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Contexte :
Les eaux des bassins océaniques sont caractérisées par des

conditions biogéochimiques et un régime de circulation turbulent

développé
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Figure 1: Les interactions océan-atmosphère 
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Générer une simulation climatologique réaliste de la dynamique du bassin 

Adriatique à l’échelle pluriannuelle grâce au code communautaire « 
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The Adriatique Sea General Circulation (A.Artegiani et al 1997)



II. Matériel et méthode
1. Quelques informations sur CROCO

Introduction Matériel et méthodes Résultats et discussion Conclusion

2



II. Matériel et méthode
1. Quelques informations sur CROCO

Modèle aux équations primitives 3D :
 Nouvelle version de ROMS_AGRIF
 6 variables : u et v, ρ, η, p

Introduction Matériel et méthodes Résultats et discussion Conclusion

2



II. Matériel et méthode
1. Quelques informations sur CROCO

Modèle aux équations primitives 3D :
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Figure 2: Schéma des modèles couplés dans 
CROCO  F. Auclair et al. (2016)
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II. Matériel et méthode
1. Quelques informations sur CROCO

Modèle aux équations primitives 3D :
 Nouvelle version de ROMS_AGRIF
 6 variables : u et v, ρ, η, p
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Equation d’état de l’eau de mer (TEOS10) : 𝜌 ≡ 𝜌0(𝑇, 𝑆)
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Equations d’évolution hydrodynamique :

Figure 2: Schéma des modèles couplés dans 
CROCO  F. Auclair et al. (2016)
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1. Quelques informations sur CROCO

Discrétisation spatiale :

Coordonnées 𝜎 sur la verticale

Méthode des différences finies

Grille Arakawa C sur l’horizontal

Discrétisation temporelle :

« Condition CFL » :
• Stabilité et convergence

« Time splitting » :
• Mode externe pour équations intégrées 

sur la vertical (u, v, n)
• Mode interne pour équations 3D 

(u, v, T, S, p)

Figure 3: Grille d’Arakawa C. 
X. Couvelard (2014)

Figure 4: Grille de coordonnées 
σ. F. Khorrami et al. (2017)
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• Superficie : 139.000 km².

• Orientation: Nord-ouest Sud-est

• Profondeur maximum : 1233 m

• Profondeur moyenne : 252m

Régime météorologique :
• Etés chauds (30°C), humides et dégagés 

• Hivers froids (7°C) et partiellement nuageux

• Régime de vent de nord-est (Bora) ~ 5m/s Figure 5: Circulation de surface du bassin adriatique 
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II. Matériel et méthode
3. Implémentation du modèle

fichier ad_findgeocoord.m : Choix des coordonnées (Matlab)

crocotools_param : Définition des coordonnées géographiques et configuration des paramètres

Lonmin [degrés] Lonmax [degrés] Latmin [degrés] Latmax [degrés] Dl [degrés] N

12 20 41 46 1/10 32

Résolution spatiale :
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II. Matériel et méthode
3. Implémentation du modèle

make_grid : Création de la grille, le mask et la bathymétrie (Matlab)

Edit_masque : Ajustement des surfaces terre/mer (Matlab)

param.hs : Définition des parametres de la grille

cppdefsh.h : Définition d’une nouvelle clé de configuration et activation des frontières

LLm MMm Min dx[ km] Min dy [km] Max dx [km] Max dy [km] Hmax [m] Hmin [m]

83 72 7,74 7,75 8,45 8,44 1182,74 10

Résolution spatiale :

Figure 6: Bathymétrie du modèle
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Conditions limites et conditions initiales :
make_clim.m : Forçages aux conditions limites (Matlab)Comprehensive Ocean Atmosphere data Set (COADS) 

make_forcing.m : Conditions initiales (Matlab) World Ocean Atlas (WOA) 1784 et 2004.
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make_clim.m : Forçages aux conditions limites (Matlab)Comprehensive Ocean Atmosphere data Set (COADS) 

make_forcing.m : Conditions initiales (Matlab) World Ocean Atlas (WOA) 1784 et 2004.

ad_cfl.m : Détermination le pas de temps externe (DTEcfl) et interne (dt) a partir du critère CFL

croco.in : Définition paramètres temporels

Résolution temporelle:

NTIMES [ iteration] NDTFAST [s] NRST [ iteration] NAVG [ iteration] NWRT [iteration] dt [s]

1800 60 1800 180 180 1440
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make_forcing.m : Conditions initiales (Matlab) World Ocean Atlas (WOA) 1784 et 2004.

ad_cfl.m : Détermination le pas de temps externe (DTEcfl) et interne (dt) a partir du critère CFL

croco.in : Définition paramètres temporels

Résolution temporelle:

NTIMES [ iteration] NDTFAST [s] NRST [ iteration] NAVG [ iteration] NWRT [iteration] dt [s]

1800 60 1800 180 180 1440

Compilation et visualisation des simulations :

Commande « ./jobcomp » : Compilation du modèle 

Commande « sbatch ./slurm_run_croco.sh » : Lancement du modèle sur le cluster
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2. Variations saisonnières des températures au Sud

Figure 8: Distribution des températures (°C) de surface simulés
par le modèle (gauche) et in situ (droite) pendant l’hiver (a) et
le printemps (b) a Bari.

Introduction Matériel et méthodes Résultats et discussion Conclusion

7



III. Résultats et discussion
2. Variations saisonnières des températures au Sud

En hiver :
- Colonne d’eau peu stratifiée
- Gradient est-ouest en surface ( 14-12°C)
- Températures stables a partir de 50m (13°C)

Figure 8: Distribution des températures (°C) de surface simulés
par le modèle (gauche) et in situ (droite) pendant l’hiver (a) et
le printemps (b) a Bari.

Introduction Matériel et méthodes Résultats et discussion Conclusion

7



III. Résultats et discussion
2. Variations saisonnières des températures au Sud

En hiver :
- Colonne d’eau peu stratifiée
- Gradient est-ouest en surface ( 14-12°C)
- Températures stables a partir de 50m (13°C)

Printemps :
- Colonne d’eau plus chaude et stratifiée aux

extrémités de la section qu’au milieu
- Températures stables partir de 300 m (13,2-12,8 °C)

Figure 8: Distribution des températures (°C) de surface simulés
par le modèle (gauche) et in situ (droite) pendant l’hiver (a) et
le printemps (b) a Bari.

Introduction Matériel et méthodes Résultats et discussion Conclusion

7



III. Résultats et discussion
2. Variations saisonnières des températures au Sud

LIWAdDW

Figure 8: Distribution des températures (°C) de surface simulés
par le modèle (gauche) et in situ (droite) pendant l’hiver (a) et
le printemps (b) a Bari.
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En hiver :
- Colonne d’eau peu stratifiée
- Gradient est-ouest en surface ( 14-12°C)
- Températures stables a partir de 50m (13°C)

Printemps :
- Colonne d’eau plus chaude et stratifiée aux extrémités de la

section qu’au milieu
- Températures stables partir de 300 m (13,2-12,8 °C)

- Sous-estimation des températures de surfaces au printemps
- Mauvaise représentation des températures plus chaudes de

la LIW
« During spring, the MLIW is evident only on the eastern side of
the basin » (A. Artegianiet al. 1997)
- Représentation fidèle de l’AdDW au fond
« SAdDW with T , 13.08C and S , 38.6 psu » (A. Artegianiet al.
1997)
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- Homogénéisation vertical 

 Bora
- Gradient est-ouest en surface (38,7 -37,9)
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3. Variations saisonnières de la salinité

En hiver :
- Homogénéisation vertical 

 Bora
- Gradient est-ouest en surface (38,7 -37,9)

 Apports fluviaux et précipitation à l’Ouest
- Salinité maximum au sud (38,5-38,65)

 Plongée de l’AdDW

Printemps :
- Diminution des salinités de surfaces et atténuation 

du gradient est-ouest
 Diminution des précipitations au Nord 

- Augmentation rapide près des cotes
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3. Variations saisonnières de la salinité
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- Eaux de faibles salinité confiné le long du plateau
occidental

- Influence des apports fluviaux et des précipitations
au Nord

« the low salinity waters induced by river runoff extend
throughout the surface layers of the sections »
(A. Artegianiet al. 1997)

- AdDW très salé qui plonge a Vieste

- Sur estimation de la salinité de 0.3 entre 0 et 50 m
surtout au Nord

Figure 10: Distribution de la salinité (psu) in situ en hiver (gauche) et au printemps
(droite) au niveau des sections de Ancona, Pescara et Vieste.. 8

« the low salinity waters are still confined along the 
lateralsides of the basin » (A. Artegianiet al. 1997)
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⁻ Circulation cyclonique le long des cotes
- Entrer des eaux de surfaces a Otranto
- Début de formation du Sad gyre
- Tourbillons cycloniques au centre

Figure 11: Élévation de la surface libre et vecteurs vitesses de surface simulé par le modèle (droite) et représenté dans la littérature
(gauche) au printemps



IV. Conclusion
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 Bonne représentation de la répartition des variables 
thermochimiques et masses d’eaux caractéristiques

X Erreurs dans les valeurs de température et de salinité au le 
printemps
X Représentation très approximative de la bathymétrie 

Amélioration avec topo_smooth et grad(h)/h ?
Comparaison des données des vecteurs vitesses aux 4 saisons ?
Inclure un modèle biologique pour comparer les données d’oxygène ?
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