

Costa A., Petrenko A.A., Jullion L., Dekeyser I., Malengros D., Doglioli A.M.

Institut Pythéas Observatoire des Sciences de l'Univers Aix*Marseille Université

TURBULENCE

Ubiquitous phenomenon.

- Energy balance

TURBULENCE

Ubiquitous phenomenon.

- Energy balance
- Forcing of bio-chemical processes

What ε and K_z are

ε from temperature measurements

HOMOGENEOUS TURBULENCE

ε from temperature measurements

HOMOGENEOUS TURBULENCE

How this can be done

By measuring the temperature microstructure (<1cm) gradient in the water column.

13 September 2011 long:42°14'23, lat:5"5°15,298 (NW Mediterranean), bottom at 100m

Obtaining K_z

Osborn, (1980)

Hypothesis: - steady state balance of TKE

- buoyancy flux is a fixed ratio of the dissipation

$$K_{Turb} = \Gamma \frac{\epsilon}{N^2}$$
, $\Gamma = 0.2$
(Sanchez et al., 2011)

Shih et al., (2005)

Turbulent scalar diffusivity depends on turbulence intensity $I = \frac{\epsilon}{\nu N^2}$

DIFFUSIVE REGIME	INTERMEDIATE REGIME	ENERGETIC REGIME
I < 7	7 < I < 100	100 < I
$K_{Turb} = D_T$	$K_{Turb} = \Gamma \frac{\epsilon}{N^2}$	$K_{Turb} = 2 v \sqrt{5 I}$

Following Park et al. (2014): $v = 1.7 \times 10^{-6} m^2 / s$

Obtaining K_z

Osborn, (1980)

Shih et al., (2005)

Hypothesis: - steady state balance of TKE

- buoyancy flux is a fixed ratio of the dissipation

$$K_{Turb} = \Gamma \frac{\epsilon}{N^2}$$
, $\Gamma = 0.2$
(Sanchez et al., 2011)

Turbulent scalar diffusivity depends on turbulence intensity $I = \frac{\epsilon}{\nu N^2}$

DIFFUSIVE REGIME	INTERMEDIATE REGIME	ENERGETIC REGIME
I < 7	7 < I < 100	100 < I
$K_{Turb} = D_T$	$K_{Turb} = \Gamma \frac{\epsilon}{N^2}$	$K_{Turb} = 2 v \sqrt{5 I}$

Following Park et al. (2014): $v = 1.7 \times 10^{-6} m^2 / s$

Numerical Model

1) Marsaleix et al., Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Modelling, (2008)

Numerical Model

1) Marsaleix et al., Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Modelling, (2008)

DATA SET

Depth from 50m to 100m.

13 September 2011 long:42°14'23, lat:5°15,298 (NW Mediterranean), bottom at 100m

13 September 2011 long:42°14'23, lat:5°15,298 (NW Mediterranean), bottom at 100m

Year: 2011 long:42°14'23, lat:5°15,298 (NW Mediterranean), bottom at 100m

Year: 2011 long:42°14'23, lat:5°15,298 (NW Mediterranean), bottom at 100m

Year: 2011 long:42°14'23, lat:5°15,298 (NW Mediterranean), bottom at 100m

but difference in magnitude!

Perspectives

ACHIEVED:

- SCAMP data treatment
- Methodology to confront numerical models to in situ data
- Mixing-length closure scheme seems inaccurate

WE WILL DO:

- Comparison with numerical values of $\boldsymbol{\epsilon}$
- -Study of different closure schemes
- Effect of wind on mixing

THANK YOU

FOR

YOUR

KIND ATTENTION

EXTRA SLIDES

$$\frac{\partial E_{CT}}{\partial t} + \bar{u}_j \frac{\partial E_{CT}}{\partial x_j} = -\frac{\partial}{\partial x_j} \left(\overline{u'_j E'_{CT}} + \frac{\overline{p' u'_j}}{\rho} \right) - \overline{u'_i u'_j} \frac{\partial \bar{u}_i}{\partial x_j} - \frac{\overline{\rho' u'_i}}{\rho_0} g \,\delta_{i3} - \nu \,\overline{\frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_j}} \right)$$

$$\epsilon = -\nu \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i}$$

SYMPHONIE and MARS3D:

$$\epsilon = \frac{C_{\epsilon} E_{CT}^{3/2}}{l_G} \qquad \nu_T = C_K \sqrt{E_{CT}} l_G$$

$$\frac{\partial T}{\partial t} + \bar{u}_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\kappa_T \frac{\partial T}{\partial x_j} - \overline{T' u'_j} \right) + \phi_T$$

$$-\overline{T' \, u'_j} = K_{Turb} \frac{\partial T}{\partial x_j}$$

$$PrT = \frac{\nu T}{K_{Turb}}$$

FIG. 2. Batchelor spectrum for various k_B , including estimated SCAMP instrumental noise level $[3 \times 10^{-7} (^{\circ}\text{C m}^{-1})^2 (\text{cpm})^{-1}]$, with χ_{θ} constrained according to Eq. (9). The k_B value corresponding to each curve is indicated with a plus, and the approximate corresponding dissipation level, ε , is shown by the second logarithmic scale below the k axis. The effects of changing χ_{θ} and ε on the spectrum are indicated by arrows. An observed spectrum is shown.

$$\overline{u} = \varphi(t) = \varphi(\frac{x}{u})$$

4.0) Stationarity/Homogeneity table and physics

Why are they checking OR the stationarity OR the the homogeneity??

My idea is the following:

The two green points belongs to a structure (vortex) that is stationary in time and homogeneous in space, by definition of coherent structure. At least at our timescales.

So stationarity ensures homogeneity and vice versa.

0) Stationarity, Homogeneity, Isotropy

Stationarity

All the mean quantities are invariant under a translation in time. A stationary variable is **ergodic** if the time average converges to the mean as the time interval extends to infinity.

Homogeneity

All the mean quantities are invariant under any spatial translation. Then an ergodic hypothesis allows an ensamble average to be calculated as a spatial average

<u>Isotropy</u>

All the mean quantities are invariant under any arbitrary rotation of coordinates.

<u>Axisymmetry</u>

Invariant under a rotation about one particular axis only (stratified turbulence).

4.0) Stationarity/Homogeneity table and physics

Methods for assessing **stationarity** in the literature:

- Imberger and Boashash (1986): Wigner-Ville distribution (see after for explanation)
- Imberger and Ivey (1991): AR model
- Chen et al (2002): wavelet analysis

Methods for homogeneity:

- Sanchez, Roget et al. (2012): variance in subsegments

Methods for **confident** people:

- Cuypers et al. (2012?), Moniz et al. (2014): constant segments — Anyway Cuypers was severe with fits

So...

As Imberger himself changed his mind from 1986 to 1991, I'd discard the Wigner-Ville distribution method.

The AR model is interesting but is it adeguate for nonlinear phenomenon?

Wavelet method seems better for this but it is not implemented

An even better improvement could be the Hilbert-Huang transform (ask to monsieur Nerini)

Roget's method could be good for the homogeneity.

3) var vs std AND 1/n*sum vs < >

R = std(PSD_bat./Batchelor_spect) * dof^0.5 (Yannis, 1000 points)

R1 = var(PSD_bat./Batchelor_spect) / dof (Io)

R2 = var(PSD_bat./Batchelor_spect) (Me again)

Anyway I don't think that the sqrt(d) by Yannis is due to the use of std as the ratio is independent from d

$$MAD2 = \frac{1}{n} \sum_{k_i = k_1}^{k_n} \left| \frac{S_{obs}(k_i)}{S_{Th}(k_i)} - \left\langle \frac{S_{obs}}{S_{Th}} \right\rangle \right| > 1.2$$

I'm inclined to see this as a variance, so I think that the two notations are the same.