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1. Introduction

Objectifs:

- Etudier la sensibilité de deux types de
fermeture de la turbulence

- Valider un schéma de mélange
turbulent vertical en Adriatique
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Zone géographique : LA MER ADRIATIQUE

Sous- bassin de la mer
Meéditerranée

Forgcages principaux
-bathymétrie
-vent: principalement |la Bora
-le P6
—> Dynamique complexe

Masses d’eau en présence:
-NAdDW
-MAdDW
-SAdDW
-MLIW

Artegiani et al. (1997)
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2. Matériels & Méthodes

Modele ROMS:

- Equations aux primitives

- Fermeture de la turbulence
- Discrétisation

- Données

- Implémentation
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Systeme d’équation résolu par le modele:
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Schéma PP : Pacanowski & Philander (1981)

-Approche par une diffusion turbulente locale du premier ordre

wx'=-Kg x

Li et al.(2001)

-Les processus du mélange vertical dépendent de la viscosité, de la
diffusivité turbulente et de nombre de Richardson :
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- Schéma édité pour une implémentation dans le Pacifique avec
les paramétres de calibration v.=lem'-s
K,=0lem s~
Vo=00cm s
n=2

oa=5
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Schéma KPP : Large et al. (1994)

Considération non locale de la turbulence wx'=-K(g.=Y)
MELANGE DANS LES COUCHES LIMITES MELANGE DANS LOCEAN INTERNE:
OCEANIQUES:
-fonction adimensionnelle de forme G 3 processus de mélanges sont distingués :
- instabilités dues aux cisaillement des
K . =hw(0)G(0) courants (déterminées en fonction de Ri)
Z

- instabilités dues aux ondes internes (w)
- instabilités diffusives (dd)

-Hauteur h des couches limites calculée a
partir du nombre de Richardson, des
conditions au fond ou a la surface et des k.= kfi+ kj + k;’d
profils de vitesses verticales.

Valeur critique de Ri:

Ri. =025
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Discrétisation des équations:
- Espace:
Grille Arakawa C sur I’horizontal
Grille sigma généralisé sur la vertical
- Temps

Time splitting : séparation des modes de dynamique rapide
(barotrope) et de dynamique lente (barocline) pour limiter les colts de
calculs.

Schéma explicite  m—) Conditions de stabilité numeérique
Le pas de temps de chaque mode répond au critere CFL

Données :
-COADS: Données de forcage en surface.
-WOA: Données de température et de salinité.
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Implémentation en Adriatique:

bathymétrie

46°N 1200

45°N 1000

800

600

400

41°N 200

Parametres de la zone:
longitude [12°E 20°E]
latitude [40°N 46°N]

Parametre de la gille:
L=79
M=84
N=32
Frontiere Sud ouverte
Résolution dl=1/10°

Calcul des pas de temps des modes rapide et lent pour
respecter CFL: At(lent)=1440 s
At(rapide)=24s
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3. Résultats et discussion

-Diagnostiques et comportement des deux
simulations

- Dynamique de surface et variabilité spatiale

- Coupes verticales des variables
thermodynamiques et identification des masses
d’eau

Les données in situ étudiées et synthétisées dans
Artegiani et al., Part I1&Il (1997)
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Schéma KPP Schéma PP
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élévation de la surface libre en [m] en automne KPP
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Variabilité spatialede T et S
température :
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- Tres faible variabilité spatiale de T
pour le schéma PP (1,5°)

- Gamme de températures respectée
par le schéma KPP (9°C<T<15°C)
- Température mesurée la plus faible
en Adriatique Nord-Ouest — PO
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Coupes verticales des variables

thermodynamiques et identification des

masses d’eau
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Section d’Ancona: formation de la NAADW (o > 29.2 )en hiver

Depth [m]

Depth [m]

Position along the section [km]

-Mélange vertical plus profond pour le schéma KPP

-Présence de la NadDW pour le schéma KPP
-Isopycne 28.4 kg.m”-3 quasiment a I’horizontal a 50m

de profondeur pour le schéma PP

555555



Intro Matériels & Méthodes | Résultats | Conclusion

Section de Pescara: intrusion de la MLIW en automne
(Artegiani et al., 1997)

Pescara en automne KPP

Publication KPP
PESCARA SECTION
a MY f(@’// e | e
GBI/ 5 N ' e
| xwiz= —~
. ‘-“;s'f-_{// L \>
~ \ S
\_E, -120+ -
T ———
E ~ 1201 -::—/: N
w L 8.4y N
= " ..'.I -5 '.»\-\u -"’l—-}.
\ \ L~
240 o ".. “\._/
. SN\
RS 5 0 8o e w0 Mo PP .

Position along the section (km)




Intro Matériels & Méthodes | Résultats

Conclusion

température le long de la section Bari en hiver KPP
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Validation du shéma K-profil
parametrization pour I'Adriatique
Schéma Pacanowski & Philander :

parametres de calibration édités pour le
pacifique équatorial.
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Conclusion

- Dans le cadre de notre étude, le modele KPP a pu étre
validé:

— > Mise en évidence des masses d’eau et des
processus de mélange.
- Les deux schémas nous donne une hydrodynamique de
surface comparable.

-Etude de la sensibilité de la fermeture de la

turbulence : beaucoup différences bien que les deux
schémas utilisés soient basés sur la méme approche.

|—> Grand probleme de la modélisation
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Perspectives:

- réaliser une série de simulations numériques afin
d’adapter ces parametres en mer Adriatique.

- Effectuer une simulation a haute résolution avec les
données de vent QuikSCAT pour regarder le sens du gyre
dans le bassin Nord-Adriatique.
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