PLOS ONE

A connectivity-based eco-regionalization method of the Mediterranean Sea --Manuscript Draft--

Manuscript Number:	PONE-D-13-51841R2
Article Type:	Research Articles
Full Title:	A connectivity-based eco-regionalization method of the Mediterranean Sea
Short Title:	Connectivity-based eco-regionalization
Corresponding Author:	Leo Berline, Ph.D. Université de Toulon La Garde Cedex, FRANCE
Keywords:	Biogeography, plankton, dispersal, currents, OGCM, Lagrangian, clustering
Abstract:	Ecoregionalization of the ocean is a necessary step for spatial management of marine resources. Previous ecoregionalization efforts were based either on the distribution of species or on the distribution of physical and biogeochemical properties. These approaches ignore the dispersal of species by oceanic circulation that can connect regions and isolates others. This dispersal effect can be quantified through connectivity that is the probability, or time of transport between distinct regions. Here a new regionalization method based on a connectivity approach is described and applied to the Mediterranean Sea. This method is based on an ensemble of Lagrangian particle numerical simulations using ocean model outputs at 1/12° resolution. The domain is divided into square subregions of 50km size. Then particle trajectories are used to quantify the oceanographic distance between each subregions, here defined as the mean connection time. Finally the oceanographic distance matrix is used as a basis for a hierarchical clustering. 22 regions are retained and discussed together with a quantification of the stability of boundaries between regions. Identified regions are generally consistent with the general circulation with boundaries located along current jets or surrounding gyres patterns. Regions are discussed in the light of existing ecoregionalizations and available knowledge on plankton distributions. This objective method complements static regionalization approaches based on the environmental niche concept and can be applied to any oceanic region at any scale.
Order of Authors:	Leo Berline, Ph.D.
	Anna-Maria Rammou
	Andrea Doglioli
	Anne Molcard
	Anne Petrenko
Suggested Reviewers:	Fabrizio D'Ortenzio, PhD Researcher, CNRS dortenzio@obs-vlfr.fr Expertise in ecoregionalization of the Mediterranean Sea.
	Martin Saraceno, PhD Researcher, CONICET-UBA saraceno@cima.fcen.uba.ar Ecoregionalization and seascape ecology
	Matthew J Oliver, PhD Researcher, University of Delaware moliver@udel.edu Expertise in objective ecoregionalization at global scale
	Laurent Cherubin, PhD Florida Atlantic University (FAU) Icherubin@fau.edu Connectivity through lagrangian studies
	Jean-Olivier Irisson, PhD

	UPMC
	irisson@normalesup.org Ecoregionalization of the Mediterranean sea
Opposed Reviewers:	
Response to Reviewers:	
Additional Information:	
	Deserves
Question	Response
Competing Interest For yourself and on behalf of all the authors of this manuscript, please declare below any competing interests as described in the "PLoS Policy on Declaration and Evaluation of Competing Interests."	The authors have declared that no competing interests exist.
You are responsible for recognizing and disclosing on behalf of all authors any competing interest that could be perceived to bias their work, acknowledging all financial support and any other relevant financial or competing interests.	
If no competing interests exist, enter: "The authors have declared that no competing interests exist."	
If you have competing interests to declare, please fill out the text box completing the following statement: "I have read the journal's policy and have the following conflicts"	
* typeset	
Financial Disclosure	This work was funded by the European Union through the COCONET Collaborative
Describe the sources of funding that have supported the work. Please include relevant grant numbers and the URL of any funder's website. Please also include this sentence: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript." If this statement is not correct, you must describe the role of any sponsors or funders and amend the aforementioned sentence as needed. * typeset	Project, Grant agreement no 287844. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Ethics Statement	N/A

All research involving human participants must have been approved by the authors' institutional review board or equivalent committee(s) and that board must be named by the authors in the manuscript. For research involving human participants, informed consent must have been obtained (or the reason for lack of consent explained, e.g. the data were analyzed anonymously) and all clinical investigation must have been conducted according to the principles expressed in the Declaration of Helsinki. Authors should submit a statement from their ethics committee or institutional review board indicating the approval of the research. We also encourage authors to submit a sample of a patient consent form and may require submission of completed forms on particular occasions.

All animal work must have been conducted according to relevant national and international guidelines. In accordance with the recommendations of the Weatherall report, "The use of nonhuman primates in research" we specifically require authors to include details of animal welfare and steps taken to ameliorate suffering in all work involving non-human primates. The relevant guidelines followed and the committee that approved the study should be identified in the ethics statement.

Please enter your ethics statement below and place the same text at the beginning of the Methods section of your manuscript (with the subheading Ethics Statement). Enter "N/A" if you do not require an ethics statement.

Marseille, September 24th, 2014

Corresponding author: Léo Berline Aix-Marseille Université, CNRS/INSU, Mediterranean Institute of Oceanography – MIO Campus de Luminy , 162 Av. de Luminy 13288 Marseille cedex 9, France E-mail: berline@univ-tln.fr

Subject: Manuscript second revision

Dear editor,

We acknowledge again the reviewer 2 for its constructive remarks on the revised manuscript. We have addressed all the comments. Please find the final revised manuscript entitled "A connectivity-based ecoregionalization method of the Mediterranean Sea".

Yours Sincerely,

Léo Berline

1 Title

2 A connectivity-based ecoregionalization method of the Mediterranean Sea

- 34 Authors
- 5 Berline L^{a,c,d*}, Rammou A-M^b, Doglioli A^b, Molcard A^a, Petrenko A^b
- 6 7
 - *Corresponding author berline@univ-tln.fr

89 Affiliations

^aUniversité du Sud Toulon-Var, Aix-Marseille Université, CNRS/INSU, IRD, Mediterranean
 Institute of Oceanography (MIO), UM 110, 83957 La Garde Cedex, France

12

^bAix-Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO),
 UM 110, 13288 Marseille Cedex 09, France

- ^cCNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093, BP 28, 06234, Villefranche-sur Mer, France
- 18

^dUniversité Pierre et Marie Curie - Paris 6, Laboratoire d'Océanographie de Villefranche, UMR
 7093, BP 28, 06234, Villefranche-sur-Mer, France

21 22

23 Abstract

24 Ecoregionalization of the ocean is a necessary step for spatial management of marine resources. 25 Previous ecoregionalization efforts were based either on the distribution of species or on the 26 distribution of physical and biogeochemical properties. These approaches ignore the dispersal of 27 species by oceanic circulation that can connect regions and isolates others. This dispersal effect can 28 be quantified through connectivity that is the probability, or time of transport between distinct 29 regions. Here a new regionalization method based on a connectivity approach is described and 30 applied to the Mediterranean Sea. This method is based on an ensemble of Lagrangian particle 31 numerical simulations using ocean model outputs at 1/12° resolution. The domain is divided into 32 square subregions of 50km size. Then particle trajectories are used to quantify the oceanographic 33 distance between each subregions, here defined as the mean connection time. Finally the oceanographic distance matrix is used as a basis for a hierarchical clustering. 22 regions are 34 35 retained and discussed together with a quantification of the stability of boundaries between regions. Identified regions are generally consistent with the general circulation with boundaries located 36 37 along current jets or surrounding gyres patterns. Regions are discussed in the light of existing ecoregionalizations and available knowledge on plankton distributions. This objective method 38 39 complements static regionalization approaches based on the environmental niche concept and can 40 be applied to any oceanic region at any scale.

41

42 Keywords:

43 Biogeography, plankton, dispersal, currents, OGCM, Lagrangian, clustering

2 1. Introduction

3

The ecoregionalization of the ocean is useful for scientific research, conservation and management of the marine environment and marine resources. For instance, ecoregionalization is needed to extrapolate punctual or transect data to broader areas and to target specific regions for interdisciplinary research (as in the Mediterranean Sea, [1]). Conservation and management goals range from selecting areas to protect [2] to defining fisheries zones or zones for monitoring and mitigating marine pollution.

10

To date, several approaches of ecoregionalization were used depending on the data at hand [3]. The taxonomic approach is based on species distributions and identifies areas of broadly similar assemblage of species [4-6]. The ecological approach is based on habitat characteristics; it separates areas of similar seasonal cycles of physical and biogeochemical variables [7-10]. This approach benefited from the nearly continuous coverage of satellite data. Lastly, the integrative approach is a combination of both taxonomic and ecological approaches that takes into account both the habitat and the species inhabiting it [11].

18

However, in the marine environment the species distribution not only results from selection by the local environment but also from dispersal of propagules and adults organisms (e.g. the metapopulation concept of Levins [12,13]). Therefore an ecoregionalization based on dispersal by ocean circulation is needed; recent studies start taking into account dispersal in defining management units [14]. However it was never achieved quantitatively at basin scale. Today this is possible, as widely available ocean circulation models provide 3 dimensional, time varying, realistic and consistent depictions of oceanic currents at basin scale. The goal of this paper is to present a regionalization method based on connectivity, assessed from ensemble Lagrangian
 simulations using ocean circulation model velocity outputs.

3

This method is applied to the Mediterranean basin, which is a target region for spatial planning owing to its high level of endemism and high biodiversity [15]. Surface circulation shows a complex pattern of larger and smaller gyres, driven by the entrance of Atlantic water at Gibraltar Strait [1], local meteorology and bathymetry. The oligotrophy increases toward the East, but productive spots also exist over shelves and deep mixing areas, thus creating a significant heterogeneity in ecosystem functioning and habitats.

10

11 **2. Materials and Methods**

12

The general outline of the method is as follow (Fig. 1): Lagrangian trajectories are computed from ocean circulation model velocity outputs for particles seeded over the whole model domain at three depths (0.5m, 50m and 100m). The domain is divided into a regular grid (hereinafter connectivity grid) and the trajectories are used to derive the mean connection time between every pair of grid cell. In this way a mean connection time matrix is obtained and then transformed into an oceanographic distance matrix, used as input to a hierarchical clustering algorithm. Finally clustering produces a partition of the domain.

20

Daily outputs velocity fields for four years (2007-2010) were taken from the configuration PSY2V3 of the operational system MERCATOR OCEAN [16]. The PSY2V3 configuration covers the North Atlantic ocean and Mediterranean Sea, and is based on the NEMO-OPA primitive equations code [17] with assimilation of observed data (satellite and in situ). Here, only the domain subset covering the Mediterranean Sea was used. Daily surface forcing are provided by ECMWF [18]. The velocity components are distributed in an Arakawa C type grid [19]. The horizontal
resolution is 1/12 ° (~8km) and there are 50 fixed vertical levels with higher resolution at the
surface. The vertical mixing is described by a TKE closure scheme [20] and the advection by a
TVD 2nd order centered scheme [21].

5

6 The trajectories followed by numerical particles were calculated offline with the Lagrangian 7 diagnostic tool ARIANE [22]. The trajectories only result from the horizontal advection at three 8 depths (0.5 m hereinafter called surface, 50m and 100m) chosen to represent the transport in the 9 epipelagic layer. No vertical velocity was considered to keep particles in the 0-100m range. The 10 one year integration time was chosen to allow particles to cover the whole basin and therefore 11 quantify basin scale connectivity and to keep computation time reasonable. Particles were seeded 12 every 10km on a regular square grid covering the whole domain, totaling 25,646 initial positions 13 for surface depth and 23,770 for depths 50 and 100m because the domain is smaller. Particles were 14 seeded every 3 days from the 1st to the 25th of every month, from January 1st 2007 to December 25st 2009 in order to fully sample the variability of the circulation. This represents a total of 15 16 8,309,304 particles for surface depth, respectively 7,701,480 for depths 50 and 100m. The choice of 17 10 km and 3 days is a compromise between matching the horizontal resolution of the model, taking 18 into account mesoscale processes and keeping an affordable computing time of resulting 19 trajectories. We thus obtained three ensembles of trajectories, one per depth.

20

In order to quantify the connections over the model domain, the domain was divided into grid cells of 50 km x 50 km on a regular square grid, the connectivity grid, with a total of 1095 cells covering only regions with depths greater than 100m. The 50km resolution is sufficient to keep a reasonably realistic coastline while being suitable with the seeding density chosen. Thus each connectivity grid

cell contains 5*5=25 particles for each initial seeding date, except grid cells including land that
 contains less particles.

3

4 To quantify the connectivity between each grid cell, we used the Mean Connection Time, 5 hereinafter MCT. Defining T(i,j) as the transit time from grid cell *i* to grid cell *j*, MCT(i,j) was 6 computed as

$$MCT(i,j) = \frac{1}{M} \sum_{n=1}^{n=M} T_n(i,j)$$

8 *M* being the number of particle transitioning from *i* to *j*. Note that for each trajectory, all 9 intermediate transitions were used to compute the MCT. The sensitivity of MCT to the number of 10 particles was tested. The suite of MCT matrices converged when the number of particles was 11 greater than 6,000,000, therefore we considered that 8,309,304 particles and respectively 7,701,480 12 particles for depths 50 and 100m were sufficient to obtain a robust MCT matrix. Moreover, to keep 13 MCT robust, it was computed only when M was greater or equal to 50. Four MCT matrices of size 14 1095 x 1095 were computed: one MCT matrix from each ensemble of trajectories (MCT₀, MCT₅₀, MCT_{100} for 0.5, 50 and 100m depths trajectories respectively) and also one MCT matrix using the 15 16 three ensembles together ($MCT_{3depths}$).

17

Not all grid cells of the domain were connected within one year, especially remote cells (e.g. Northern Aegean and Gibraltar Strait). Thus the resulting MCT matrices had gaps (from 37% to 56%). These gaps are a problem for the steps of computing the oceanographic distance and applying hierarchical clustering on it. Therefore a gap filling procedure was introduced as follows (see appendix 1):

For each unconnected pair of grid cells i-j, we looked for grid cells k so that i-k and k-j pairs are
connected. There must be at least 50 grid cells k as for *M*.

Then we computed MCT(i,j) for pair i-j as the sum of the MCT(i,k) and MCT(k,j), averaged on
all existing cells k, and filled the MCT(i,j) value in the matrix.

After 3 iterations of this procedure, each MCT matrix was filled. The resulting MCT values ranged from 10 days to 3000 days. This gap filling procedure avoided the very long integration time (>8 years) needed if we were to fill the whole MCT matrices from original trajectories alone.

6

This led to four full MCT matrices, which are asymmetric since the time to go from i to j is not equal to the time to go from j to i. Then the oceanographic distance (OD) was defined after [23] as the minimum of the two MCT values associated to each pair of grid cells i and j (travel from i to jand return travel from j to i). We chose the minimum value as it corresponds to the fastest route of transport which is also the shortest in length.

12

13
$$OD(i, j) = min(MCT(i, j), MCT(j, i))$$

14

15 This gave four symmetric matrices, $(OD_0, OD_{50}, OD_{100}, OD_{3depths})$ where all diagonal terms 16 (autoconnection time) were set to zero.

17

18 Finally hierarchical clustering analysis was applied on each of the oceanographic distance matrix. 19 This method has proved to be robust in the classification of atmospheric wind data (e.g. [24]) and 20 hydrological data (e.g. [25]). Hierarchical clustering assigns grid cells to different clusters in a way 21 that each grid cell belongs to only one cluster [26], and each cluster belongs to a larger cluster (Fig. 22 2). The grid cells are grouped according to their similarity, which here is the oceanographic 23 distance. Thus there is no distance metric applied as in usual clustering exercises. During each 24 sequence of the clustering algorithm, the distances between the new clusters formed and the other 25 grid cells are computed. This step requires a linkage criterion to be defined. Here we used the

flexible [27] and Ward linkages [28]. WPGMA linkage was also tested ([27]) but flexible and Ward best balanced the dendrogram. For a given cut-off level of the dendrogram, we obtained a partition of the grid cells in a certain number of clusters, which is, in the spatial domain, a regionalization. Each cluster corresponded to a region on the connectivity grid whose contours were identified. Finally for each cluster, the within-cluster MCT was computed and plotted as a function of the number of clusters from 2 to 31 (Fig. 3).

7

8 Our "best estimate" regionalization was computed using flexible link and the matrix $OD_{3depths}$, built 9 from the complete ensemble of trajectories (Fig. 4). We also computed one regionalization for each 10 of the three depths and two linkages (6 cases). To assess the sensitivity of the regionalization 11 results to the linkage and depth used, we computed the boundary stability, which is simply the local 12 frequency of occurrence of a boundary in the spatial domain among the 6 cases, as defined in [29].

13

14 The choice of the optimal cut-off level and number of cluster is not straightforward here, because 15 the distance matrix (OD) is not computed with a distance metric applied to a given dataset. Thus, 16 usual criteria based on dataset variance within clusters cannot be used (e.g. [30]) because there is 17 no dataset. Instead we took a simple approach comparing results from Ward and flexible linkage. 18 For each partition into n clusters, we compute the proportion of cells classified in the same cluster 19 with Ward and flexible (see appendix 2). This proportion increases from 82%, to 88% from for n=2 20 to n=6 clusters, then drops to values < 70% for n > 6. Therefore we consider that the optimal cluster 21 number is 6 as it gives more information while keeping consistent results among the two linkages. 22 However, as no absolute criterion is available, we show the maximum number of clusters that we 23 can interpret, which is 22 clusters. The clusters above 22 require detailed regional information to be 24 interpreted, which is beyond the scope of this study.

- 1 3. Results
- 2

When the number of clusters increases, the within-cluster MCT diminishes, as well as the size of each region (Figs. 3 and 4). The average MCT ranges from 188 days for 2 clusters to ca. 90 days for 22 clusters.

6

7 On the basis of our interpretation of regions with respect to circulation, we retained 22 clusters 8 (Fig. 4). The boundaries of each region were identified and colored according to the number of 9 cluster obtained varying the cutoff distance from 10,000 (2 clusters) to 507 (22 clusters). The 10 boundary #1 partly cuts the Sicily Strait (Fig. 4) and separates the Western and Eastern basins. The 11 boundary #2 isolates Levantine basin from Ionian Sea and Adriatic Sea. The boundary #3 isolates 12 the northern Ionian and Adriatic Sea from Southern Ionian. Then boundary #4 separates the 13 Western basin into a western and an eastern part. The boundary #5 isolates the Levantine basin plus 14 a part of AW current off Lybia from the Aegean Sea. The boundary stability map (Fig. 5) shows 15 that some of the boundaries shown on Fig. 4 are stable (e.g. boundary #7, 11, 16) while others are 16 variable in position or occurrence (e.g. boundary #4). Also, some boundaries (e.g. #2, 6, 8) have 17 only a portion that is stable.

18

Then considering the 22 regions, the Western basin is separated into eight regions; regions A and B in the Northern part of the basin, G, F and E in the South and C, D that contains the Tyrrhenian sub-basin, region H at the center. In the Eastern basin, the Adriatic Sea is one region I. The Ionian Sea is separated into regions J, V, T at the center and K to the east, with U and S along the coasts of Libya and Tunisia. The Aegean Sea is divided into two regions, M in the East, L in the West. The Levantine basin has four regions: two coastal regions N and O, one southern region P and one center region Q. Considering only stable boundaries, the Western basin only has 5 regions. The Eastern basin has few continuous boundaries, only 4 regions are delimited (Adriatic, South of
 Sicily Strait and regions U and O).

3

4 **4. Discussion**

5

6 The boundary stability shows that the majority but not all boundaries are robust to changes in 7 linkages and depths. Often, linkages or depth changes can produce minor shifts in boundary 8 position, hence reducing boundary stability as defined here. When a boundary is not stable, it 9 means that either the circulation is variable, either it is located in a region where the distance (OD) 10 among grid cells is small thus the boundary position varies according to the overall content of each 11 cluster. Thus the boundary map must be analyzed jointly with the boundary stability to assess our 12 regionalization.

13

14 **4.1 Regions reveal circulation patterns**

First the meaning of the regions obtained needs to be explained. One region contains grid cells that are connected at shorter time scale with each other than they are to the grid cells of the other regions. In the following, the relationship between the clusters boundaries, their stability and the circulation is examined in detail in comparison with the model average velocity fields (Fig. 4) and literature.

20

The hierarchy of cluster boundary is in good agreement with the surface general circulation scheme proposed by Millot et al. [31], their figure 2. Boundary #1 separates the Western and Eastern basins at the Sicily strait, boundary #2 isolates the Eastern Levantine, then boundary #3 the Adriatic Sea together with the northern part of the Ionian. Boundaries are often parallel to the mean velocity field. For instance boundary #16 is parallel to the Northern Current, boundary #11 parallel to the Asia Minor Current. Boundary can also separate two currents branches (the ATC along Tunisia and the AIS along Sicily, for part of boundaries #1 and 10, see [32]). This illustrates the barrier role of semi-permanent jets in the ocean. However, this is not always the case (e.g. boundary #1 at the Sicily Strait, boundary #18 at Oranto Strait). This can occur as the MCT matrix was computed from the time varying flow field, not from the mean field shown here and because each cluster is separated according to its overall distance with other clusters.

7

In the Western basin, boundary #16 is associated to the path of the Northern Current [31] and is the most stable. The boundary #6 from Spain to the Baleares follows approximately the Balearic front and is also rather stable. The Tyrrhenian Sea contains regions B, C, D with partly stable boundaries. Region C east of the Strait of Bonifacio contains the wind induced cold recirculation identified by [31], which is a potential dense water formation zone [33]. The Southern region G is restricted to the Alboran Sea.

14

15 In the Eastern basin, the Ionian Sea has two Southern regions U and S. Boundary #10 follows the 16 Sicilian current of AW and region U contains the area of accumulation of eddies of the Ionian Sea 17 [31]. The region V can correspond to the meandering stream identified by [34] or considered as 18 interannual variability by [31]. The South-eastern Levantine has a region O with a stable boundary 19 #7. Region O corresponds to the eddy accumulation zone \sum L_E following [35]. The Asia Minor 20 current along the Southern coasts of Turkey is captured in region N and has a stable boundary #11. 21 Finally, the Aegean Sea is divided into an Eastern region M fed by AW and a North-Western 22 region L fed by Black Sea outflow waters.

23

Some regions are virgin of any boundaries (Fig. 5), like the center of Gulf of Lion, the Alboran Sea,
the Eastern Tyrrhenian Sea, the Northern Adriatic Sea, South of Greece, the South-East of the

Levantine basin. This means that these regions are intraconnected at a time scale of less than ca 90
 days (see Fig. 3).

3

Thus this regionalization reveals known circulation patterns and summarizes them in a way that complements the simple average velocity field analysis. It can be used to quantitatively compare the circulation patterns from contrasted periods or from different models.

7

8 4.2 Some boundaries coincide with major environmental boundaries and range limits

9 of zooplankton assemblages

10 The identification of regions close to each other, not geographically but in terms of oceanographic 11 connections, should help understanding the spatial distribution of properties that are passively 12 transported by currents, such as conservative physical properties, or planktonic organisms living in 13 the surface layer (epipelagic).

14

15 First, boundaries emerging from circulation alone often match major discontinuities in variables 16 describing the environment. For instance a strong latitudinal salinity gradient exists near the 17 Balearic Islands, close to our boundary #6. However, our boundary #6 coincides with the Balearic 18 Current but not to the Balearic salinity front, located more to the South [36]. Our boundary #16 19 coincides with a temperature and salinity front in the Ligurian Sea, and also in phytoplankton 20 biomass (Fig 1 in [10]). Off the Catalan coast, boundary #16 is consistent with the alongshore 21 distribution of fish larvae [37], although located more offshore. Also, boundary #18 south of 22 Adriatic Sea coincides with salinity fronts as seen in MEDATLAS [38]. This results from the 23 dynamic links between density gradients and surface currents. The boundary #21 found in the 24 Aegean Sea parallels the front in phytoplankton biomass [10]. At the Sicily strait, corresponding to our boundary #1, a boundary was also found by [9] (their figure 2) based on a clustering of sea
 surface temperature and ocean color data.

3

4 Within our regions, planktonic organisms are connected at shorter time scales than between 5 regions. Thus hydrodynamical boundaries can become faunistic boundaries as suggested by 6 Gaylord and Gaines [39] for larvae of benthic organisms. Given the spatial resolution, the MCT can 7 correctly resolve connections of plankton organisms with a life cycle greater than 10 days, such as 8 most zooplankton species [40]. Indeed, consistent with boundary #6 north of the Balearic Islands, a 9 boundary exists between Atlantic zooplankton species to the South and Mediterranean species to 10 the North [41, 42]. Also, consistent with our boundaries #1 and #2, differences in zooplankton 11 species composition between Eastern and Western basin were reported by several authors ([43] and 12 references therein, [44]) although the spatial resolution of zooplankton data is generally not 13 sufficient for accurately locating boundaries.

14

Ecoregions drawn qualitatively from expert knowledge of species assemblages ([45] their figure 2) also distinguish Atlantic-water regions including our region G, a Northern Current region including our region A, three Adriatic regions, one Aegean Sea region including our regions L and M, and two large zonal Eastern basin regions mostly consistent with boundaries #5 and #11.

19

However, for living organisms such as zooplankton, circulation alone is not sufficient to explain the distribution of a given species as it is adapted to its environment, in particular to a temperature range, e.g. [46]. Thus within our connected regions environmental conditions will restrict a species distribution to its specific preferendum, i.e. its ecological niche. Moreover, we deal with particles in the 0-100m layer, which only properly represent epipelagic zooplankters dispersal.

1 **4.3 How to use this regionalization?**

2

3 To use this regionalization, the question of the number of clusters to retain will arise. With our 4 approach, no existing criterion is available to define the optimal number. However the number of 5 clusters can be chosen based on the time scale we are interested in, as regions isolated at a given 6 time scale become connected at a larger time scale. Therefore the time scale of interest defines the 7 appropriate cut-off distance and the resulting cluster number and sizes (Fig. 3). For instance, one 8 can look for the scale of dispersal of planktonic larvae and hence consider the Pelagic Larval 9 Duration (PLD) time scale. A PLD of 120 days (e.g. a crustacean as spiny lobster Palunirus 10 elephas [47]) gives an adequate cluster number of ca 8. For a PLD of ca. 70 days (e.g. a labridae 11 fish as *Lipophrys trigloides* [48) the adequate cluster number is ca 30. The lower bound time scale 12 we can address with the present regionalization (~10 days) is set by the spatial resolution of our 13 connectivity grid. Shorter time scales could be achieved with a finer connectivity grid.

14

15 Few existing studies can be compared to our regionalization because the approach is original. In the 16 Mediterranean Sea, Andrello et al. [49] obtained clusters of coastal marine protected areas (MPA) 17 based on their connectivity assessed by Lagrangian simulations. Although the velocity fields, 18 Lagrangian simulations set up and clustering method are different, we can compare the overall 19 grouping obtained (their figure 5-A). Considering only clusters containing several MPAs (8 clusters 20 out of 38), their clusters are mostly contained within single regions and do not spread across several 21 regions. Exceptions occur in the Northern Ligurian Sea and Ionian Sea with MPAs located very 22 close or even onto our regions' boundaries. This probably results from the difference in the input 23 velocity fields and subsequent connectivity quantification.

1 This new regionalization method quantifies the dispersal range of organisms, This dispersal 2 dimension was shown to explain species distribution (e.g. [50]) and is thus critically needed [51]. 3 This approach complements the usual regionalization methods rooted in the environmental niche 4 concept (e.g. [9, 10]). For instance, the Chl-a based regionalization from [10] reflects the regime of 5 nutrients inputs and stratification, thus they are not directly linked to surface circulation patterns. 6 Adding our connectivity-based regionalization helps understanding the types of environment that 7 plankton is facing, through passive horizontal transport, vertical mixing and production processes. 8 Practically, our OD matrices could be used as a constraint during the clustering of Chl-a, as for 9 chronological clustering [52].

10

Also, our regions illustrate why plankton organisms may be encountered outside their optimum range (plankton expatriates, e.g. [53]) and where transport-driven fluctuations of plankton communities are expected. Indeed fluctuations of region boundaries may produce large biogeographic fluctuations noticeable at fixed points (e.g. [54, 55]). Regions can also help tracking invasions of exotic organisms, for instance the so-called lessepsian species coming from the Suez Canal [56]. Apart from living organisms, our regions could be used to quantify areas of dispersion of pollutants coming from ships or land sources [57].

18

Finally this regionalization is useful as a framework to interpret the genetic differentiation of a given species sampled throughout the Mediterranean (e.g. [58]). Further, our approach could be used to define a priori units for grouping existing MPA or set up new MPA (e.g. [59] for the Gulf of Lions), as envisioned in the EU Integrated Project COCONET (www.coconet-fp7.eu).

23

24 **4.4 Perspectives**

The regionalization proposed here will eventually be compared to an ongoing biogeochemistry based regionalization [60], and to zooplankton species distribution as available in database
 COPEPODS [61].

4

5 Concerning the methods, several points can be made. With a similar approach but shorter 6 simulations, we can explore the seasonal variability of clusters boundaries that may be significant 7 [62]. Here we used hierarchical clustering to extract clusters from the oceanographic distance, but 8 clusters could also be computed with other methods such as graph theory that uses the asymmetry 9 of the connectivity matrix (e.g. [49, 63]). Finally, this method was applied to the Mediterranean Sea 10 but it can be applied anywhere, at any spatial scales as long as accurate and long term model 11 velocity outputs are available.

12

13 Acknowledgments

14 Mercator-ocean (www.mercator-ocean.fr) is thanked for providing velocity outputs for 15 configuration PSY2V3. Fabien Lombard is thanked for useful feedback on an earlier version of the 16 manuscript. The two reviewers are thanked for their constructive comments.

- 17
- 18

19 **References**

20

Durrieu de Madron X, et al. (2011) Marine ecosystems' responses to climatic and anthropogenic
 forcings in the Mediterranean. Progress in Oceanography 91:97–166

1	2. Giakoumi S, Sini M, Gerovasileiou V, Mazor T, Beher J, et al. (2013) Ecoregion-Based
2	Conservation Planning in the Mediterranean: Dealing with Large-Scale Heterogeneity. PLoS ONE
3	8(10): e76449. doi:10.1371/journal.pone.0076449
4	
5	3. UNESCO (2009) Global Open Oceans and Deep Seabed (GOODS) Biogeographic
6	Classification. Paris. UNESCO-IOC. IOC Technical Series 84 92pp.
7	
8	4. Forbes E (1856) Map of the distribution of marine life. in Johnston AK, editor. The Physical
9	Atlas of Natural Phenomena. Edinburgh (Scotland): William Blackwood and Sons. pp. 99-102
10	
11	5. Ekman S (1953) Zoogeography of the Sea. London: Sidgwick and Jackson. 417 p.
12	
13	6. Briggs JC (1995) Global Biogeography. Amsterdam, Elsevier. 472 p.
14	
15	7. Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Progress in
16	Oceanography 36:77–167
17	
18	8. Longhurst A (1998) Ecological geography of the sea Academic Press, London. 560 p.
19	
20	9. Oliver MJ, Irwin AJ (2008) Objective global ocean biogeographic provinces. Geophysical
21	Research Letters, 35, L15601, doi:101029/2008GL034238
22	
23	10. D'Ortenzio F, Ribera d'Alcalà M (2009) On the trophic regimes of the Mediterranean sea : a
24	satellite analysis. Biogeosciences 6:139–148
25	

1	11. Koubbi P, Moteki M, Duhamel G, Goarant A et al. (2011) Ecoregionalization of myctophid fish
2	in the Indian sector of the Southern Ocean: Results from generalized dissimilarity models. Deep
3	Sea Research Part II: Topical Studies in Oceanography 58:170-180
4	
5	12. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity
6	for biological control. Bulletin of the Entomological Society of America 15:237-240.
7	
8	13. Obura D (2012) The Diversity and Biogeography of Western Indian Ocean Reef-Building
9	Corals. PLoS ONE doi:10.1371/journal.pone.0045013
10	
11	14. Casale P, Mariani P (2014) The first 'lost year' of Mediterranean sea turtles: dispersal patterns
12	indicate subregional management units for conservation. Marine Ecology Progress Series 498:263-
13	274
14	15. Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram F B, Aguzzi J, et al. (2010). The
14 15	15. Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram F B, Aguzzi J, et al. (2010). The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, <i>5</i> (8).
15	
15 16	Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 5(8).
15 16 17	Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, <i>5</i>(8).16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting.
15 16 17 18	 Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, <i>5</i>(8). 16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting. In: Chassignet, E P and Verron, J editors, Ocean Weather Forecasting Springer, Netherlands, pp.
15 16 17 18 19	 Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, <i>5</i>(8). 16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting. In: Chassignet, E P and Verron, J editors, Ocean Weather Forecasting Springer, Netherlands, pp.
15 16 17 18 19 20	 Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, <i>5</i>(8). 16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting. In: Chassignet, E P and Verron, J editors, Ocean Weather Forecasting Springer, Netherlands, pp. 381–395
15 16 17 18 19 20 21	 Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 5(8). 16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting. In: Chassignet, E P and Verron, J editors, Ocean Weather Forecasting Springer, Netherlands, pp. 381–395 17. Madec G (2008) "NEMO ocean engine". Note du Pole de modélisation, Institut Pierre-Simon
 15 16 17 18 19 20 21 22 	 Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 5(8). 16. Bahurel P (2006) MERCATOR OCEAN global to regional ocean monitoring and forecasting. In: Chassignet, E P and Verron, J editors, Ocean Weather Forecasting Springer, Netherlands, pp. 381–395 17. Madec G (2008) "NEMO ocean engine". Note du Pole de modélisation, Institut Pierre-Simon

1	19. Mesinger F, Arakawa A, Kasahara A (1976) Numerical methods used in atmospheric models,
2	vol 1 World Meteorological Organization, International Council of Scientific Unions 37 p.
3	
4	20. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general
5	circulation model with two different mixed layer physics. Journal of Physical Oceanography 23:
6	1363-1388
7	
8	21. Zalesak ST (1979) Fully multidimensional flux corrected transport algorithms for fluids. J
9	Comput Phys 31:335-362
10	
11	22. Blanke B, Raynaud S (1997) Kinematics of the Pacific Equatorial Undercurrent : An Eulerian
12	and Lagrangian approach from GCM results. Journal of Physical Oceanography 27:1038–1053
13	
14	23. Alberto F, Raimondi PT, Reed DC, Watson JR, Siegel DA, Mitarai S et al. (2011) Isolation by
15	oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara
16	Channel. Molecular Ecology, 20:2543-2554.
17	
18	24. Burlando M, Antonelli M, Ratto C (2008) Mesoscale wind climate analysis: identification of
19	anemological regions and wind regimes. Int J Climatol 28: 629-641
20	
21	25. Hjelmervik KT, Hjelmervik K (2013) Estimating temperature and salinity profiles using
22	empirical orthogonal functions and clustering on historical measurements. Ocean Dynamics
23	63:809-821
24	
25	26. Legendre P, Rogers DJ (1972) Characters and clustering in taxonomy: a synthesis of two
26	taximetric procedures. Taxon 567–606

1	
2	27. Lance GN, Williams WT (1967). A general theory of classificatory sorting strategies 1.
3	Hierarchical systems. The computer journal, 9:373-380.
4	
5	28. Ward JH Jr (1963) Hierarchical Grouping to Optimize an Objective Function. Journal of the
6	American Statistical Association 58:236–244
7	
8	29. Oliver M J, Glenn S, Kohut JT, Irwin AJ, Schofield OM, Moline MA, and Bissett WP (2004),
9	Bioinformatic approaches for objective detection of water masses on continental shelves, J
10	Geophys Res, 109, C07S04, doi:10.1029/2003JC002072.
11	
12	30. Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun. Stat. 3:1–27
13	
14	31. Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean sea. In: The Mediterranean
15	Sea, Springer, pp. 29–66
16	
17	32. Poulain PM, & Zambianchi E (2007) Surface circulation in the central Mediterranean Sea as
18	deduced from Lagrangian drifters in the 1990s. Continental Shelf Research 27(7):981-1001
19	
20	33. Fuda JL, Etiope G, Millot C, Favali P, Calcara M, Smriglio G, Boschi E, (2002) Warming,
21	salting and origin of the Tyrrhenian Deep Water (2002) Geophys. Res. Letters 29,
22	doi:10.1029/2001GL014072
23	
24	34. Malanotte-Rizzoli P, Artale V, Borzelli-Eusebi GL, et al. (2014) G.: Physical forcing and
25	physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and

directions for future research, Ocean Sciences 10:281-322, doi:10.5194/os-10-281-2014

2	35. Hamad N, Millot C, Taupier-Letage I (2005) A new hypothesis about the surface circulation in
3	the eastern basin of the Mediterranean sea. Progress in Oceanography 66:287-298
4	
5	36. Mariani P, MacKenzie BR, Iudicone D, & Bozec A (2010) Modelling retention and dispersion
6	mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Progress in
7	Oceanography 86(1):45-58
8	
9	37. Sabatés A, Olivar MP, Salat J, Palomera I, & Alemany F (2007) Physical and biological
10	processes controlling the distribution of fish larvae in the NW Mediterranean. Progress in
11	Oceanography, 74(2): 355-376
12	38. Rixen M, Beckers JM, Brankart JM, Brasseur P (2001) A numerically efficient data analysis
13	method with error map generation. Ocean Modelling 2:45-60
14	
15	39. Gaylord B, Gaines SD (2000) Temperature or transport ? range limits in marine species
16	mediated solely by flow. The American Naturalist 155:769–789
17	
18	40. Carlotti F, Poggiale JC (2010) Towards methodological approaches to implement the
19	zooplankton component in "end to end" food-web models. Progress in Oceanography, 84:20-38
20	
21	41. Fernandez de Puelles ML, Pinot J-M, Valencia J (2003) Seasonal and interannual variability of
22	zooplankton community in waters off Mallorca island (Balearic Sea, Western Mediterranean):
23	1994–1999. Oceanologica Acta 26:673–686
24	

1	42. Fernandez de Puelles ML, Molinero JC (2007) North Atlantic climate control on plankton
2	variability in the Balearic Sea, western Mediterranean. Geophysical Research Letters 34, L04608
3	doi:101029/2006GL028354
4	
5	43. Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d'Alcalá M, Vaqué D,
6	and Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543-
7	1586, doi:105194/bg-7-1543-2010
8	
9	44. Nowaczyk A, Carlotti F, Thibault-Botha D, Pagano M (2011) Distribution of epipelagic
10	metazooplankton across the Mediterranean Sea during the summer BOUM cruise. Biogeosciences,
11	8:2159-2177, doi:105194/bg-8-2159-2011
12	
13	45. Bianchi C, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems
14	and prospects for future research. Marine Pollution Bulletin 40:367-376.
15	
16	46. Beaugrand G (2005) Monitoring pelagic ecosystems using plankton indicators. ICES Journal of
17	Marine Science 62:333–338
18	
19	47. Queiroga H, Blanton J (2004) Interactions between behavior and physical forcing in the control
20	of horizontal transport of decapods crustacean larvae. Advances in Marine Biology 47:198-214
21	
22	48. McPherson E, Raventos N, (2006) Relationship between pelagic larval duration and geographic
23	distribution of Mediterranean littoral fishes. Marine Ecology Progress Series 327:257-265
24	

1	49. Andrello M, Mouillot D, Beuvier J, Albouy C, Thuiller W, Manel S (2013) Low connectivity
2	between mediterranean marine protected areas: a biophysical modeling approach for the dusky
3	grouper Epinephelus marginatus. Plos One 8(7): e68564 doi:101371/journalpone0068564
4	
5	50. Wernberg T, Thomsen MS, Connell SD, Russell BD, Waters JM, et al. (2013) The Footprint of
6	Continental-Scale Ocean Currents on the Biogeography of Seaweeds. PLoS ONE
7	doi:10.1371/journal.pone.0080168
8	
9	51. Guisan W, Thuiller W (2005) Predicting species distribution: offering more than simple habitat
10	models. Ecology Letters 8:993-1009
11	
12	52. Legendre P, Dallot S, Legendre L (1985) Succession of species within a community:
13	chronological clustering, with applications to marine and freshwater zooplankton. American
14	Naturalist 125:257-288
15	
16	53. Olli K, Wassmann P, Reigstad M, et al. (2007) The fate of production in the central Arctic
17	Ocean — top-down regulation by zooplankton expatriates. Progress in Oceanography 72:84–113
18	
19	54. Chiba S, Di Lorenzo E, Davis A, Keister JE, Taguchi B, Sasai Y, Sugisaki H (2013) Large-
20	scale climate control of zooplankton transport and biogeography in the Kuroshio Oyashio
21	Extension region. Geophysical Research Letters 40:5182-5187
22	
23	55. Berline L, Zakardjian B, Molcard A, Ourmières Y, Guihou K (2013) Modelling transport and
24	stranding of jellyfish Pelagia noctiluca in the Mediterranean Marine Pollution Bulletin, 70:90-99
25	

1	56. Jribi I, Bradai MN (2012) First record of the Lessepsian migrant species Lagocephalus
2	sceleratus (Gmelin, 1789) (Actinopterygii: Tetraodontidae) in the Central Mediterranean.
3	BioInvasions Records 1:49-52 doi/10.3391/bir.2012.1.1.11
4	
5	57. Olita A et al. (2012) Oil spill hazard and risk assessment for the shorelines of a Mediterranean
6	coastal archipelago. Ocean & Coastal Management 57: 44-52.
7	
8	58. Serra IA, Innocenti AM, Di Maida G, Calvo S et al. (2010) Genetic structure in the
9	Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from
10	contemporary patterns of gene flow. Molecular Ecology 19: 557-68
11	
12	59. Guizien K, Belharet M, Marsaleix P, Guarini JM (2012) Using larval dispersal simulations for
13	marine protected area design: Application to the Gulf of Lions (northwest Mediterranean).
14	Limnology and Oceanography, 57:1099-1112 doi:10.4319/lo.2012.57.4.1099
15	
16	60. Reygondeau G, Irisson J-O, Guieu C, Gasparini S, Ayata S-D, Koubbi P (2013) Toward a
17	dynamic biogeochemical division of the Mediterranean Sea in a context of global climate change.
18	EGU General Assembly 2013, Vienna, Austria, 07-12 April 2013.
19	http://meetingorganizer.copernicus.org/EGU2013/EGU2013-10011.pdf
20	
21	61. O'Brien TD, Wiebe PH, Hay S (2010) ICES Zooplankton Status Report 2008/2009 ICES
22	Cooperative Research Report No 307 152 pp

1	62. Pizzigali C, Rupolo V, Lombardi E, Blanke B (2007) Seasonal probability dispersion maps in
2	the Mediterranean Sea obtained from the Mediterranean Forecasting System Eulerian velocity
3	fields. Journal of Geophysical Research 112, C05012

- 4
- 5 63. Treml EA, Halpin PN, Urban DL Pratson LF (2008) Modeling population connectivity by
- 6 ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecology 23:19–36

1 Figure Legends

2

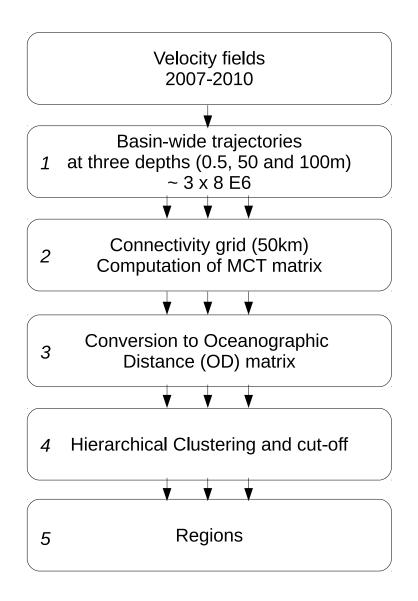
Figure 1. Schematic of the steps of the regionalization method. Note that steps 2 to 5 are repeated
using trajectories at the 3 depths separately, shown with the three arrows, and then using them
altogether.

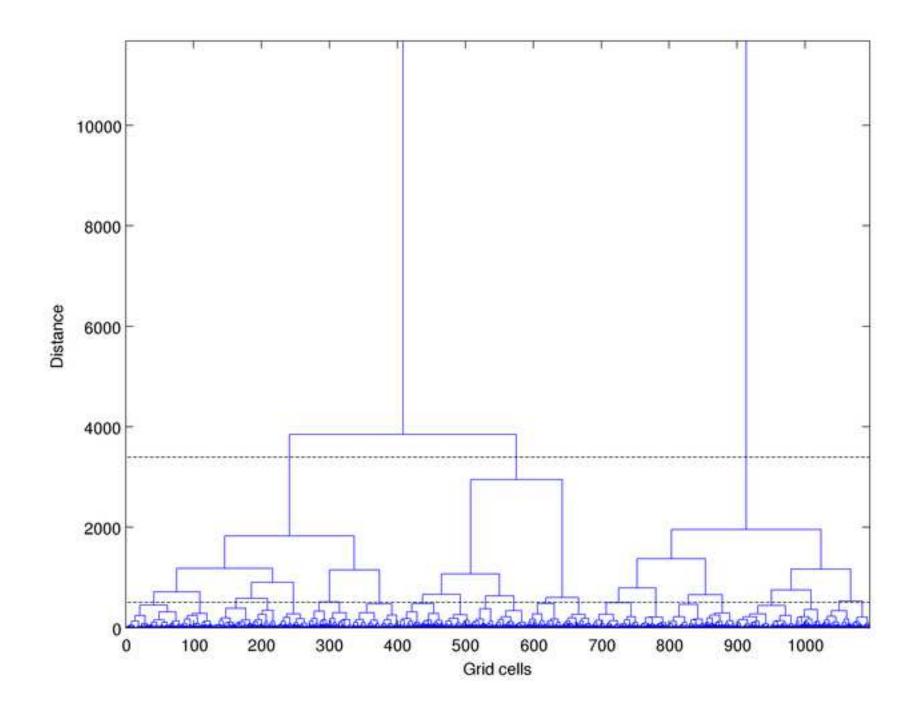
6

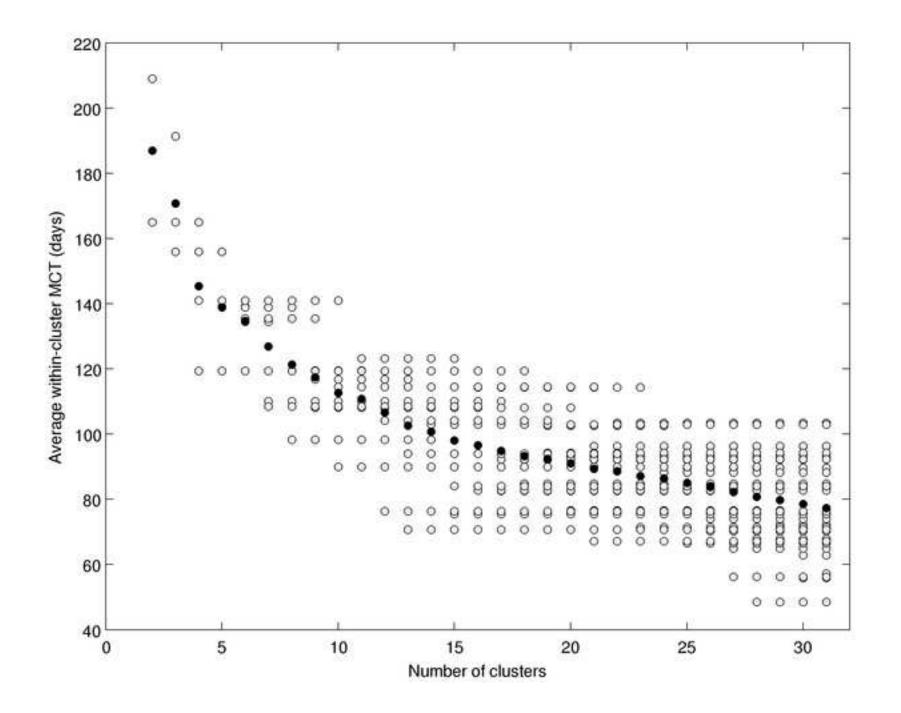
Figure 2. Cluster dendrogram of the oceanographic distance matrix OD_{3depths} using the flexible
linkage. Horizontal black lines show the cut-off values for 3 and 22 clusters.

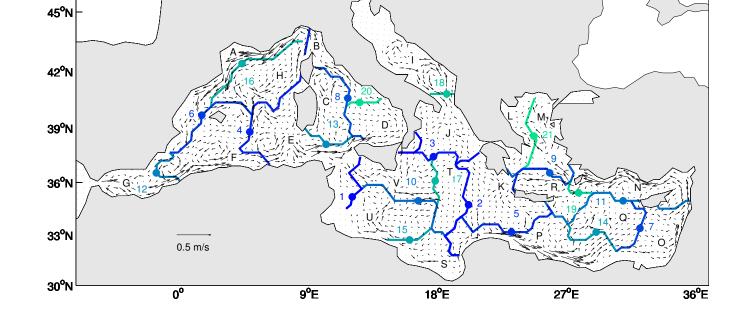
9

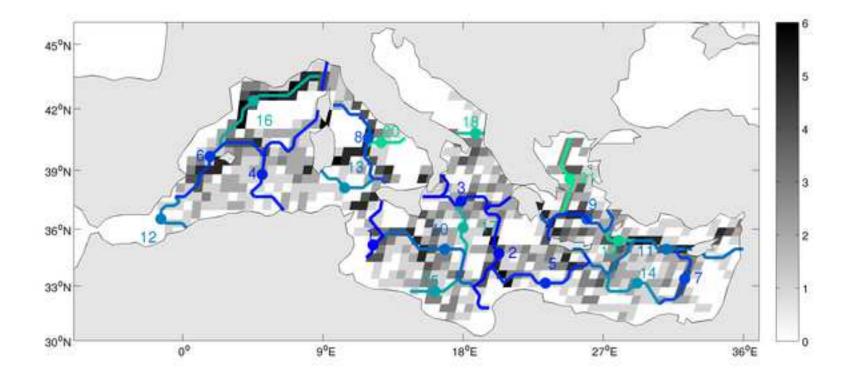
Figure 3. Within cluster mean connection time as a function of the cluster number for MCT_{3depths}.
White dots are the mean for each cluster, black dots are the mean over all clusters.


12


Figure 4. Map of the 21 clusters boundaries obtained from clustering of the oceanographic distance matrix $OD_{3depths}$ using the flexible link. Each boundary is colored and numbered according to the cut-off distance on the dendrogram (from blue – high distance- to green- low distance). Each region is identified by a letter from A to V. The velocity from the circulation model, averaged for the 4year (2007-2010) and the 3 depths is overlaid as black vectors.


18


Figure 5. Map of the boundary stability (gray scale) derived from the 6 cases of clustering (3 depths
x 2 linkages). Boundary stability is defined as the number of occurrence of a boundary in each grid
cell among the 6 cases. Boundaries are overlaid as in figure 4.


22

Appendix Click here to download Supporting Information: Berline_appendix.doc

Response to reviewers

PONE-D-13-51841 A connectivity-based eco-regionalization method of the Mediterranean Sea PLOS ONE

We thank again the reviewer 2 for its constructive remarks on the revised manuscript. We have addressed all the points raised.

6. Review Comments to the Author

Reviewer #2: This is the second time I review this manuscript. Authors have significantly improved the description of the method and performed a sensitivity analysis, which makes the study significantly more robust. The manuscript has been generally improved also in its scope and I only have minor comments that should be addressed by the Authors.

In the introduction, Authors provide a good overview about ecoregionalization approaches and correctly argue that often those methods do not account for dispersal processes. However, similar methods to those used in this manuscript have been recently employed to study regional management units in the eastern Mediterranean sea turtles population in:

Casale P, Mariani P (2014) The first 'lost year' of Mediterranean sea turtles: dispersal patterns indicate subregional management units for conservation. Mar Ecol Prog Ser 498:263-274 *Thank you for this recent piece of literature. We now cite it in introduction..*

Results and discussion are well written although the latter somewhat too long. Moreover, some of the results on boundary definitions in specific regions (e.g., NW Med, Adriatic, Central Med) support previous findings based both on modeling and observational approaches. Author should consider to comment about how their results differ or support previous results presented in e.g.: -boundary #1, #10, #15 Poulain, P. M., & Zambianchi, E. (2007). Surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Continental Shelf Research, 27(7), 981-1001.

- boundary #6, #16, #4

Sabatés, A., Olivar, M. P., Salat, J., Palomera, I., & Alemany, F. (2007). Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Progress in Oceanography, 74(2), 355-376.

Mariani, P., MacKenzie, B. R., Iudicone, D., & Bozec, A. (2010). Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Progress in Oceanography, 86(1), 45-58.

-boundary #18

Poulain, P. M. (2001). Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. Journal of Marine Systems, 29(1), 3-32.

We now discuss boundaries using these references in the discussion, except Poulain (2001) that was not useful.

Specific comments: page 5 line 12 . "Also to keep MCT...." I would suggest : "Moreover, to keep MCT robust, it was computed only when M>=50."

page 5 line 15. The use of comma for decimal is confusing since you also use it for thousands. Change 0,5 in 0.5

page 9 line 7 "Often, linkages" I would suggest "Often, linkages or depth changes can produce minor shifts in boundary positions, hence reducing boundary stability."

page 10 line 16. "The South-Levantine...." this sentence is unclear. Please rewrite.

Caption Figure 1. I would say "Flow diagram of the clustering procedure for regionalization." Moreover I would include three arrows after step 2 to highlight that the different depth are processed in parallel.

We made all the changes suggested.