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Bassin occidental : caractéristiques de la mer de Ligure
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INTRODUCTION MATÉRIELS & MÉTHODES RÉSULTATS & DISCUSSION CONCLUSION

Fig. 1. Schéma de la dynamique océanique de la mer Méditerranée. A. Circulation générale 
(Millot, 2005). B. Mer de Ligure (Misic, 2022).
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o Courant nord Liguro-Provençal-Catalan 
→ Circulation cyclonique le long de la pente côtière 

o Variabilités spatiales et temporelles du vent 
→ Génère des tourbillons de méso-échelles

o Detection de tourbillons intenses anticycloniques
→ Intenses vitesses verticales → Upwelling côtiers

o Casella (2011) : modèle LS-ROMS
→MFS (2006) : temperature, salinité, vitesse
→ COADS et COSMO-17 : forçage du vent
→ Resolution plus fine + variabilité du stress du vent

o Visualisation : surélévation + Okubo-Weiss + vitesse 
verticale

A



Principe de modélisation océanique – Modèle CROCO
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CONDITIONS DE 
FORÇAGES 

ÉQUATIONS 
PRIMITIVES

OCEAN À L’INSTANT t OCEAN À L’INSTANT t + dt

CONDITIONS INITIALES
+

CONDITIONS FRONTIÈRES
SIMULATIONS 

VISUALISATION DES TOURBILLONS ANTICYCLONIQUES EN MER DE LIGURE

Conditions forçages du vent : COADS 2005 

Conditions initiales : WOA 2009
Données climatologiques moyennées
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ÉQUATIONS PRIMITIVES HYPOTHÈSES / APPROXIMATIONS

o Hypothèse d’incompressibilité

o Hypothèse hydrostatique

o Hypothèse de Reynolds

o Approximation Boussinesq

Modèle CROCO : Définition – Hypothèses/Approximations – Equations primitives

Modèle climatologique CROCO → Résolution à petites échelles des équations primitives : mouvement 
(1 et 2), continuité (3), conservation quantité de chaleur (4) et de sel (5) et état de la mer (6)

(4)

(5)

(6)

(3)

(2)

(1)
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Modélisation CROCO : Discrétisation et condition CFL

Fig. 2. Maillage horizontal et vertical. A. Grille d’Arakawa type C. 
B. Coordonnées σ sur 32 niveaux verticaux de la mer de Ligure.

A

B

o Maillage horizontal selon la grille d’Arakawa type C

o Maillage vertical selon les coordonnées σ : 32 niveaux 
verticaux

o Condition Courant-Friedrichs-Levy CFL :

• Processus rapides : barotropes → ondes de gravité

• Processus lents : baroclines → tourbillons 

• Time splitting : temps externe et interne
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Modélisation CROCO : Implémentation zone d’étude 

Tab. 1. Caractéristiques spatiales du maillage de la mer de Ligure dans le modèle CROCO.

Tab. 2. Caractéristiques de temporalité du modèle : temps interne et externe suite au time splitting.

Conditions forçages du vent 
→ COADS 2005 

Conditions initiales
→WOA 2009

Forçages du vent 
Flux chaleur latentes/sensibles
Salinité
Température
Vitesses u + v + w

Moyennes
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Diagnostique du modèle 

Fig. 3. Diagnostique de la stabilité de la simulation sur une période de 10 ans : la valeur moyenne est
représenté par la ligne rouge pour chaque variable.

Spin up

Stabilité

Durée de spin up : 1-2 ans

→ Méthode dynamique

Analyse de la 6ème année 
climatologique simulée

6
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Variation de la surface de la mer au niveau des tourbillons

Fig. 4. Surélévation de la surface libre η au niveau des
tourbillons anticycloniques en mer de Ligure (à gauche : juin ; à
droite : novembre). A. Simulation à l’aide du modèle CROCO
avec COADS. B. Simulation à l’aide du modèle LS-ROMS avec
COSMO-17 (Casella, 2011).

o Surélévation du niveau marin
→ Au cœur des vortex anticycloniques
→ Zone côtière : circulation courant 

o Abondance en période automnale/hivernale

o Vorticité peu intense pour le modèle CROCO
→ 1 – 2 cm en moyenne

o Casella (2011) :
→ Tourbillons intenses par COSMO-17
→ Conformité avec COADS

A

B
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Paramètre d’Okubo-Weiss : cisaillement du courant et vorticité relative

Fig. 5. Paramètre d’Okubo-Weiss : détection des
vortex des tourbillons anticycloniques en mer de
Ligure (s−2). A. Simulation à l’aide du modèle CROCO
avec COADS (à gauche : juin ; à droite : novembre).
B. Simulation à l’aide du modèle LS-ROMS avec
COSMO-17 (Casella, 2011).

o Paramètre d’Okubo-Weiss avec détection cœur 
des vortex :

o Zone bleue → Vorticité intense

o Pas de distinction : sens cyclonique et 
anticyclonique 

o Casella (2011) :
→ Tourbillons intenses par COSMO-17
→ Corrélation avec la SSH

→ ξ² vorticité relative 
→ s² déformation totale

A

B
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Étude de la vitesse verticale au niveau des tourbillons anticycloniques

o Detection de mouvement ascendant (positive) et descendante (négative)

o Vitesse verticale
→ Positive : upwelling côtier
→ Négative : downwelling au cœur du vortex

o Casella (2011) :
→ Forte vitesse verticale avec COSMO-17 vs faible avec COADS
→ Apport en nutriments en eau superficielle : zone euphotique

Fig. 6. Coupe méridienne de la
vitesse verticale au niveau des
tourbillons anticycloniques côtier en
mer de Ligure (10−4 m.s−1). A.
Simulation à l’aide du modèle
CROCO avec COADS. B. Simulation à
l’aide du modèle LS-ROMS avec
COSMO-17 : à gauche parent grid ;
à droite child grid (Casella, 2011).A B
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Approche future du modèle CROCO
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MODELE CROCO AMÉLIORATION

o Résolution spatiale :

→ Horizontale : 1/20°

→ Verticale : 32 niveaux

o Résolution temporelle : 

→ 3 jours moyennés

o Conditions initiales : WOA 2009

o Conditions forçage : COADS 2005
____________________________________

o Visualisation des tourbillons 
anticycloniques côtiers → upwellings 
côtiers

o Tourbillons et vitesses verticales → peu 
intenses

o Haute résolution spatiale et temporelle :

→modèle de simulation 

→ forçage de surface

o Variabilité importante des contraintes du 
vent 

o Visualisation plus précise des tourbillons 
+ upwellings associés

→ Changement des conditions de 
forçage COADS
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Fig. 6. Simulation des tourbillons
anticycloniques en mer de Ligure. A.
Hauteur d’eau marin SSH. B.
Paramètre d’Okubo-Weiss. C. Coupe
méridienne du tourbillon côtier de la
vitesse verticale (10−4 m.s−1).

ANNEXES
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Fig. 7. D’après Casella (2011). A.
Paramètre d’Okubo-Weiss sur
une grille parent grid (gauche)
et une child grid (droite). B.
Coupe méridienne du tourbillon
côtier de la vitesse verticale
(10−4 m.s−1) associé au tourbillon
anticyclonique précédent


	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13 Baklouki, M., Initialisation aux méthodes numériques de résolution des équations aux dérivées partielles, 2022, Aix-Marseille Université.   Casella, E., Molcard, A. et Provenzale, A. (2011). Mesoscale vortices in the ligurian sea and their 
	Diapositive 14
	Diapositive 15

