Physical characteristics and dynamics of the coastal LATEX09 eddy Gulf of Lion (NW Mediterranean Sea)

Marion Kersalé¹, Anne Petrenko¹, Andrea Doglioli¹, Francesco Nencioli¹, Jérôme Bouffard¹ and Ivan Dekeyser¹

> Turbintermed Workshop April 17th, 2012 Toulon

(1) Aix-Marseille Univ., Mediterranean Institute of Oceanography, CNRS/INSU UMR 7294, IRD UMR 235, Marseille, France

Motivations - Open questions

(Sub)mesoscale processes can have an important influence on biogeochemistry (e.g. primary production budgets, nutrient availability)

Recent field studies have successfully addressed this issue **in the open ocean** (e.g. Benitez-Nelson et al. 2007, McGillicuddy et al. 2007, Dickey et al 2008, Nencioli et al., 2008)

What about in the coastal ocean ?

LAgrangian Transport EXperiment

Objective

to understand the influence of mesoscale coupled physics – biogeochemistry on cross-shelf (coast-offshore) exchanges

Methodology

Multi-disciplinary project *In-situ* measurements & Numerical modeling

3 Oceanographic Cruises

LATEX10

Eddy mapping

Numerical Time Series

2001 → 2008 [Hu et al., 2011]

2009

Study Zone: Gulf of Lion NW Mediterranean Sea

Western Anticylonic Eddy

30° Cape d'Agde $43^{\circ}N$ 30° Cape Creusi $<math display="block">42^{\circ}N$ $30^{\circ}_{2^{\circ}E}$ $3^{\circ}E$ $4^{\circ}E$ $5^{\circ}E$ $6^{\circ}E$

First observation [Millot, 1982]

Mesoscale anticyclonic circulation in the western part of the GoL

Hypothesis of generation 2001-2008 [Hu et al., 2012]

 → Persistent & strong northwest wind
 → Strong stratification

Western Anticylonic Eddy

In-situ Measurements

Satellite observations

CTD

Latex09 Oceanographic cruise August 24 to 28 2009

ADCP Thermosalinometer

Lagrangian floats

in-situ

Horizontal Characteristics

ADCP 15m depth - SST (°C) August 28

Eddy center detection [Nencioli et al., 2008]

Transects 1-2-3-4

Horizontal Characteristics

ADCP 15m depth - SST (°C) August 28

23.5 0.2 r 43⁰N 22.5 21.5 ^{40'} 20['] 20.5 19.5 42⁰N 18.5 20' 20' 40' 40' 4°E 3°E Longitude

Horizontal Characteristics

ADCP 15m depth - SST (°C) August 28

7

Horizontal Characteristics

Transect 3

Eddy center detection + Tangential components decomposition [Nencioli et al., 2008]

ADCP 15m depth - SST (°C)

$$\mathbf{D}_{\mathbf{eddy}} = \mathbf{\bar{D}} \pm \sqrt{\mathbf{D}_{\mathbf{var}}}$$

$$D_{eddy} = 22,7 \pm 1,2 \text{ km}$$

Vertical section

Vertical section of the tangential component of the horizontal current (m.s⁻¹) for Transect 3

Numerical Modeling

Numerical model: **SYMPHONIE**

Laboratoire d'Aérologie de Toulouse France [P. Marsaleix and C. Estournel]

3D; Primitive Equations Horizontal grid : Arakawa C Vertical: 40 sigma-z hybrid Closure Scheme: [Caspar et al., 1990]

Atmos. Forcing: Météo-France Aladin Boundaries: OPA outputs (MFSTEP) Initialization [Estournel et al., 2003]

Zoom on the Gulf of Lions One – Way nesting [Spall et Holland, 1991] Resolution: $3km \rightarrow 1km$

[Hu et al., 2009]

Numerical eddy

Eddy detected by wavelet analysis [Doglioli et al., 2007]Latex09 ADCP data August 27Relative vorticity [s⁻¹] 15m depth August 27+Buoys from August 26-29

Center:
$$3^{\circ}26'E - 42^{\circ}36'N$$

 $D_{eddy} = 28,6 \pm 1,4 \text{ km}$
 $Depth_{max} = 37 \text{ m}$

Center:
$$3^{\circ}34'E - 42^{\circ}33'N$$

 $D_{eddy} = 22,7 \pm 1,2 \text{ km}$
 $Depth_{max} = 35 \text{ m}$

Similar eddy found in the numerical results

Eddy Generation Process July 20 August 8 August 16 August 27

model

Eddies detected by wavelet analysis Sea Surface Height [m]

New Generation Process

Pushing and squeezing of an anticyclonic circulation between a meander of the NC and the coast
 Separation in two structures

Latex09 feeds the Catalan eddy

43⁰N

Latitude N_o878

30'

30

41[°]N

Cape

Creus

3⁰E ^{20'}

model

SST (°C) September 12 +Buoys from August 26- September 12 Relative vorticity [s⁻¹] 20m depth September 3

(a)

4°E^{20'}

40'

× 10⁻⁵

3

2

1

0

_1

-2

-3

The trajectories of the drifters explained by the model results : Generation of a transient structure

Latex09 - Loss of mass

Eddies detected by wavelet analysis

Interactions between the two eddies lead to a transfer of mass and vorticity from the GoL to the Catalan shelf

Conclusion

• Investigation of the dynamics and characteristics of a coastal anticyclonic eddy from a combination of *in-situ* measurement and modelized

• Numerical results : New Generation mechanism

 \bullet Transient structure => Transfer of mass and vorticity from the GoL to the Catalan shelf

Perspectives

• Role of mesoscale structures on cross-shelf exchanges

Thank you for your attention

LATEX web site http://www.com.univ-mrs.fr/ LOPB/LATEX

Eddy's center detection

Center of the eddy

The point grid for which the mean tangential velocity is maximal [Nencioli et al., 2008]

Colorbars - vitesse tangentielle Carré: 30 x 30 pixels

Eddy's center detection Decomposition : Tangential & radial components

36'

42'

Wavelet analysis method

t

Oui

t

Non

Wavelet analysis method

Criterion: $C_{t,z} \in \mathbb{C}_{t-\Delta t,z}$

$$C_{t,z} \in \mathbb{C}_{t+\Delta t,z}$$

(Forward)

(Backward)

C3(01) 26 September – 9 October Eddy Tracking Backward

Start & end dates of the transects

	Start		End	
	Day	Hour	Day	Hour
Transect 1	Aug. 25	01h38	Aug. 25	04h48
Transect 2	Aug. 25	18h27	Aug. 25	23h39
Transect 3	Aug. 26	21h24	Aug. 27	01h16
Transect 4	Aug. 27	21h31	Aug. 28	03h54

Characteristics of the eddy

Transect	Depth (m)	Diameter (km)	Center	Transect's Center	Eddy's Center
	-11	30	3°33'E - 42°33'N	C1	
1	-15	33	3°33'E - 42°33'N	3°34'E - 42°33'N	
	-19	35	3°35'E - 42°33'N		
	-11	30	3°35'E - 42°30'N	C2	
2	-15	29	3°33'E - 42°31'N	3°34'E - 42°31'N	С
	-19	28	3°33'E - 42°32'N		3°34'E - 42°33'N
	-11	24	3°35'E - 42°30'N	C3	
3	-15	24	3°35'E - 42°33'N	3°36'E - 42°32'N	
	-19	26	3°36'E - 42°34'N		
	-11	24	3°33'E - 42°33'N	C4	
4	-15	22	3°34'E - 42°34'N	3°35'E - 42°34'N	
	-19	16	3°37'E - 42°34'N		

CTD Profiles

