Modélisation du Courant Est Australien
avec ROMS et son utilitaire ROMSTOOLS.
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Introduction

Zone d’étude : Courant est australien (entre la
Nouvelle-Zélande, la Calédonie et I’Australie).

Formation : Prend naissance a la bifurcation du SEC
(Sud equatorial current).

Utilisation du modele ROMS pour le simuler.



2. Matériels et méthodes

2.1 Théorie de dynamique marine

e Equation de Navier-Stokes sur I’horizontal :
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e Equation de conservation de la température, de la

salinité et équation de continuité :
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e Equation internationale d’état de I'’eau de mer :

p=p(T, S, z)



2.2 Le modele ROMS
e Approximations

Approximation de Boussinesq : densité constante
Approximation hydrostatique: V,P = p,gVn
e Conditions aux limites

Conditions limites a la frontiere z=n (surface libre)
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Conditions limites a la frontiere z=-h (fond)

du ou|_
Az E’a _(Tbx!Tby)
ot 25|_,
0z 0z
w=-uVH

e Discrétisation

Discrétisation spatiale : - Grille d’Arakawa sur ’horizontale

- Grille sigma sur la verticale

Discrétisation temporelle : Séparation du pas de temps
(time splitting)

Condition de stabilité : critére CFL (courant Friedrich-Levy)

Tableau 1: Valeurs calculées sur la base du critere CFL

NTIMES 1080
DT 2400
NDTFAST 60




e Implémentation du modele

Tableau 2: Parametres insérés dans romstools_param.m

Longitude max 10°S

Longitude min 45°S

Latitude max 170°E

Latitude min 145°E

Frontieres ouvertes Est Ouest Nord Sud
Résolution 1/3 de degré

Tableau 3: Parametres de la grille

L 75
M 122
N 32

Figure 1: Carte de la bathymétrie de notre zone d’étude



3. Résultats et discussions

3.1 Stabilité du modele
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Figure 2: Diagnostique de la simulation (A : Le volume totale en km3 ; B : L’énergie
cinétique moyennée sur la surface ; C : L'énergie cinétique moyennée sur le
volume ; D : La vitesse verticale moyennée sur le volume ; E : Salinité moyennée
sur le volume ; F : : La température moyennée sur le volume)



3.2 Variabilité saisonnieéeres

e Température

Figure 3: Variation de la température a 5m de profondeur au cours de
I'année (A: Janvier; B: Avril; C: Juillet; D: Octobre)



Figure 4 : Variation de la température a 350m de profondeur au cours de I'année (A: Janvier;
B: Avril; C: Juillet; D: Octobre)

Figure 5 : Variation de la température a 350m de profondeur au cours de I'année
(A: Janvier; B: Avril; C: Juillet; D: Octobre)
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Figure 6 : Cartes de la salinité a la profondeur de 1000m (A: Janvier; B:
Avril; C: Juillet; D: Octobre)
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Figure 7 : Section verticale représentant la salinité a travers le tourbillon

Abaissement des iso-lignes de salinité dans la colonne d’eau
du a la présence du tourbillon.
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3.3 Trajectoires et transport de 'EAC

La trajectoire de I'EAC est dictée par la bathymétrie.
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Figure 8 : Section verticale (A :a 25°S; B : a 36°S)
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Figure 9 : Vitesse horizontale a la profondeur de 5m au printemps



3.4 Comparaison avec une étude précédente
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Figure 11 : Carte représentant la bifurcation de 'EAC Figure 12 : Vitesse horizontale a la profondeur de 5Sm
au printemps



Conclusion

e Faible variabilité spatiale de la température et
de la salinité au cours des saisons

e Formation de tourbillons dans la mer Tasman
le long de la cOte est australienne

e Tourbillons entrainent un mélange des eaux
(température et salinité) ainsi qu’un transport

vers |'Est.

e Trajectoire de I'EAC du principalement a la
bathymétrie

e Comparaison avec la publication cohérente

e Probléeme : manque de données in-situ pour
agrandir la zone d’étude et |a résolution



