"Variability of surface transport in the Northern Adriatic Sea from Finite-Size Lyapunov Exponents"

ISTITUTO NAZIONALE DI OCEANOGRAFIA E DI GEOFISICA SPERIMENTALE Maristella Berta

Marseille, 29 November 2011

Outline

- Geographical setting (winds and circulation of Adriatic Sea)
- Application of Finite-Size Lyapunov Exponent (FSLE) technique
- Transport from High Frequency (HF) radar currents
- Preliminary results for modeled currents
- Conclusions

Typical Wind events

AREA OF STUDY

BORA

- Siberian katabatic wind (analogous mechanism of Mistral in GoL)
- blows from E-NE
- cold, dry and gusty
- 5 preferential entrances over the Adriatic **SIROCCO**
- Saharian wind pulled northward by lowpressure cell over Mediterranean Sea
- blows from S-SE
- warm, wet and steady

Adriatic Sea mean surface circulation

Effects of wind on circulation

BORA DRIVES

- upwelling along eastern coast (U)
- double gyre surface circulation
- as wind ceases, rapid return mean circulation

SIROCCO DRIVES

- sea level rise along northern coast
- possible WAC reversal (North Adr)
- as wind ceases, basin-wide barotropic seiches

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, C08033, doi:10.1029/2011JC007104, 2011

Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis

Hrvoje Mihanović,¹ Simone Cosoli,² Ivica Vilibić,³ Damir Ivanković,³ Vlado Dadić,³ and Miroslav Gačić²

46 45.8 tramontana \mathcal{NORD} 45.6 ecale BORA 45.4 45.2 vento ponente VEST45 EST di levant .г 44.8 0^{onto} 44.6 1°BRCCTO rocco 44.4 $\underset{\text{mezzogiorno}}{SUD}$ 44.2 ALADIN wind field **SIROCCO** 44 12 12.5 13 13.5 14 14.5 http://prognoza.hr/karte e.php?id=aladin¶m=&it=

WIND EVENTS SELECTION CRITERIA

DHMZ

<u>TYPICAL SURFACE CURRENT PATTERNS</u>

BORA drives

- intensification of westward jet along Italy (northern Bora corridor)
- downwind currents and divergence in front of the Istrian peninsula

SIROCCO drives

- intensification of northward flow along Istria
- westward veering along Italian coast

AIM AND STRATEGY OVERVIEW

Investigation:

- •Applicability of FSLE on highly variable current field, with small domain
- •Transport structures development under specific wind conditions
- •Implication of spatial organization of transport observed

Area of study and dataset

http://poseidon.ogs.trieste.it/cgi-bin/jungo/nascum

Finite Size LE (FSLE)

• Definition: $\lambda(\mathbf{x}_i, \delta_i, t, \delta_f) = \frac{1}{\tau} \ln \frac{\delta_f}{\delta_i}$

small $\tau \rightarrow$ fast separation \rightarrow large λ

Application: particles move with u (t,x)

For each FSLE grid node \rightarrow maximum λ of the 4 nearest couples

From FSLE to LCS

• LCS time scale evolution is very different from temporal variability of the flow field

Integration of particles forward in time look for **divergence** of particles positive FSLE : $\lambda_{+} = \frac{1}{\tau} \ln \frac{\delta_{f}}{\delta_{i}}$ maximum FSLEs identify repulsive LCS or barriers to transport Patch fate...

Integration of particles **backward** in time look for **convergence** of particles

Algorithm and settings

- Trajectories $\rightarrow \frac{dx}{dt} = u(t, x)$ Integration in time: 4th order Runge–Kutta evolution $\rightarrow \frac{dx}{dt} = u(t, x)$ Interpolation in space: bilinear (4 points)
- Choice of δ_i and $\delta_f \rightarrow$ Depends on currents features, length scale of structures and details requirements in stuctures identification.
- Independent runs Backward FSLE (looking for divergence)

 Backward FSLE (looking for convergence)
- Graphical superposition of forward and backward FSLEs

Comparison between different runs for $\delta_f = 3 \text{ km}$

Comparison between different runs for $\delta_i = 0.4$ km

FSLE during calm wind

CALM WIND \rightarrow Ten days period with wind intensity lower than 3 m/s.

- Current field rich in transport structures
- Evolution of transport structures slower that currents variability
- Line of transport detached from the Italian coast

FSLE during Bora (case 1)

- Bora drives significant spatial variability in surface currents
- new structures develop and pre-existent ones change spatial configuration
- transport structures evolve slower that the current field

FSLE during Bora (case 2)

- Reduced coverage does not allow to identify attractive LCS at the beginning
- Development of repulsive LCS in front of the Istrian coast and northward propagation
- At the end of the event appearance of attractive structure along Italian coast

FSLE during Sirocco (case 1)

- Sirocco drives coherent surface velocities
- line of transports align perpendicularly to dominant wind direction
- transport reversed from "mean condition": particles moving from W to E

FSLE during Sirocco (case 2)

- At the beginning reduced radar coverage to identify any structures
- At the end of the event, the transport line along Italy comes out
- Meridional area does not show strong transport features

WORK IN PROGRESS...

APPLICATION OF FSLE TO MODELED CURRENTS IN THE SAME AREA COVERED BY RADARS

Model: MITgcm*

* General Circulation Model

FSLE evaluation:

- Simulates physical variables (velocity, temperature and salinity)
- non hydrostatic,
- finite volume,
- free surface
- 1/64 ° spatial res., 1h temporal res.
- Z- levels (surface 40m depth)
- forced by ALADIN wind field (also used for wind events identification)
- •Particles: same radar launch grid, but evolution all over MITgcm domain
- • $\delta_i = 0.4$ km, $\delta_f = 1.6$ km (same radar parameters)
- •Maximum evolution time (forward and backward): 6 days

http://mitgcm.org

SIMILARITIES AND **DIFFERENCES** ...

Model currents forced by ALADIN wind (more homogeneous and 45°N 30.00' less intense than actual wind) Long-lived structures

Tangle of structures

13°E

45'

- High variability (spatial and temporal) of the velocity field affects structures configuration and persistence
- Line of transport along the Italian coast: different meandering and detachment from coastline according to wind conditions
- Greater variability of transport structures in the meridional part of the domain, due to close orographic influence on winds.

CONCLUSIONS

- One of the first FSLE application on HF radar current field : (see also *Haza et al. 2010* for application on VHF radars)
 - Radar measurements → high resolution but small domain
 Preliminary tests on initial and final separation between particles
- Application of FSLE method both on modeled and radar currents:
 combination of the surface dynamics information from model and radar field
- FSLE transport analysis on deeper layers of modeled currents can give important information on water column dynamics.
- FSLE method in association with advection of clusters of drifters (at the surface and deeper deployments) to compare trajectories with the transport structures identified from radar and model.

THANK YOU !!!