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Introduc?on Mat. & méth. Conclusion

Le Canal du 
Mozambique 
(CM).

• Alimenté par le 

Courant Equatorial 

Sud (SEC)

• Madagascar : 2 

branches qui 

entrainent grande

turbulence dans le 

CM

Fig.1 : Principaux courants circulant dans le sud de l’Océan Indien (Van der Werf et al., 2010)
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• Système des Aiguilles :

role important dans la 

circulation thermo-

haline

• Tourbillons de méso-

echelle du CM à l’origine

d’une importante vie 

marine

↻
↺
↺↻

Résultats & Discussion
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Objectif de 
l’étude.

• Caractériser les tourbillons de méso-

echelle dans le CM grâce au modèle

ROMS-CROCO: 

- Localisation

- Sens de rotation

- Intensité.

Comparaison
avec la 
littérature.

• Publication de : Halo, I. and, B. B., Penven, P., 

Ansorge, I., and Ullgren, J. (2013). Eddy 

properties in the Mozambique Channel : A 

comparison between observations and two 

numerical ocean circulation models. Deep 

Sea Res. II Topical Studies in Oceanography.

-> CROCO (SWIM), HYCOM + données satellite.

Résultats & Discussion



Simulations pluriannuelles

climatologiques

ROMS-CROCO.
/ 1

Coordonnées de la zone.
/ 4

Equations primitives.
/ 2

Horizontale (grille Arakawa-C)  et 

verticale (grille Sigma)

Discré?sa?on spa?ale.
/ 5

Approximation de Boussinesq, hypothèse

hydrostatique, équation de continuité, 

fermeture de Reynolds

Hypothèses.
/ 3

De type time-splitting (critère CFL) avec les 

pas de temps :

Discrétisation temporelle.
/ 6
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Configuration du modèle.
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Equations du mouvement (Navier-Stokes), 

équations de conservation de la chaleur / 

salinité, équation d’Etat de l’eau de mer.

Résultats & Discussion
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Fig.2 : Bathymétrie dans le Canal du Mozambique 
générée avec CROCO4

Conditions initiales et aux bords fixées à partir du 

World Ocean Atlas 2009 , conditions de surface à partir

de l’International Comprehensive Ocean-Atmosphere Data 

Set. Frontières fermée (ouest) et ouvertes (nord, sud

et est).

Condi?ons et fron?ères.
/ 7

Lancée le 28 mars 2023 sur le cluster du MIO, avec 

des sorties moyennées tous les 3 jours.

Simulation pluriannuelle (10 ans).
/ 8

Résultats & Discussion



Fig.3 : Diagnostique du modèle CROCO sur les 10 années de simulation.
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La stabilité
du modèle. 

• Temps de spin-up :      

2 ans

• Oscillations 

saisonnières

→ modèle stable

• ↘ valeurs de salinité

(34.808 à 34.806)
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Fig.4a) : Vitesse de courant en surface (en m/s) le 14 février (a), le 14 
mai (b), le 14 août (c) et le 14 novembre (d) de l’année Y5

Introduction Mat. & méth. Résultats & Discussion Conclusion

6

Identification des 
tourbillons avec les 
vitesses de courant.
• Au quatre saisons de l’année Y5

• Arrivée du SEC à l’est de Madagascar 

(<0.2m/s)

• Structures tourbillonnaires identifiées

à au SE de Madagascar (>1m/s)

à au nord du CM (0.5m/s)

à parties centrales et sud du CM (0.5m/s)



Fig.4b) : Identification des sens cycloniques (bleu clair) et anticycloniques (rose) des tourbillons avec les champs de courant en surface (en m/s) le 14 février (a) 
et le 14 août (c) de l’année Y5
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CYCLONIQUE
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Fig.5 : SSH (en m) le 14 février (a), le 14 mai (b), le 14 août (c) et le 14 
novembre (d) de l’année Y5
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Résultats & Discussion

L’élévation de la 
surface libre (SSH) 
avec CROCO.
• Surélévations au SE de Madagascar 

(+0.5m) et au nord du CM (+0.2m) 

• Sous-élévations dans partie centrale et 

sud du CM (-0.3m) 

• Superposition de la localisation des zones 

tourbillonnaires



Introduc?on Mat. & méth. Conclusion

11

A
A
A

A

C

C

C

C
A

Fig.7 : Comparaison des localisations des structures tourbillonnaires cycloniques (notées C) et anticycloniques
(notées A). A gauche les SSH détectées par CROCO à Y5M9D14, à droite la détection satellite des structures 

tourbillonnaires par AVISO le 15 septembre 2003, (d’après Halo et al., 2013)
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L’éléva?on de la surface libre (SSH) : comparaison avec 
AVISO.

A

Résultats & Discussion
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9 Fig.6 : SSH moyennées sur la période Y4-Y10 (en cm).
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Résultats & Discussion

L’élévation de la 
surface libre 
moyennée.
• Moyenne permet d’évaluer une tendance

globale des variations de SSH, de Y4 à Y10 

(script Matlab)

• Confirmation de la localisation des 

structures tourbillonnaires

• Importante variabilité de méso-échelle
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Comparaison des 
moy. quadratiques
des SHH.
• Quelques similarités entre CROCO/SWIM (SE 

Madagascar et nord CM),

• Grandes disparités le long des côtes africaines

entre CROCO et les modèles de Halo et al. 2013.

• CROCO minimise la variabilité dans le CM 

central et sud
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Fig.8 : Moyennes quadratiques des SSH (en cm) sur la période Y4-Y10 pour 
(CROCO), sur 7 années avec SWIM (b), de 2001 à 2010 avec HYCOM (c)  et 

de  14 octobre 1992 au 31 mars 2010 avec AVISO (d)
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Hypothèses sur 
les écarts de 
résultats.

• HYCOM : grille verticale hybride particulièrement

adaptée aux environnements avec une

stratification de la colonne d’eau et des fronts 

océaniques de surface (comme dans le CM).

CROCO & SWIM. SWIM & HYCOM / AVISO. 

• 10 ans d’intervalle entre deux simulations 

(actualisation des données WOA et COADS ?) 

• Influence des données de forçage de vent

QuickSCAT par SWIM (mais pas par CROCO) ?

• Prise en compte des apports d’eau douce ? 

Résultats & Discussion
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Fig.8 : Animafon AVISO  des courants géostrophiques du système des aiguilles 
sur 2012-2013 

hgps://www.aviso.alfmetry.fr/gallery/fr/entry_136_animafons_des_courants_geostrophiques_absolus_madt_cour
ant_des_aiguilles_2012_2013.html

Nouvelle 
simula?on ?
• Augmenter la resolution spatiale ;

• Considérer les données QUIKSCAT pour les 

forçages de vent ;

• Prendre en compte les apports d’eau douce.

• Approfondir l’étude des tourbillons : fréquence, 

durée de vie, diamètre, profondeur, etc.

• Comparer avec données AVISO actuelles ;

Résultats & Discussion
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Annexe I.

La discrétisation
spatiale sigma.

• Utilisée par CROCO. 

• Dans la simulation : N = 45.

Fig.11 : Représentafon de la grille sigma (N = 45) dans la simulafon CROCO  du Canal du 
Mozambique



Annexe II.

La discrétisation
spatiale hybride.

• Adaptée pour grande region avec 

bathymétrie côtière (coordonnées

sigma), CM sans stratification 

(coordonnées z) et ocean ouvert avec 

stratification (coordonnées

isopycnale).

• Utilisée par le SHOM.
. Fig.10 : Représentafon de la grille hybride uflisée par le modèle HYCOM. 

Source : IFREMER.



• Modèle climatologique

• Résolution : dl = 1/5°, N = 45 (sigma)

• 10 ans de simulation

• Modèle réaliste

• Résolution : dl = 1/10°, N = 30 (hybride)

• Données de 2001 à 2010 

• Données satellitaires disponibles

depuis le 14 octobre 1992 (Topex-

Poséïdon).  

(SWIM)

Annexe III.

Modèles Halo et al., 
2013.

• Halo, I. and, B. B., Penven, P., Ansorge, 

I., and Ullgren, J. (2013). Eddy 

properties in the Mozambique 

Channel : A comparison between 

observations and two numerical 

ocean circulation models. Deep Sea 

Res. II Topical Studies in 

Oceanography..



Annexe IV.

Méthode de 
détection des 
tourbillons (AVISO).
• Méthode géométrique : structure 

circulaire des SSH

• Paramètre d’Okubo-Weiss : s’intéresse

aux propriétés de deformation locale du 

flux. Si W < à un certain seuil négatif :  

flux dominé par vorticité
Fig.12 : Détail du calcul du parametre

d’Okudo-Weiss (d’après Halo et al., 
2013)



Annexe V.

La température en
surface.

• Disparités des SST entre le nord et le 

sud du CM (+/-5°C)

• Strutures circulaires identifiables. 

Fig.13 : Températures de surface (en °C) le 14 février (a), le 14 mai (b), le 
14 août (c) et le 14 novembre (d) de l’année Y5.



Annexe VI.

La température en
profondeur.

Fig.14 : Tempértaures en profondeur, l Vitesse de courant en surface (en
m/s) le 14 février (a), le 14 mai (b), le 14 août (c) et le 14 novembre (d) de 

l’année Y5

• ATTENTION : différentes échelles de 

température pour identifier 

structures

• Structures circulaires encore 

identifiables au delà de 1000m de 

profondeur. 

• Importance dans la caractérisation

des fronts océaniques. 


