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L'upwelling de Pérou-Chili :

Cote nord-ouest de 'Amérique du Sud

Le systeme de courant de Humboldt :

le courant cotier du Pérou (PCC) :

dirigé vers le nord

transport d’Ekman vers |'Ouest
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dive rgence a la cOte Fig.1 : Schéma de la circulation océanique

Modélisation de la circulation générale et des caractéristiques physico-
chimique des masse d’eau dans la zone d’étude




CROCO :

HYPOTHESES : EQUATIONS :
L’hypothese hydrostatique Equations du mouvement de Navier Stokes
L'approximation de boussinesq Equation de continuité
L’hypothese de la fermeture Equations de conservation de la chaleur et
Newtonienne de la turbulence de la salinité
Equations de |'état de I'eau de mer
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Paramétrisation du modele :

GRILLE SPATIALE :

Long min =-90°E ; Long max = -68°E
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Résolution : 1/3

Frontieres : Nord, Sud, Ouest ouverte
Est fermée



Paramétrisation du modele :

GRILLE SPATIALE :

Long min =-90°E ; Long max = -68°E
Lat min = 5°S ; Lat max = 30°S

Résolution : 1/3

Frontieres : Nord, Sud, Ouest ouverte
Est fermée

Horizontale : discrétisation sur grille Taille de la grille : LLm =65
d’Arakawa-C MMm =79

Verticale : utilisation des coordonnées Sigma N =32
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Parameétrisation du modele :

GRILLE TEMPORELLE :

e Critere CFL . Pas de temps externe : DTE =48

o dt = DTE *NDTFAST Pas de temps interne : dt = 2880

Durée de la simulation : 10 ans
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Evolution saionniére de 'upwelling :
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Fig.3 : Elévation de la surface au
cours de la cinquieme années
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Evolution saionniére de 'upwelling :

Printemps Eté Automne
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Fig.3 : Elévation de la surface au
—» Pérou : Intensification de I'upwelling au cours de I'hivers cours de la cinquieme annees

30°S

—» Nord du Chili : Intensification de 'upwelling au cours du
printemps/été 6



Evolution saionniére de 'upwelling :
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Remontée d’eau froide années

Transport vers la Nord via le PCC
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Un upwelling permanant :
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Fig.5 : moyenne de a) I'élévation
de la surface b) la température de
la colonne d’eau au niveau de
I'upwelling de Pisco, pour la
cinquieme années de simulation
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CONCLUSION

Comparaison avec la littérature:

En accords avec la littérature
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Comparaison avec la littérature:
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Probleme:

SALINITE : se stabilise au bout de la 8me années

apport d’eau douce pas pris en compte dans
le modele

Une résolution plus fine aurait pu permettre une
d’exploiter d’autres variables : vorticité
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Equations du mouvement de Navier Stokes sur x et y :

du 1

JP % u
E+VVu--EE+fv+AhV,,u+A-6z2

6v 1 6P v

+VVy=—-— — -
57 Vv oy fu+ ApViv+ A, —

Equation de continuité :

—»V 5_‘u 5_‘0 ow
6:r+5y 6z =0

Equations de conservation de la chaleur et de la salinité :

0T 2T H, 61
(St +V VT = KThth+KTv6z2 +p00p5

0S 628
(5t +VvVvsS-= KshvhS"PstE'

Equations de ’état de I'eau de mer :

p=p(T,S,p)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



Vecteur vitesse (m.s™1)

v Opérateur nabla

f facteur de coriolis (s™1)
P Pression (N.m~2)

£o Masse volumique (kg.m~3)

Ay, A, | Coefficients de viscosité turbulente sur ’horizontale et la verticale (m2.s-1)
Krh, Krv Coefficients de diffusivité turbulente de la chaleur (m2.s1)
Kgh, Kqu Coefficients de diffusivité turbulente du sel (m2.s71)

T Température (K)
H, Flux solaire incident (W.m?)
C, Coefficient de chaleur massique (J.kg-1.K-1)
I(z) Fraction de flux solaire regu a la profondeur z
S Salinité

Table 1 — Variables intervenants dans les équations précédentes
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