurs avides de souvenirs.

On la rencontre dans les zones rocheuses, les grottes, les fissures littorales et parfois les herbiers de Posidonzie, dans les petites cavités formées entre les rhizomes ou bien sous les petits rochers. Elle montre une activité plutôt nocturne. Victimes principalement du ramassage par les plongeurs, la grande porcelaine est devenue relativement rare (Boudouresque *et al.*, 1996).

Selon les plongeurs sous-marins, la fréquence d’observation de la grande porcelaine est en augmentation dans le site d’étude. Nous l’avons observée sur les sites de la grotte à Gaby, la calanque de Figuerolles, le grand Moure et les Rosiers. Relativement discrète, cette espèce est certainement présente sur d’autres sites.
L’éponge corne de cerf

Naxinella polypoides (Schmidt)

Systématique : Spongiaires, Axinellidae

Axinella polypoides est une grande éponge ramifiée, dont les plus grandes colonies peuvent atteindre 60 à 100 cm de hauteur. De couleur jaune vif à orange, elle se rencontre sur substrat rocheux, entre 15 et 100 m de profondeur, souvent fixée sur les replats des tombants ou sous des surplombs. Relativement rare, sa forme, sa couleur vive, et sa forme ramifiée, la rendent visuellement attractive ; elle est donc appréciée des plongeurs sous-marins.

De nombreux individus d'*Axinella polypoides* ont été observés sur le site d’étude, principalement sur le site des Rosiers.
4.2. Les espèces d’intérêt patrimonial, commercial ou symbolique

Les espèces-clés des paysages sous-marins (gorgones, éponges, cnidaires, *etc.*.) constituent par leur action constructrice, leur taille ou encore leur abondance, l’attrait principal des fonds sous-marins, pour les plongeurs en particulier. La plupart ne sont pas considérées comme menacées, mais elles représentent un patrimoine de forte valeur qu’il convient de protéger.

Les espèces d’intérêt commercial sont celles qui sont recherchées par les pêcheurs professionnels et amateurs (pêche à la ligne et chasse sous-marine). Ce sont les grands crustacés comme la langoustine, les poissons comme les sars, le loup, le denti, la daurade, etc.

Enfin la valeur symbolique de certaines espèces tient à leur popularité auprès du public (côte médiatique et qualité esthétique pour les plongeurs sous-marins essentiellement), ce sont les grands poissons comme le mérou, bien entendu, mais également le corb et la murène.
La murène

Muraena helena (Linnaeus, 1758)

Systématique : Poissons, Anguilliformes, Anguilloides, Murenidés.

Protection : aucun statut de protection.

La murène est un poisson au corps serpentiforme, allongé quasi cylindrique qui, à la taille adulte, peut atteindre 130 à 150 cm de long. La peau est nue, très épaisse et résistante, recouverte d’un épais mucus, de coloration assez variable, mais généralement brun rougeâtre à marron avec des taches jaunes sur tout le corps (Miniconi, 1994). *Muraena helena* est une espèce benthique ; elle vit depuis la surface jusqu’à une centaine de mètres de profondeur, dans les trous et les crevasses des fonds rocheux. Dans la journée, la murène reste au fond de sa cachette ; ce n’est qu’en fin d’après-midi qu’elle commence sa chasse crépusculaire et nocturne. C’est un prédateur vorace, qui chasse les mollusques (avec un goût marqué pour les poulpes) et les petits poissons ; elle se nourrit également de cadavres et d’animaux blessés (Weinberg, 1992). La reproduction des murènes est mal connue ; on pense que la ponte a lieu près des côtes en hiver et que les larves dérivent en pleine eau avant de rejoindre le fond. Les plus petites murènes pêchées ou rencontrées en plongée mesurent déjà plus de 20 cm ; elles vivent alors sous quelques mètres d’eau jusque dans les zones d’ébouli à la côte ; les adultes peuvent descendre à plus de 100 m de profondeur (Louisy, 1994). La murène est pêchée pour sa chair au filet trémail, à la nasse et à la palangre, mais également au fusil-harpon.

De nombreux individus de *Muraena helena* (de taille moyenne) ont été observés sur l’ensemble de la zone d’étude, dans les petits fonds, en particulier sur la face Sud de l’île verte, et sur le site des terrasses. La murène est une rencontre toujours appréciée des plongeurs sous-marins. C’est une espèce d’intérêt patrimonial, qui ne bénéficie d’aucun statut légal de protection et qui serait en voie de raréfaction, selon les plongeurs sous-marins.
Le Corb

Sciaena umbra (Linnaeus, 1758)

Systématique : Poissons, Perciformes, Sciaenidés.

Protection : espèce inscrite dans l’annexe III de la Convention de Berne (Boudouresque *et al.*, 1996).

Figure 43. *Sciaena umbra* (Photographie © P. Martini).

Le corb est l’un des plus beaux poissons de Méditerranée et, comme le mérou, il a acquis une valeur de symbole pour les plongeurs sous-marins. Il est répandu dans toute la Méditerranée mais est également présent en mer Noire et en Atlantique, du Portugal jusqu’au Sénégal. C’est un poisson de taille moyenne (taille maximale de 70-75 cm pour un poids de 4 kg), au corps comprimé et dont le dos est fortement arqué. Il est de couleur bronze uniforme avec des reflets métalliques ou dorés. Les nageoires pelviennes et annales sont noires, ainsi que la partie terminale de la dorsale et la partie inférieure de la caudale (Harmelin, 1991). Le corb fréquente surtout les petits fonds infralittoraux, mais peut se trouver jusqu’à 180 m de fond. Il recherche les abris sous roche, zones d’éboulis, failles et petites grottes entre 5 et 30 m de profondeur. Volontiers grégaire et de comportement nocturne, il peut former des familles de 5 à plus de 30 individus de différentes tailles qui restent au repos, pendant la journée, dans des sites généralement peu profonds (< 20 m), à proximité des abris rocheux. Ce comportement diurne très calme le rend vulnérable aux chasseurs sous-marins, dont il est une des cibles préférées. Sa maturité sexuelle tardive (à partir de 30 cm de long ; Chauvet, 1991 ; Harmelin, 1991) est un autre élément de vulnérabilité des populations. L’utilisation des arts traînants dans les herbiers de Posidonie, habitat supposé des juvéniles, pourrait également constituer un facteur important de mortalité des jeunes individus. Le fort déclin du corb date de 1965-1970 et depuis 1983, il a commencé à réapparaître dans des secteurs des côtes françaises d’où il avait plus ou moins disparu, peut être grâce à la protection dont il bénéficie dans les espaces protégés (Harmelin et Marinopoulos, 1993 ; Boudouresque *et al.*, 1996).
Quoi qu’il en soit, le corb reste encore relativement rare. Dans le secteur étudié, il a été observé à plusieurs reprises sur le Canonnier Nord, ainsi qu’à proximité des tombants du grand et du petit Moure.

La Langouste
Palinurus elephas (Fabricius, 1787)

Systématique : Crustacés décapode.
Protection : incluse dans l’annexe III de la Convention de Berne et dans l’annexe III de la Convention de Barcelone (Boudouresque *et al.*, 1996).

La langouste est, avec le homard, le crustacé le mieux connu du grand public. Elle est particulièrement appréciée pour sa chair. *Palinurus elephas* est présente dans toute la Méditerranée occidentale, dans l’Adriatique et sur les côtes Nord et Ouest de la Méditerranée orientale, mais également dans l’Atlantique (Holthuis, 1987). Sa carapace est de couleur brun rouge ; elle peut atteindre 30 à 50 cm de long. On la rencontre dans les trous et les failles des fonds rocheux entre 0 et 70 m de profondeur. La langouste se nourrit en particulier d’animaux morts ; c’est pourquoi elle est facile à capturer dans des nasses appâtées avec un poisson mort (Weinberg, 1992). La collecte en plongée sous-marine bien qu’interdite a longtemps été pratiquée (Boudouresque *et al.*, 1996).

La langouste est présente surtout sur la partie Sud de l’île Verte et sur les Pierres au large de l’île Verte. On remarque cependant qu’elle est absente de nombreux surplombs et cavités correspondant à son habitat, sans doute victime d’une importante prédation par les chasseurs sous-marins. Elle fait aussi l’objet de braconnage de la part de certains plongeurs. Les plus beaux spécimens ont été observés sur les roches les plus profondes, lieux de vie des adultes, mais aussi lieux de refuge.
Les Sars

Systématique : Poissons, Perciformes, Percoides, Sparidés.

Protection : aucun statut de protection.

Les sars font partie de la famille des Sparidés, poissons au corps ovale, de forme haute et comprimée latéralement. La tête est forte et massive avec un museau court, une bouche peu ample avec des dents plus ou moins grosses selon les espèces. Caractérisés par une grande nageoire dorsale unique, en partie épineuse, les Sparidés présentent une coloration souvent gris argentée, parfois rosée, assortie de reflets, de taches et de rayures longitudinales ou verticales plus sombres. Leur régime alimentaire diffère selon les espèces ; il est omnivore avec une prédominance carnivore. Les sars vivent en banc et sont une composante essentielle du paysage faunistique sous-marin méditerranéen. Ils constituent, avec les Labridés et les Serranidés, la plus grande proportion de l’ichtyofaune de milieu rocheux en Méditerranée (Bauchot et Pras, 1980 ; Harmelin, 1990 ; Harmelin-Vivien et Harmelin, 1991 ; Jouvenel, 1997).

Parmi les cinq espèces de sars les plus communes de Méditerranée, deux ont été observées en nombre très important dans la zone de étudiée : le sar commun (*Diplodus sargus*) et le sar à tête noire (*D. vulgaris*) forment des bancs atteignant parfois plusieurs dizaines d’individus de grandes tailles (plus de 25 cm) ; ils ont été rencontrés dès les petites profondeurs, dans les éboulis rocheux (baie des Nations) jusque sur les tombants rocheux profonds (pointe Fauconnière, pointe du Défens, site des Trois Fours, etc.).

Le sar commun, *Diplodus sargus* est le plus fréquent sur la bande littorale méditerranéenne. De teinte gris argenté, il possède des rayures verticales noires qui ont tendance à disparaître chez les individus de plus de 25 cm. Il peut atteindre 40 cm de long. Il vit sur des fonds rocheux et des fonds sableux ou d’herbier avoisinants les rochers, jusqu’à 50 m de profondeur. Cette espèce diurne et grégaire ne s’éloigne jamais de la côte et affectionne particulièrement les failles et éboulis. Les jeunes sont omnivores (algues, petits invertébrés) et
les adultes carnivores (oursins, mollusques). Sa dentition lui permet de broyer oursins et coquilles de bivalves (moules fixées aux rochers).

Diplodus vulgaris, sar à tête noire ou sar vérade, est de teinte grise, striée de fines bandes longitudinales jaunes couvrant les 2/3 supérieurs du corps et commun en Méditerranée. Il se caractérise par la présence d’une bande verticale large à l’arrière de la tête, et d’une autre sur le pédoncule caudal. Cette espèce pouvant atteindre 30 cm de long vit en eaux côtières sur des fonds rocheux ou sableux jusqu’à 130 m. Les jeunes vivent sur fonds d’herbiers, les adultes fréquentent également les herbiers de phanérogames (Harmelin-Vivien et Harmelin, 1991). Cette espèce diurne, plutôt grégaire, se déplace en bancs importants atteignant parfois plusieurs centaines d’individus (Zabala *et al.*, 1992). Les grands individus se mêlent parfois aussi à de petits groupes de sars communs. Son alimentation est carnivore composée d’annélides, de mollusques pour les individus de moins de 20 cm et de poissons, d’échinodermes et de vers pour les autres (Rosecchi, 1985).

Le charax ou sar à museau pointu, *Diplodus puntazzo*, a une livrée également argentée striée verticalement de larges rayures brunes, surtout chez les jeunes individus. Il atteint rarement plus de 45 cm. Caractéristique des fonds littoraux rocheux, cette espèce fréquente préférentiellement les fonds durs jusqu’à 60 m ; toutefois, il est signalé jusqu’à 150 m. Les adultes parfois solitaires forment de petits groupes plus faciles à approcher que les deux autres espèces, sur les fonds rocheux de la bande côtière. On le rencontre également en pleine eau, le long de rivages accrois (secs et parois verticales) et il se nourrit d’organismes fixés sur les substrats rocheux (Miniconi, 1994). Le charax est le plus omnivore des sars : il se nourrit d’algues, de crustacés, d’annélides, de crevettes et de petits mollusques. La morphologie allongée de sa bouche ne lui permet pas de broyer des coquilles dures comme le fait le sar commun (Dutrieux et Attard, 1994).

Diplodus annularis, sparaillon ou pataclet, est un petit sar (taille maximale, 18 cm) aux reflets dorés qui fréquente essentiellement les herbiers de Posidonie, où sa couleur jaune-vert lui permet de se dissimuler. Peu recherché par les pêcheurs, il est considéré comme peu méfiant et fait partie des espèces dominantes des assemblages de poissons de l’herbier de Posidonie. En effet il y réalise la majeure partie de son cycle de vie, même s’il fréquente également les fonds rocheux ou sableux avoisinant l’herbier. Les mollusques, annélides et décapodes
récoltés dans l’herbier constituent l’essentiel de son régime, avec également des cnidaires (Rosecchi, 1985).

Enfin, *Diplodus cervinus* ou sar tambour, est le plus gros des sars présents en Méditerranée (jusqu’à 55 cm) et aussi le moins fréquent. Il apparaît parfois près de la côte espagnole le long de laquelle il remonte en venant de l’Atlantique. Il est signalé jusqu’à 300 m de fond (Bauchot et Pras, 1980). Il possède cinq larges bandes brunes verticales qui permettent de le différencier aisément des quatre autres espèces. C’est une espèce nectobenthique qui peut naviguer en eau libre jusqu’à 100 m. Des individus apparaissent sporadiquement sur les fonds rocheux et coralligènes de la zone côtière. Il se nourrit de crustacés et de mollusques.

Importance économique : Parmi les espèces pêchées sur le littoral, les sars sont bien représentés ; toutefois la pêche est saisonnière et rarement ciblée sur ces espèces particulières. Excepté pendant la période de reproduction, ces espèces sont peu vulnérables au chalut, rarement pêchés au palangre mais efficacement capturées au filet maillant. En revanche ces espèces ont un rôle majeur dans la pêche de loisirs (pêche à la ligne, chasse sous-marine).
Les gorgones

Systématique : Cnidaires, Anthozoaires, Octocoralliaires, Gorgonaires.

Protection : Aucun statut de protection.

Les gorgones sont les plus beaux éléments du décor vivant des parois rocheuses. Parmi les six espèces les plus communes (vingt et une espèces de gorgonaires ont été signalées en Méditerranée) quatre ont été observées sur le site étudié : le corail rouge (voir plus haut), la gorgone blanche *Eunicella singularis*, la gorgone jaune *E. cavolinii* et la gorgone rouge *Paramuricea clavata*.

Les colonies de gorgones blanches atteignent de 20 et 50 cm de hauteur. On les observe le plus souvent sur les parois rocheuses peu inclinées, exposées à la lumière et à la sédimentation. Présente entre 5 et 60 m de profondeur, *Eunicella singularis* est surtout abondante à une profondeur de 15 à 20 m (Weinberg, 1992).

La gorgone jaune est également une espèce de taille moyenne, les colonies atteignent de 20 à 40 cm de hauteur. *Eunicella cavolinii*, est la gorgone la plus commune de Méditerranée, on la trouve sur les parois rocheuses de forte pente à l’abri de la lumière (espèce sciaphile), tombants et surplombs, depuis une dizaine de mètre de fond, jusque sur les roches les plus profondes. C’est en outre une gorgone très robuste qui résiste bien à la pollution (Weinberg, 1991).
La gorgone rouge est une espèce de grande taille, les colonies peuvent atteindre de 30 à 100 cm, exceptionnellement 1,5 m d’envergure sur les parois profondes. On l’observe d’une dizaine de mètres jusqu’à une profondeur de 70 m, sur les tombants et surplombs rocheux, c’est une espèce plutôt sciaphile. Du fait de sa grande taille, *Paramuricea clavata* est un élément structurant majeur des peuplements du coralligène : elle accroît l’hétérogénéité des parois et de ce fait est un facteur de biodiversité (Weinberg, 1991 ; Harmelin, 1995).

Les gorgones sont soumises à des agressions de diverses origines qui entraînent des mortalités partielles (portions de branches dénudées de tissus vivants) ou totales. Ces agressions peuvent être chimiques, des cas de mortalité massive des populations de gorgones après de gros orages ont été signalés, en particulier à La Ciotat en 1983 (Rivoire, 1987). Durant l'été 1999, un épisode de mortalité a touché l'ensemble des peuplements de gorgones compris entre le golfe de Gêne et la rade de Marseille ; les causes de ce phénomène, en partie liées à des températures élevées (voir plus haut), sont en cours d'étude.

Les nécroses peuvent également être d’origine mécanique, naturelle comme l’érosion par de fortes turbulences ou le broutage des prédateurs, et anthropique comme l’action des engins de pêche traînants, des filets, des lignes de mouillage, ainsi que la préhension et les coups de palme des plongeurs sous-marins inexpérimentés (Harmelin, 1995 ; Harmelin et Marinopoulos, 1994). Il faut noter que la gorgone rouge ayant une croissance très lente (un individu de 1 m a plus de 50 ans), la restauration de ses peuplements denses après destruction peut nécessiter plusieurs décennies.
Les algues

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Habitats</th>
<th>Remarques</th>
<th>Autorités</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHODOBIONTES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrymenia lobata</td>
<td>Circalittoral</td>
<td>Espèce à affinité chaude – 1ère observation dans Bouches du Rhône</td>
<td>(Meneghini) Zanardini</td>
</tr>
<tr>
<td>Gracilaria bursa-pastoris</td>
<td>Détritique côtier</td>
<td>Très rare en mer ouverte</td>
<td>(S.G. Gmelin)</td>
</tr>
<tr>
<td>Kallymenia feldmannii</td>
<td>Coralligène</td>
<td>Rare - printemps</td>
<td>Codomier</td>
</tr>
<tr>
<td>Kallymenia lacerata</td>
<td>Coralligène</td>
<td>Rare - printemps</td>
<td>J. Feldmann</td>
</tr>
<tr>
<td>Kallymenia requienii</td>
<td>Coralligène</td>
<td>Rare - printemps</td>
<td>J. Agardh</td>
</tr>
<tr>
<td>Lithophyllum byssoides</td>
<td>Encorbellement médiolittoral</td>
<td>Bioconstructeur</td>
<td>Philippi</td>
</tr>
<tr>
<td>Lithophyllum stictiformis</td>
<td>Coralligène</td>
<td>Bioconstructeur</td>
<td></td>
</tr>
<tr>
<td>Lithothamnion coralloides</td>
<td>Détritique côtier</td>
<td>Maërl</td>
<td>(P. et H. Crouan) P. et H. Crouan</td>
</tr>
<tr>
<td>Mesophyllum alternans</td>
<td>Coralligène</td>
<td>Bioconstructeur</td>
<td>(Foslie) Cabioch et Mendoza</td>
</tr>
<tr>
<td>Nemastoma dichotomum</td>
<td>Infralittoral inférieur</td>
<td>Rare - printemps</td>
<td>J. Agardh</td>
</tr>
<tr>
<td>Neurocaulon foliosum</td>
<td>Coralligène</td>
<td>Rare</td>
<td>Zanardini</td>
</tr>
<tr>
<td>Nitophyllum tristomaticum</td>
<td>Coralligène</td>
<td>Rare</td>
<td>Rodriguez et Mazza</td>
</tr>
<tr>
<td>Polysiphonia setacea</td>
<td>Infralittoral et circalittoral</td>
<td>Espèce introduite envahissante</td>
<td>Hollenberg</td>
</tr>
<tr>
<td>Predaea ollivieri</td>
<td>Scaphile infra et circalittoral</td>
<td>Rare - Printemps</td>
<td>J. Feldmann</td>
</tr>
<tr>
<td>Predaea pusilla</td>
<td>Scaphile infra et circalittoral</td>
<td>Rare - Printemps</td>
<td>(Berthold) J. Feldmann</td>
</tr>
<tr>
<td>Rissoella verruculosa</td>
<td>Médiolittoral supérieur</td>
<td>Rare dans les BdR</td>
<td>(Bertoloni) J. Agardh</td>
</tr>
<tr>
<td>Scinaia furcellata</td>
<td>Infralittoral inférieur</td>
<td>Rare - Printemps</td>
<td>(Turner) J. Agardh</td>
</tr>
<tr>
<td>Sebdenia rodrigueziana</td>
<td>Coralligène</td>
<td>Rare</td>
<td>(J. Feldmann) Huisman et Borowitzka</td>
</tr>
<tr>
<td>Tricheleocarpa fragilis</td>
<td>Infralittoral</td>
<td>Espèce à affinité chaude – 1ère observation dans BdR</td>
<td>(Linnaeus) Huisman et Borowitzka</td>
</tr>
<tr>
<td>FUCOPHYCEAE (CHROMOBIONTES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira amentacea</td>
<td>Frange infralittorale</td>
<td>Bioindicateur bonne qualité du milieu</td>
<td>Montagne</td>
</tr>
<tr>
<td>Carpomitra costata</td>
<td>Détritique côtier</td>
<td>Rare</td>
<td>(Stackhouse) Batters</td>
</tr>
<tr>
<td>Phyllariopsis brevipes</td>
<td>Infralittoral inférieur</td>
<td>Rare - printemps</td>
<td>(C. Agardh) Henry et South</td>
</tr>
<tr>
<td>Spatoglossum solieri</td>
<td>Infralittoral inférieur</td>
<td>Rare - printemps</td>
<td>(Chauvin et Montagne) Kützing</td>
</tr>
<tr>
<td>CHLOROBIONTES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryopsidella neglecta</td>
<td>Infralittoral inférieur</td>
<td>Rare - printemps</td>
<td>(Berthold) Rietema</td>
</tr>
<tr>
<td>Ulva olivascens</td>
<td>Circalittoral</td>
<td>Rare</td>
<td>Dangeard</td>
</tr>
</tbody>
</table>
4.3. Eléments d’inventaire

Un inventaire faunistique non exhaustif a été réalisé dans la zone de l’île Verte et des falaises du Bec de l’Aigle. Les déterminations ont été faites in situ, lors des plongées de prospection du site d’étude. Cette liste, qui regroupe près de 180 espèces, parmi les plus communes, est toutefois représentative de la faune observable, et constitue donc un premier état de la diversité biologique du secteur de l’île Verte (Tableau 12).

Tableau 12. Espèces rencontrées dans le site d’étude.

<table>
<thead>
<tr>
<th>GROUPE</th>
<th>NOM SCIENTIFIQUE</th>
<th>NOM VERNACULAIRE</th>
<th>AUTORITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annélides</td>
<td>Sabella pavonina</td>
<td>Sabelle</td>
<td>Savigny, 1818</td>
</tr>
<tr>
<td></td>
<td>Spirographis spallanzanii</td>
<td>Spirographe</td>
<td>Viviani, 1805</td>
</tr>
<tr>
<td></td>
<td>Mercierella enigmatica</td>
<td>Ver tubicole strié</td>
<td>Fauvel, 1923</td>
</tr>
<tr>
<td></td>
<td>Bonellia viridis</td>
<td>Bonellie</td>
<td>Rolando</td>
</tr>
<tr>
<td></td>
<td>Filograna (Salmacina) sp.</td>
<td>Salmacine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pomatoceros triqueter</td>
<td>Serpule angulaire</td>
<td></td>
</tr>
<tr>
<td>Ascidies</td>
<td>Clavelina nana</td>
<td>Claveline naine</td>
<td>Lahille, 1890</td>
</tr>
<tr>
<td></td>
<td>Halocynthia papillosa</td>
<td>Ascidie rouge</td>
<td>Linnaeus, 1767</td>
</tr>
<tr>
<td></td>
<td>Microcosmus sabatieri</td>
<td>Violet</td>
<td>Roule, 1885</td>
</tr>
<tr>
<td></td>
<td>Phallusia mammillata</td>
<td>Ascidie blanche</td>
<td>Cuvier, 1815</td>
</tr>
<tr>
<td></td>
<td>Clavelina lepadiformis</td>
<td>Claveline transparente</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Bryozoaires</td>
<td>Sertella septentrionalis (beaniana)</td>
<td>Dentelle de Neptune</td>
<td>King, 1954</td>
</tr>
<tr>
<td></td>
<td>Electra posidoniae</td>
<td>Bryozoaire des Posidonies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flustra foliacea</td>
<td>Flustre feuillu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hornera lichenoides</td>
<td>Hornera</td>
<td>Pallas</td>
</tr>
<tr>
<td></td>
<td>Myriapora truncata</td>
<td>Faux corail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adeonella calvetti</td>
<td>Adéonelle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentapora fascialis</td>
<td>Rose de mer</td>
<td>Pallas</td>
</tr>
<tr>
<td></td>
<td>Porella cervicornis</td>
<td>Bryozoaires bois de cerf</td>
<td>Ellis et Sol.</td>
</tr>
<tr>
<td></td>
<td>Margaretta cereoides</td>
<td>Margaretta</td>
<td></td>
</tr>
<tr>
<td>Coelentérés</td>
<td>Actinia equina</td>
<td>Tomate de mer</td>
<td>Linnaeus, 1767</td>
</tr>
<tr>
<td></td>
<td>Aiptasia mutabilis</td>
<td>Aiptasie verte</td>
<td>Rapp.</td>
</tr>
<tr>
<td></td>
<td>Aiptasia diaphana</td>
<td>Aiptasie jaune</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alcyonium acaule</td>
<td>Alcyon méditerranéen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alicia mirabilis</td>
<td>Alicia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anemonia viridis</td>
<td>Anémone de mer verte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Balanophyllia europaea</td>
<td>Dent de cochon</td>
<td>Risso</td>
</tr>
<tr>
<td></td>
<td>Calliactis parasitica</td>
<td>Anémone solitaire</td>
<td>Duncan</td>
</tr>
<tr>
<td></td>
<td>Caryophyllia inornata</td>
<td>Madrépore reillet</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td></td>
<td>Cladocora caespitosa</td>
<td>Cladocore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corallium rubrum</td>
<td>Corail rouge</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td></td>
<td>Cribrinopsis crassa</td>
<td>Anémone charnue</td>
<td></td>
</tr>
<tr>
<td>Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunicella cavolinii</td>
<td>Gorgone jaune</td>
<td>Koch, 1887</td>
<td></td>
</tr>
<tr>
<td>Eunicella singularis</td>
<td>Gorgone blanche</td>
<td>Esper, 1791</td>
<td></td>
</tr>
<tr>
<td>Eunicella verrucosa</td>
<td>Gorgone verruqueuse</td>
<td>Pennant</td>
<td></td>
</tr>
<tr>
<td>Epizoanthus paxi</td>
<td>Anémone encroutante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptopsammia pruvoti</td>
<td>Corail jaune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramuricea clavata</td>
<td>Gorgone pourpre</td>
<td>Risso, 1826</td>
<td></td>
</tr>
<tr>
<td>Parazoanthus axinellae</td>
<td>Anémone encrouant jaune</td>
<td>O. Schmidt</td>
<td></td>
</tr>
<tr>
<td>Crustacés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anilocra spp.</td>
<td>Anilocre</td>
<td>Brugiére</td>
<td></td>
</tr>
<tr>
<td>Balanus perforatus</td>
<td>Balane commune</td>
<td>Herbst, 1796</td>
<td></td>
</tr>
<tr>
<td>Dardanus arrosor</td>
<td>Grand bermard- l’ermite</td>
<td>Linnaeus, 1767</td>
<td></td>
</tr>
<tr>
<td>Galathea strigosa</td>
<td>Galathée</td>
<td>Fabricius, 1787</td>
<td></td>
</tr>
<tr>
<td>Pachygrapsus marmoratus</td>
<td>Crabe marbré</td>
<td>Risso, 1827</td>
<td></td>
</tr>
<tr>
<td>Pagurus anachoretus</td>
<td>Pagure</td>
<td>Rathke, 1837</td>
<td></td>
</tr>
<tr>
<td>Palaemon elegans</td>
<td>Bouquet</td>
<td>Fabricius, 1787</td>
<td></td>
</tr>
<tr>
<td>Palinurus elephas</td>
<td>Langouste</td>
<td>Latreille, 1803</td>
<td></td>
</tr>
<tr>
<td>Scyllarides latus</td>
<td>Grande cigale</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Scyllarus arctus</td>
<td>Petite cigale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenopus spinosus</td>
<td>Crevette cavernicole jaune</td>
<td>Risso</td>
<td></td>
</tr>
<tr>
<td>Echinodermes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holothuria forskali</td>
<td>Holothurie noire</td>
<td>Delle Chiaje, 1823</td>
<td></td>
</tr>
<tr>
<td>Holothuria polii</td>
<td>Holothurie brune</td>
<td>Delle Chiaje, 1823</td>
<td></td>
</tr>
<tr>
<td>Holothuria tubulosa</td>
<td>Holothurie tubuleuse</td>
<td>Gmelin, 1788</td>
<td></td>
</tr>
<tr>
<td>Arbacia lixula</td>
<td>Oursin noir</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Centrostephanus longispinus</td>
<td>Oursin diadème</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Paracentrotus lividus</td>
<td>Oursin comestible</td>
<td>Lamarck, 1816</td>
<td></td>
</tr>
<tr>
<td>Sphaerechinus granularis</td>
<td>Oursin violet</td>
<td>Lamarck, 1816</td>
<td></td>
</tr>
<tr>
<td>Spatangus purpuratus</td>
<td>Spatange pourpre</td>
<td>Stimpson, 1857</td>
<td></td>
</tr>
<tr>
<td>Echinaster sepositus</td>
<td>Etoile de mer rouge</td>
<td>Retzius, 1783</td>
<td></td>
</tr>
<tr>
<td>Hacelia attenuata</td>
<td>Etoile de mer lisse</td>
<td>Gray, 1821</td>
<td></td>
</tr>
<tr>
<td>Marthasterias glacialis</td>
<td>Etoile de mer glaciaire</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Coscinasterias tenuispina</td>
<td>Etoile de mer épineuse</td>
<td>Lamarck, 1816</td>
<td></td>
</tr>
<tr>
<td>Asterina gibbosa</td>
<td>Astérie pentagonale</td>
<td>Pennant, 1777</td>
<td></td>
</tr>
<tr>
<td>Ophioderma longicauda</td>
<td>Ophiure lisse</td>
<td>Retzius, 1783</td>
<td></td>
</tr>
<tr>
<td>Ophiothrix fragilis</td>
<td>Ophiure fragile</td>
<td>Abilgaard</td>
<td></td>
</tr>
<tr>
<td>Antedon mediterranea</td>
<td>Antédon</td>
<td>Lamarck</td>
<td></td>
</tr>
<tr>
<td>Mollusques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haliotis lamellosa</td>
<td>Oreille de Neptune</td>
<td>Lamarck, 1822</td>
<td></td>
</tr>
<tr>
<td>Arca noae</td>
<td>Arche de Noé</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Ostrea edulis</td>
<td>Huître plate</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Pinna nobilis</td>
<td>Grande nacre</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Lithophaga lithophaga</td>
<td>Datte de mer</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Octopus vulgaris</td>
<td>Poulpe</td>
<td>Cuvier, 1797</td>
<td></td>
</tr>
<tr>
<td>Sepia officinalis</td>
<td>Seiche</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Espèces</td>
<td>Peuplements</td>
<td>Paysages</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Loligo vulgaris</td>
<td>Calmar</td>
<td>Lamarck, 1798</td>
<td></td>
</tr>
<tr>
<td>Luria larida</td>
<td>Grande porcelaine</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Patella caerulea</td>
<td>Patelle</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Patella aspera</td>
<td>Littorine</td>
<td>Linnaeus, 1819</td>
<td></td>
</tr>
<tr>
<td>Littorina neritoides</td>
<td>Turritelle</td>
<td>Risso, 1826</td>
<td></td>
</tr>
<tr>
<td>Turritella communis</td>
<td>Turitelle</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Lima lima</td>
<td></td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Conus ventricosus</td>
<td></td>
<td>Bruguière, 1792</td>
<td></td>
</tr>
<tr>
<td>Columbella rustica</td>
<td></td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Murex trunculus</td>
<td>Rocher fascié</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Pisaria maculosa</td>
<td></td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Mitrella sp.</td>
<td></td>
<td>Brugnon, 1873</td>
<td></td>
</tr>
<tr>
<td>Gibbula drepanensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplysia spp.</td>
<td>Lièvre de mer</td>
<td>Montagu, 1815</td>
<td></td>
</tr>
<tr>
<td>Coryphella pedata</td>
<td>Coryphelle mauve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flabellina sp.</td>
<td>Flabelline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltodoris atromaculata</td>
<td>Doris dalmatien</td>
<td>Bergh, 1880</td>
<td></td>
</tr>
<tr>
<td>Hypselodoris coelestis</td>
<td>Doris céleste</td>
<td>Cantraire, 1835</td>
<td></td>
</tr>
<tr>
<td>Poissons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acantholabrus palloni</td>
<td>Acantholabre</td>
<td>Risso, 1810</td>
<td></td>
</tr>
<tr>
<td>Anthias anthias</td>
<td>Barbier</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Apogon imberbis</td>
<td>Apogon</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Boops boops</td>
<td>Bogue</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Chromis chromis</td>
<td>Castagnole</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Conger conger</td>
<td>Congre</td>
<td>Artedi, 1738</td>
<td></td>
</tr>
<tr>
<td>Coris julis</td>
<td>Girelle</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Ctenolabrus rupestris</td>
<td>Labre rupestre</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Dentex dentex</td>
<td>Denti</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Diplodus cervinus</td>
<td>Sar tambour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplodus puntazzo</td>
<td>Sar à museau pointu</td>
<td>Cetti, 1777</td>
<td></td>
</tr>
<tr>
<td>Diplodus sargus</td>
<td>Sargue</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Diplodus vulgaris</td>
<td>Sar à tête noire</td>
<td>E. Geoffroy St Hilaire, 1817</td>
<td></td>
</tr>
<tr>
<td>Epinephelus marginatus</td>
<td>Mérou brun</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Gobius bucchichii</td>
<td>Gobie rayé</td>
<td>Steindachner, 1879</td>
<td></td>
</tr>
<tr>
<td>Hippocampus ramulosus</td>
<td>Hippocampe moucheté</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labrus bimaculatus</td>
<td>Coquette</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Labrus merula</td>
<td>Merle</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Labrus veridis</td>
<td>Labre vert</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Lapanella fasciata</td>
<td>Lapanelle</td>
<td>Cocco, 1833</td>
<td></td>
</tr>
<tr>
<td>Lepadogaster lepadogaster (gouani)</td>
<td>Lépadogaster de Gouan</td>
<td>Bonnaterre</td>
<td></td>
</tr>
<tr>
<td>Mola mola</td>
<td>Poisson lune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullus surmuletus</td>
<td>Rouget</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Muraena helena</td>
<td>Murène</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Oblada melanura</td>
<td>Oblade</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Pagrus pagrus</td>
<td>Pagre commun</td>
<td>Linnaeus, 1758</td>
<td></td>
</tr>
<tr>
<td>Parablennius (Blennius) gattorugine</td>
<td>Cabot</td>
<td>Brünnich, 1768</td>
<td></td>
</tr>
<tr>
<td>Parablennius incognitus</td>
<td>Blennie pontique</td>
<td>Bath, 1968</td>
<td></td>
</tr>
</tbody>
</table>
Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin

<table>
<thead>
<tr>
<th>Phrynorhombus regius</th>
<th>Turbot des grottes</th>
<th>Linnaeus, 1758</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarpa salpa</td>
<td>Saupe</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Sciaena umbra</td>
<td>Corb</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Scorpaena notata</td>
<td>Rascasse pustuleuse</td>
<td>Rafinesque, 1810</td>
</tr>
<tr>
<td>Scorpaena porcus</td>
<td>Rascasse brune</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Scorpaena scrofa</td>
<td>Chapon</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Seriola dumerii</td>
<td>Sériole</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Serranus cabrilla</td>
<td>Serran chèvre</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Serranus scriba</td>
<td>Serran écriture</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Solea vulgaris</td>
<td>Sole</td>
<td>Quensel, 1806</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>Dorade royale</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Sphyraena sphyraena</td>
<td>Barracuda</td>
<td></td>
</tr>
<tr>
<td>Spicara maena</td>
<td>Mendole</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Spondyllosoma canthus</td>
<td>Canthare</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Symphodus mediterraneus</td>
<td>Crénilabre méditerranéen</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Symphodus ocellatus</td>
<td>Crénilabre ocellé</td>
<td>Forsskaal, 1775</td>
</tr>
<tr>
<td>Symphodus roissali</td>
<td>Crénilabre à cinq taches</td>
<td>Risso, 1810</td>
</tr>
<tr>
<td>Symphodus rostratus</td>
<td>Sublet</td>
<td>Bloch, 1797</td>
</tr>
<tr>
<td>Symphodus tinca</td>
<td>Crénilabre paon</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Thalassoma pavo</td>
<td>Girelle paon</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Torpedo marmorata</td>
<td>Raie torpille</td>
<td></td>
</tr>
<tr>
<td>Trachinus draco</td>
<td>Grande vive</td>
<td>Linnaeus, 1758</td>
</tr>
<tr>
<td>Trypeterygon tripterontus</td>
<td>Triptérygion à bec rouge</td>
<td>Risso, 1810</td>
</tr>
<tr>
<td>Zeus faber</td>
<td>St pierre</td>
<td></td>
</tr>
</tbody>
</table>

Plathelminthes

| Prosthoceraeus giesbrechti | Planaire rose |

Spongiaires

<table>
<thead>
<tr>
<th>Acanthella acuta</th>
<th>Eponges épineuses orange</th>
<th>Topsent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agelas oroides</td>
<td>Agelas orangé</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Anchinoe tenacior</td>
<td>Eponge encroîthante bleuâtre</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Aplysina (Verongia) aerophoba</td>
<td>Vérongia</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Asbestoplama hypogea</td>
<td>Eponge carnivore</td>
<td>Vacelet et Boury-Esnault, 1995</td>
</tr>
<tr>
<td>Axinella polyoides</td>
<td>Eponge corne de cerf</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Cacospongia scalaris</td>
<td>Eponge cornée noire</td>
<td>Schmidt, 1862</td>
</tr>
<tr>
<td>Chondrosia reniformis</td>
<td>Eponge rognon</td>
<td>Nardo, 1847</td>
</tr>
<tr>
<td>Clathrina (Leucosolenia) clathrus (coriacea)</td>
<td>Clathrine jaune</td>
<td>Schmidt, 1864</td>
</tr>
<tr>
<td>Clathrina coriacea</td>
<td>Clathrine blanche</td>
<td>Mont.</td>
</tr>
<tr>
<td>Cliona sp.</td>
<td>Cliones</td>
<td>Schmidt, 1862</td>
</tr>
<tr>
<td>Crambe crambe</td>
<td>Eponge encroîthante orange</td>
<td>Schmidt, 1862</td>
</tr>
<tr>
<td>Hamigeria hamigera</td>
<td>Eponge encroîthante rouge</td>
<td>Schmidt, 1862</td>
</tr>
<tr>
<td>Hemimycaede columnella</td>
<td>Eponges à cratères</td>
<td>Pallas</td>
</tr>
<tr>
<td>Ircinia facsiculata.</td>
<td>Ircinia fibreuse</td>
<td>Vacelet et Perez, 1998</td>
</tr>
<tr>
<td>Myceliopsongia araneosa</td>
<td>Eponge hexactinellidae</td>
<td>Topsent, 1927</td>
</tr>
<tr>
<td>Oopscas minuta</td>
<td>Eponge bleue</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Oscarella lobularis</td>
<td>Eponge pierre</td>
<td>Poiret, 1789</td>
</tr>
<tr>
<td>Petrosia ficiformis (dura)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirastrella cunctatrix</td>
<td>Eponge encroûtante orange</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Spongia agaricina</td>
<td>Eponge oreille d’éléphant</td>
<td>Pallas</td>
</tr>
<tr>
<td>Spongia officinalis</td>
<td>Eponge fine grecque</td>
<td>Linnaeus, 1759</td>
</tr>
<tr>
<td>Thymosiopsis cuticulatus</td>
<td></td>
<td>Vacelet et Perez, 1998</td>
</tr>
</tbody>
</table>
5. FORMULAIRE STANDARD DE DONNEES

1. IDENTIFICATION DU SITE

1.1 CODE DU SITE

F R 1 3 - 0 0 0 1

1.2. DATE D'IDENTIFICATION 1.3. DATE DE COMPILATION 1.4. MISE A JOUR

2 0 0 0 0 4 2 0 0 0 1 0

1.5 RESPONSABLES :

BOUDOURESQUE C.F.et BONHOMME P.- GIS POSIDONIE
Campus universitaire de Luminy
Case 901
13288 Marseille Cedex 9

1.6 APPELLATION DU SITE :

ILE VERTE ET FALAISES DU BEC DE L'AIGLE (Calanque du Capucin à la Calanque du Mugel)

2 LOCALISATION DU SITE

2.1. COORDONNEES DU CENTRE :

<table>
<thead>
<tr>
<th>LONGITUDE</th>
<th>LATITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 5</td>
<td>3 6 3 9</td>
</tr>
<tr>
<td>4 3 0 9</td>
<td>4 0</td>
</tr>
</tbody>
</table>

COORDONNEES DES LIMITES DE LA ZONE:

LONGITUDE OUEST LATITUDE NORD

<table>
<thead>
<tr>
<th>LONGITUDE</th>
<th>LATITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 5</td>
<td>3 5 3 6</td>
</tr>
<tr>
<td>4 3 1 0</td>
<td>0 6</td>
</tr>
</tbody>
</table>

LONGITUDE EST LATITUDE SUD

<table>
<thead>
<tr>
<th>LONGITUDE</th>
<th>LATITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 5</td>
<td>3 7 4 2</td>
</tr>
<tr>
<td>4 3 0 9</td>
<td>1 5</td>
</tr>
</tbody>
</table>
2.2. SUPERFICIE (ha)

<table>
<thead>
<tr>
<th>Terrestre : dont île Verte (13 ha)</th>
<th>7</th>
<th>3</th>
<th>,</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine (0 à -50 m)</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>,</td>
<td>3</td>
</tr>
<tr>
<td>Superficie Totale</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>,</td>
<td>5</td>
</tr>
</tbody>
</table>

2.3. LONGUEUR (km)

Falaises : du Nord de l'anse du Grd Mugel à la limite Ouest de la zone (calculée à l'échelle 1/20 000 ème)

| 3 | 1 | 5 | 0 |

2.4. ALTITUDE/PROFONDEUR (m) :

<table>
<thead>
<tr>
<th>+/- MINIMUM</th>
<th>MAXIMUM</th>
<th>MOYENNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>0</td>
<td>1 5 5</td>
</tr>
<tr>
<td>Profondeur</td>
<td>0</td>
<td>6 4</td>
</tr>
</tbody>
</table>

2.5. REGION ADMINISTRATIVE

Régions NUTS non disponibles
3. INFORMATIONS ECOLOGIQUES

3.1. Caractère général du site

<table>
<thead>
<tr>
<th>AIRES COTIERES</th>
<th>% couvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plages de sable, plage de galets</td>
<td>3.3</td>
</tr>
<tr>
<td>Falaises maritimes, côtes rocheuses</td>
<td>84.3</td>
</tr>
<tr>
<td>Aménagements portuaires</td>
<td>12.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRES MARINES</th>
<th>% couvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbiers marins</td>
<td>21.8</td>
</tr>
<tr>
<td>Roches</td>
<td>8.5</td>
</tr>
<tr>
<td>Sable et matte morte</td>
<td>3.2</td>
</tr>
<tr>
<td>Enrochement artificiel</td>
<td>0.6</td>
</tr>
<tr>
<td>Coralligène</td>
<td>7.5</td>
</tr>
<tr>
<td>Détritique côtier</td>
<td>58.4</td>
</tr>
</tbody>
</table>

Autres caractéristiques :

- Emissaire des eaux usées de la ville de La Ciotat (50 000 équivalents habitants) dans la zone
- Proximité à l'Ouest du canyon de la Cassidaigne (moins de 8 000 m)
- Proximité à l'ouest du rejet des boues de Péchiney à moins 180 m de fond (contient 20 % d’oxyde d'alumine, et serait embryotoxique).
- Présence de la grotte des 3 PP abritant des espèces d'éponges abyssales et l'éponge carnivore *Asbestopluma hypogea*.

Asbestopluma hypogea.
3.2. Types d'habitats présents sur le site et leur évaluation :

3.2.a. Types d'habitats marins visés à la liste de référence des types d'habitats marins et côtiers pour la sélection des sites à inclure dans les inventaires nationaux des sites d'intérêt pour la conservation.

<table>
<thead>
<tr>
<th>CODE</th>
<th>% COUVERT</th>
<th>REPRESENTATIVITE</th>
<th>SUPERFICIE RELATIVE</th>
<th>STATUT DE CONSERVATION</th>
<th>VULNERABILITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 2 1 5</td>
<td>0 0 3</td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>II 3 1 1</td>
<td>0 3</td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>II 4 1 3</td>
<td>2 2</td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>II 4 2 1</td>
<td>4 6</td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>III 3 2 1</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>III 5 1 1</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>III 6 1 2</td>
<td>3 9</td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>III 6 1 14</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>III 6 1 35</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 2 2 10</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 1 10</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 1 11</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 1 12</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 1 13</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 1 15</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
<tr>
<td>IV 3 2 2</td>
<td></td>
<td>A B C</td>
<td>D</td>
<td>A B C</td>
<td>A B C</td>
</tr>
</tbody>
</table>
3.3. ESPECES

visées à la liste de référence d’espèces pour la sélection des sites à inclure dans les inventaires nationaux de sites d’intérêt pour la conservation et leur évaluation.
3.3.a. **ESPECES DE FAUNE MARINE** incluses dans la liste de référence d'espèces :

<table>
<thead>
<tr>
<th>CODE</th>
<th>NOM</th>
<th>POPULATION</th>
<th>EVALUATION DU SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RESIDENTE</td>
<td>MIGRATRICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repr. Non</td>
<td>Repro Hivern Etape</td>
</tr>
<tr>
<td>2 5 6 4</td>
<td>Asbestopluma hypogea</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>3 0 1 8</td>
<td>Aplysina sp. plur.</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>2 5 6 5</td>
<td>Axinella polypoides</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3 0 3 2</td>
<td>Hippospongia communis</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2 5 6 6</td>
<td>Petrobiona massiliana</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3 0 0 6</td>
<td>Spongia agaricina</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3 0 0 7</td>
<td>Spongia officinalis</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>Corallium rubrum</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>2 5 6 2</td>
<td>Gerardia savaglia</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>1 0 0 8</td>
<td>Centrostephanus longispinus</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>3 0 1 1</td>
<td>Paracentrotus lividus</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3 0 1 2</td>
<td>Hornera lichenoides</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>2 5 6 8</td>
<td>Charonia lampas</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>2 5 7 2</td>
<td>Luria lurida</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>1 0 2 4</td>
<td>Pinna nobilis</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>2 5 7 6</td>
<td>Tonna galea</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>3 0 1 3</td>
<td>Homarus gammarus</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>3 0 1 4</td>
<td>Maja squinado</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Espèces, peuplements et paysages marins remarquables de la Ciotat, de l’île Verte à la calanque du Capucin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIS Posidonie – Commission RAMOGED annotate phylogenetic relationships between the species listed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.b ESPÈCES DE FLORE MARINE incluses dans la liste de référence des espèces :

<table>
<thead>
<tr>
<th>CODE</th>
<th>NOM</th>
<th>POPULATION</th>
<th>EVALUATION DU SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>du site</td>
<td></td>
</tr>
<tr>
<td>2 2 7 6</td>
<td>Posidonia oceanica</td>
<td>C</td>
<td>A B C D</td>
</tr>
<tr>
<td>2 0 4 3</td>
<td>Cystoseira amentacea</td>
<td>C</td>
<td>A B C D</td>
</tr>
<tr>
<td>2 0 4 0</td>
<td>Lithophyllum byssoides</td>
<td>C</td>
<td>A B C D</td>
</tr>
</tbody>
</table>

Population Conservation Endémisme Rôle
<table>
<thead>
<tr>
<th>CODE</th>
<th>NOM</th>
<th>POPULATION</th>
<th>EVALUATION DU SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RESIDENTE</td>
<td>MIGRATRICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repr.</td>
<td>Non Repro Hivern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
<td>A B C O N A B C</td>
</tr>
</tbody>
</table>

GIS Posidone – Commission RAMOGE
4 DESCRIPTION DU SITE

4.1. QUALITE ET IMPORTANCE :

4.2. STATUT DE CONSERVATION

4.3. VULNERABILITE

4.4. DESIGNATION DU SITE

Site Natura 2000 : Fr9301602 – Archipel Marseillais – Calanque de Marseille à La Ciotat – Domaines terrestre et maritime. Site éligible dans le cadre de Natura 2000, retenu en Novembre-Décembre 2000
4.5. REGIME DE PROPRIETE :

Domaine Terrestre : Ile verte : Conseil Général 13
Littoral continental : Ville de la Ciotat, propriétaires privées

Domaine maritime : domaine publique maritime

4.6. DOCUMENTATION :

Bibliographie et rapport

4.7. HISTORIQUE

<table>
<thead>
<tr>
<th>DATE</th>
<th>Champ modifié</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Site classé (massifs du Cap Canaille, du Cap de l'Aigle et les falaises du Soubeyran)</td>
<td></td>
</tr>
<tr>
<td>Décembre 1997</td>
<td>Proposition comme site Natura 2000</td>
<td></td>
</tr>
</tbody>
</table>
5. PROTECTION DU SITE ET RELATIONS AVEC D'AUTRES SITES

5.1. TYPES DE DESIGNATION aux niveaux national et sous-national :

<table>
<thead>
<tr>
<th>CODE</th>
<th>% COUVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 1 3</td>
<td>1 0 0</td>
</tr>
<tr>
<td>FR 3 2</td>
<td>1 7</td>
</tr>
</tbody>
</table>

5.2. RELATION AVEC D'AUTRES SITES PROTEGES :

désignés aux niveaux national ou sous-national :

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CODE</th>
<th>NOM DU SITE CHEVAUCHEMENT</th>
<th>TYPE</th>
<th>% COUVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>F R 1 3</td>
<td>Calanque de Cassis à La Ciotat</td>
<td>-</td>
<td>1 5</td>
<td></td>
</tr>
</tbody>
</table>

désignés aux niveaux international :

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CODE DU SITE</th>
<th>NOM DU SITE CHEVAUCHEMENT (si pertinent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrimoine mondial :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réserve de biosphère :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convention de Ramsar :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réserve Biogénétique :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplôme européen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convention de Barcelone – ASP :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convention de Barcelone – ASPIM :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natura2000 zone de protection spéciale :</td>
<td>FR 9301602</td>
<td>-</td>
</tr>
<tr>
<td>Natura2000 zone spéciale de conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convention de Berne : Site Emeraude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. IMPACTS ET ACTIVITÉS SUR LE SITE ET ALENTOURS

6.1. IMPACTS / ACTIVITÉS ET PROPORTIONS DE LA SURFICIE DU SITE AFFECTÉE :

IMPACTS ET ACTIVITÉS SUR LE SITE

<table>
<thead>
<tr>
<th>CODE</th>
<th>INTENSITÉ</th>
<th>% DU SITE</th>
<th>INFLUENCE</th>
<th>CODE</th>
<th>INTENSITÉ</th>
<th>% DU SITE</th>
<th>INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 0</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>5</td>
<td>2 0</td>
<td>A B C</td>
<td>1 0 0</td>
</tr>
<tr>
<td>1</td>
<td>6 1</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>6</td>
<td>2 0</td>
<td>A B C</td>
<td>1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>1 0</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>6</td>
<td>2 1</td>
<td>A B C</td>
<td>1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>1 1</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>6</td>
<td>2 2</td>
<td>A B C</td>
<td>5 0 + 0</td>
</tr>
<tr>
<td>2</td>
<td>1 3</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>7</td>
<td>0 1</td>
<td>A B C</td>
<td>7 0 + 0</td>
</tr>
<tr>
<td>2</td>
<td>2 0</td>
<td>A B C</td>
<td>1 0 0</td>
<td>+ 0 -</td>
<td>7</td>
<td>0 2</td>
<td>A B C</td>
</tr>
<tr>
<td>2</td>
<td>3 0</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>7</td>
<td>1 0</td>
<td>A B C</td>
<td>+ 0 -</td>
</tr>
<tr>
<td>4</td>
<td>0 3</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>7</td>
<td>2 0</td>
<td>A B C</td>
<td>0 0 5</td>
</tr>
<tr>
<td>4</td>
<td>0 9</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>8</td>
<td>6 0</td>
<td>A B C</td>
<td>5 0 + 0</td>
</tr>
<tr>
<td>4</td>
<td>1 0</td>
<td>A B C</td>
<td>5 0</td>
<td>+ 0 -</td>
<td>8</td>
<td>7 0</td>
<td>A B C</td>
</tr>
<tr>
<td>5</td>
<td>0 1</td>
<td>A B C</td>
<td>+ 0 -</td>
<td>9</td>
<td>6 1</td>
<td>A B C</td>
<td>8 0 + 0</td>
</tr>
<tr>
<td>5</td>
<td>0 4</td>
<td>A B C</td>
<td>1 0 0</td>
<td>+ 0 -</td>
<td>A B C</td>
<td>+ 0 -</td>
<td></td>
</tr>
</tbody>
</table>

IMPACTS ET ACTIVITÉS AUX ALENTOURS :

<table>
<thead>
<tr>
<th>CODE</th>
<th>INTENSITÉ</th>
<th>INFLUENCE</th>
<th>CODE</th>
<th>INTENSITÉ</th>
<th>INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 3</td>
<td>A B C</td>
<td>+ 0 -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 1</td>
<td>A B C</td>
<td>+ 0 -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2. GESTION DU SITE

ORGANISME(S) RESPONSABLE(S) DE LA GESTION DU SITE ET AUTRES INSTITUTIONS IMPLIQUES :

Terre : Conseil Général -> ADES ; Ville de La Ciotat ;
Mer : Affaires maritimes, Préfecture maritime
7 CARTE DU SITE
Carte Physique

<table>
<thead>
<tr>
<th>NUMERO</th>
<th>LOCALISATION</th>
<th>SUJET</th>
<th>DROIT D'AUTEUR</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La Ciotat</td>
<td>Anse du Mugel + chantier naval</td>
<td>AERIAL</td>
<td>13/02/1988</td>
</tr>
<tr>
<td>2</td>
<td>La Ciotat</td>
<td>Chantier naval – Vieux Port</td>
<td>AERIAL</td>
<td>13/02/1988</td>
</tr>
<tr>
<td>3</td>
<td>La Ciotat</td>
<td>Anse du Mugel – Anse du Sec</td>
<td>AERIAL</td>
<td>07/07/1990</td>
</tr>
<tr>
<td>4</td>
<td>La Ciotat</td>
<td>Calanque de Figuerolles – Falaises du Bec de l'Aigle</td>
<td>AERIAL</td>
<td>07/07/1990</td>
</tr>
<tr>
<td>5</td>
<td>La Ciotat</td>
<td>Île Verte à Calanque de Figuerolles (1/15.000)</td>
<td>IAP</td>
<td>21/07/2000</td>
</tr>
</tbody>
</table>
Les fiches techniques à remplir sont claires. Il serait intéressant toutefois que le fichier informatique de saisie soit disponible (en le téléchargeant sur le Internet par exemple), de façon à pouvoir facilement intégrer ces informations dans un rapport et à ne pas avoir que des versions papier photocopiées.

Concernant la localisation du site : il serait plus intéressant de fournir les coordonnées des sites non pas en degrés, minutes et secondes, mais degrés, minutes et millièmes de minute, étant donné que les données en secondes ont quasiment disparu des cartes marines actuelles et que les coordonnées fournies par les GPS sont exprimées ainsi.

Les coordonnées du centre du site sont certes intéressantes mais devraient être complétées par les coordonnées géographiques des extrémités de la zone (cf. encadré en grisé paragraphe 2.1 du FSD).

Concernant le paragraphe 2.4. Obtenir les minimums et maximums de l'altitude et de la profondeur est facile. Par contre l'altitude ou la profondeur moyenne est un paramètre qui est difficile à obtenir. Utilité d'un tel paramètre ?

Concernant les types d'habitats. L'utilisation d'un code pour chaque habitat est certes très pratique pour éviter les problèmes dus aux différentes langues ; toutefois, le rappel en un "mot clé" de l'habitat concerné serait bienvenu, de façon à éviter d'avoir à se référer en permanence à la liste des habitats.

La compilations des données sur les espèces figurant sur la liste d’espèces pour la sélection des sites à inclure dans les inventaires de sites naturels d’intérêt pour la conservation apporte relativement peu d’information. Elle n’intéresse, en effet, que les sites de grande superficie, susceptibles de représenter une part importante de la population d’une espèce à l’échelle nationale. Cela peut être le cas pour des oiseaux marins, des mammifères marins ou des tortues marines. Dans le cas des poissons, des invertébrés et des végétaux marins, il est exceptionnel qu’un site de faible superficie abrite une part significative d’un population nationale. Il en résulte que, pour la plupart des espèces, la part de la population abritée est « négligeable », ce qui peut s’avérer gravement contre-productif.
6. CONCLUSION – RECOMMANDATIONS

L’objectif de ce travail était de fournir une première description des peuplements et types de fonds marins de la zone d’étude, en portant une attention particulière aux peuplements et espèces remarquables (rares ou protégés). Par ailleurs, les zones présentant un intérêt particulier par leur paysage, leur biodiversité ou par leur potentiel pédagogique ont été répertoriées.

Le site d’étude se découpe en deux grandes zones géographiques. Au Sud, les falaises du Bec de l’Aigle et la face Sud de l’île Verte présentent un linéaire de côte où la frange littorale est constituée de falaises rocheuses, qui se prolongent sous la surface de l’eau. La pente des fonds y est globalement très importante ; l’isobathe 50 m est rapidement atteint. Au Nord, les fonds en pente douce ne dépassent pas 25 m de profondeur. Un vaste herbier de Posidonie s’étend sur l’ensemble de la calanque du Mugel et sur la face Nord de l’île Verte.

Les peuplements algaux du médiolittoral et de la frange supérieure de l’infralittoral ont été étudiés sur l’ensemble de la zone d’étude. Les espèces d’algues patrimoniales (Lithophyllum byssoides, Rissoella verruculosa) ou bioindiactrices de qualité du milieu (Cytoseira amentacea var. stricta) sont présentes sur la plus grande partie du linéaire cotier étudié. On note une nette diminution de leur abondance dans les secteurs soumis à une faible agitation comme à l’intérieur des calanques ou anes, ainsi qu’à proximité de sources de nuisances (émissaire d’égout, calanque à forte fréquentation). Les algues à affinité nitrophile et à forte tolérance pour les variations de salinité, comme les ulves et les Entéromorphes, se développent essentiellement à proximité des zones anthropisées ou fortement fréquentées. A l’avenir, il conviendrait de pouvoir suivre l’évolution de ces espèces sentinelles, indicateurs biologique de la qualité ou de la dégradation du milieu, avec un pas de temps de deux ans.

La biocénose des algues photophiles sur substrat dur est très bien représentée, en effet la zone est parsemée de roches et d’avancées rocheuses qui partent de la surface et descendent jusqu’à 15-20 m de profondeur. La couverture algale est dense et variée, de nombreuses espèces d’invertébrés fixes et mobiles y ont été observées et de nombreux poissons (labridés, sparidés) viennent y chercher leur nourriture. Les «brondes » rocheuses constituent, sur leur face la moins exposée à la lumière, des surplombs sous lesquels se développent une flore et une
faune sciaphile. Ces surplombs sciaphiles forment des paysages parmi les plus beaux des petits fonds : les algues et les spongiaires constituent des tapis rouge, orange, parmi lesquels se dressent des spongiaires, ascidies, et célebéreux. On y trouve de nombreuses espèces de mollusques, de crustacés, ainsi que de nombreux poissons.

Le long des Falaises du Bec de l’Aigle, l’herbier de Posidonie se développe, à cause de la pente importante des fonds, en un fin cordon, bordant le littoral, n’excédant pas 40 m de largeur. L’herbier est quasiment absent de toute la façade Sud de l’île Verte : on n’y rencontre que quelques taches en placage sur la roche. Il s’étend par contre sur toute la zone Nord du site d’étude ; sa limite inférieure se situe généralement entre 20 et 27 m de profondeur et remonte en placage sur les roches jusqu’à 6 m de profondeur, sauf dans l’anse du Mugel où il se développe jusqu’à 1 m de profondeur. L’herbier présente une vitalité généralement bonne, avec un fort recouvrement et des densités normales dans sa partie Nord. L’herbier situé dans la passe entre l’île Verte et la terre présente de fortes valeurs de déchaussement, signe d’un important déficit sédimentaire, pouvant résulter de la modification de la courantologie locale, suite aux travaux d’aménagement des chantiers navals. De nombreux macroméchets de tout genre parsèment la zone ; des traces de rejets clairement identifiées sont ainsi visibles sur l’ensemble de la passe des Canonniers. L’herbier de Posidonie présente une bonne vitalité à l’intérieur de l’anse du Mugel mais est soumis, de manière analogue à l’anse du Sec, à une importante pression de mouillage estival qu’il conviendrait de gérer. La dynamique de l’herbier pourrait être suivie au niveau de zones sensibles à l’aide de points de surveillance de l’herbier, analogue à ceux installés dans le cadre du Réseau de Surveillance Posidonie de la Région Provence Alpes-Côte d’Azur (Bertrandy et al., 1986 ; Boudouresque et al., 1987 ; Niéri et al., 1993). Des points de surveillance pourraient être installés au niveau de l’émissaire urbain ainsi qu’à proximité des chantiers navals.

Les études menées sur la vitalité et la structure démographique des deux espèces de gorgonaires, *Paramuricea clavata* et *Eunicella singularis* ont montré que l’épisode de mortalité de juillet 1999 avait fortement affecté ces peuplements. *Paramuricea clavata* est nettement moins touchée que *Eunicella singularis*, qui présente, dès 15 m de profondeur, des nécroses touchant plus de 90% des colonies adultes. Le phénomène de mortalité a été le plus notable pour la gorgone rouge, jusqu’à 32-33 m de profondeur. Plus profondément, la mortalité a été plus limitée. Les colonies de grande taille, supérieures à 50 cm, sont plus touchées que les colonies de petite taille. Les colonies juvéniles de la gorgone blanche, inférieures à 10 cm, sans doute nouvellement recrutées, présentent des taux de nécroses très faibles. Les nombreuses colonies de petite taille, observées sur l’ensemble du secteur d’étude, devraient permettre au peuplement d’*Eunicella singularis* de se reconstituer dans les années à venir. La vulnérabilité des gorgonaires aux ancrages, aux plongeurs, ainsi qu’aux accidents climatiques est à l’origine de la mise en place d’un réseau d’étude et de surveillance des gorgones par l’Agence de l’eau, le Conseil Régional et plusieurs autres partenaires de la région Provence-Alpes-Côte-d’Azur. Dix sites doivent être suivis, dont un se trouve sur le tombant du grand Moure. Ces suivis permettront d’étudier l’évolution et la capacité de récupération de ces peuplements le long du littoral provençal.

De nombreuses espèces protégées ont été observées dans la zone d’étude. Plusieurs espèces bénéficiant d’une protection juridique en France, ou figurant dans des conventions internationales signées par la France, ont été recensées : les plus remarquables sont la grande nacre (*Pinna nobilis*), la grande cigale (*Scyllarides latus*), l’oursin diadème (*Centrostephanus longispinus*), le mérou (*Epinephelus marginatus*), la Posidonie (*Posidonia oceanica*), la porcelaine (*Luria lurida*), le corail (*Corallium rubrum*), l’éponge carnivore (*Asbestopluma hypogea*), la cystoseire (*Cystoseira amentacea var. stricta*) ainsi que le "trottoir à *Lithophyllum byssoides*", construction biologique qui s’est particulièrement raréfiée. Par ailleurs la majorité des espèces patrimoniales habituellement présentes sur ce type de côte ont été rencontrées ou signalées : corbs (*Sciaena umbra*), langoustes (*Palinurus elephas*), murènes (*Muraena helena*), Un inventaire, non exhaustif, des principales macro-espèces reconnaissables *in situ* a été dressé : il compte près de 180 espèces.
7. BIBLIOGRAPHIE

Molinier R., 1960. Étude des biocénoses marines du Cap Corse. Vegetatio, 9 (3-5) : 121-192, 217-312 + 1 Fig., 2 Tabl. h.t.

8. ANNEXES

Annexe 1 : Sites inscrits et sites classés

Sites inscrits : Loi du 2 mai 1930, décret n°69-907 du 13 juin 1969
La procédure vise à conserver les milieux, les paysages et les bâtiments anciens en leur état actuel dans l’attente d’un classement. L’emplacement du site doit être reporté au POS en qualité de servitude d’utilité publique opposable aux tiers.

Sites classés : Loi du 2 mai 1930 relative à la protection des sites et des monuments naturels
L’emplacement du site doit être reporté au POS en qualité de servitude d’utilité publique opposable aux tiers.

L’inscription sur l’inventaire des sites et surtout le classement donnent au Ministre de l’Environnement ou à ses représentants les moyens juridiques qu’ils n’ont pas dans le cadre de la réglementation sur les occupations du domaine public ou des différentes réglementations sur l’urbanisme. Tous les projets de construction ou de travaux concernant les sites inscrits ou classés, qui sont de nature à entraîner une modification dans leur état ou leur aspect doivent être soumis au Ministre de l’Environnement. La simple inscription sur l’inventaire des sites, on l’a vu, entraîne l’obligation pour les intéressés de ne pas procéder à des travaux autres que ceux d’exploitation courante pour les fonds ruraux et d’entretien normal pour les constructions, sans avoir avisé l’administration de leurs intentions quatre mois en avance. Celle ci ne peut s’y opposer, à proprement parler, mais elle peut engager des négociations en vue d’obtenir une modification du projet qui lui est soumis, et au cas d’un désaccord avec les intéressés, déclencher la procédure du classement d’office.

Cette menace est évidemment de nature à les faire fléchir. A compter du jour où le Ministre de l’Environnement a notifié au propriétaire son intention de poursuivre le classement du site, aucune modification ne peut être apportée à l’état des lieux ou à leur aspect pendant un délai de douze mois sauf autorisation spéciale du Ministre. De même, après le classement, aucune modification de cette nature ne peut être réalisée, sauf autorisation spéciale du Ministre, laquelle doit être donnée après avis de la commission départementale des sites, perspectives et paysages et chaque fois que le Ministre le juge utile de la commission supérieure.

Les moyens de protection institués par la loi modifiée du 2 mai 1930 ont été assez largement utilisés ces dernières années, soit que les bords de mer aient été inscrits à l’inventaire des sites pittoresques des départements côtiers, soient qu’ils aient fait l’objet de classement.
Annexe 3 Carte biocénétique des fonds marins de la calanque du Mugel (d’après Charbonnel et al., 1994).
L'Accord RAMOGE signé en 1976 est l'instrument dont se sont dotés les gouvernements Français, Monégasque et Italien pour faire en sorte que les zones maritimes de la Région Provence-Alpes-Côte d'Azur, de la Principauté de Monaco et de la Région Ligurie constituent une zone pilote de prévention et de lutte contre la pollution du milieu marin.

La zone géographique de l'Accord s'étendait initialement de Saint Raphaël à l'Ouest, à Monaco, et vers l'Est à Gênes, d'où le nom de RaMoGe constitué des premières syllabes des noms de ces trois villes. Cette zone a été élargie et s'étend désormais de Marseille à La Spezia et plus précisément de l'embouchure du Grand Rhône à l'Ouest, à l'embouchure de la rivière Magra à l'Est.

L'Accord RAMOGE représente un instrument de coopération scientifique, technique, juridique et administrative où les trois États arrêtent ensemble les actions à conduire pour une gestion intégrée du littoral. Dans le cadre de cet Accord, de nombreuses activités visant à harmoniser les méthodes d'analyse et de travail, à améliorer la connaissance du milieu marin et côtier et à sensibiliser le public au respect de l'environnement ont été réalisées.