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* Débit important

m) Zone de simulation entre les longitudes 135°E et 155°E et les

latitudes 29°S et 54°S sur CROCO
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ConcIusion

Le modele CROCO

* Modélisation océanique régionale en 3D

* Couplage avec des modeles biogéochimiques...

Approximations et hypotheses :

* Approximation de Boussinesq

* Hypothese hydrostatique

* Hypothese d’incompressibilité

* Hypothese de fermeture Newtonienne de la turbulence
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Résolution d’équation par CROCO

* Les équations du mouvement

6_u+uQ+V@+W6_u _ _ia_P_i_fv_au'u’_au’v’_au'w’
ot dx dy 0z P, 0x dx dy oz
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ot “ox oy "oz ooy " Tax a8y oz
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Résolution d’équation par CROCO

* Les équations du mouvement

* Les équations de conservation de
la chaleur et du sel

oT - & o(T'w) o(T'v) o(T'w) . H. aI

-— . = — — - + £

e VYT ox dy 9z p,C,0z
a_swvs _ _0(S'u’) o(S'v') _o(S'w')

ot 0x oy 0z
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Résolution d’équation par CROCO
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* Les équations de conservation de
la chaleur et du sel

 U'équation d’état de I'eau de mer
TEOS 10 = p = p(T, S, p)
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Résolution d’équation par CROCO

* Les équations du mouvement

* Les équations de conservation de
la chaleur et du sel

 U'équation d’état de I'eau de mer

du OJdv Jdw

* U'équation de continuité V-V=—+ —F—=
dx Jdy 0z



[giigeeltgife)q) Matériels & Méthodes ReSUl LTSI DISCUSSION: Coglefiiog)
E—— I R EEEEEE—————mm—————.

Discrétisation

e Sur I’horizontale :
* Grille d’Arakawa C y — y
‘—'”—» . ! ——l
Ay
O
: I
AxX

Grille d’Arakawa C



Introduction’ Matériels & Méthodes RESUItatSTeADISCUSSION:! Co)glel|iisfle)g)

Discrétisation
e Sur I’horizontale : -
* Grille d’Arakawa C y S y
—_—t ® R
* Sur la verticale : : v,
rlav [ —
* Grille sigma &

Grille d’Arakawa C



|gligejoltieiife)g) Matériels & Méthodes RESUILAtST M DISCUSSION! Clojglel|visf[e)g)

Discrétisation

?VJ

e Sur I’horizontale :
* Grille d’Arakawa C y G p RS y
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Ay
* Sur la verticale : L Tv
* Grille sigma AIX

Grille d’Arakawa C
* Stabilité :
* Critere CFL (Courant- Friedrichs-Levy) At <
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Parameétrisation de la simulation
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Parametres de la grille

Résolution 1/5°

Taille de la grille en latitude ~ MMm=170
Taille de la grille en longitude LLm=99
Taille de la grille verticale N=32
Frontiéres ouvertes 4

Nombre de maille 5,38*10°
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Parameétrisation de la simulation

Région de la Tasmanie :
* 135°E-155°E et 29°S-54°S

Parametres de la grille Parametres temporels
Résolution 1/5°

Taille de la grille en latitude ~ MMm=170 Pas de temps interne (s) 1440

Taille de la grille en longitude LLm=99 Pas de temps externe (s) 60

Taille de la grille verticale N=32 Itération par simulation 1800 (30j)
Frontieres ouvertes 4 Fréquence de sauvegarde 180 (3j)

Nombre de maille 5,38*10°
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Conclusion

CROCO :
* Qutil puissant pour une modélisation
* Valeurs, saisonnalité et figures similaires aux articles

Améliorations possible :
* Fine échelle entre la Tasmanie et I'Australie
 Simulation centrée sur le courant Circumpolaire

Conclusion
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Equations du mouvement

6_u+u@+‘)@+w6_u _ _ia_P+fv_6u'u'_6u’v'_6u'w'
ot o0x oy 0z P, 0x dx dy oz
ov _0v _0v ov 1 0P ov'u' ov'v' ov'w'
—4u_—+v—+ = -———"——fu- — —

ot “ox oy "az  e,0y '""Tox oy oz

u, v et w sont les composantes horizontales et verticale non turbulentes ou « moyennes »
de la vitesse du mouvement ;

u', v' et w' sont les composantes turbulentes de la vitesse du mouvement ;
f est le parametre de Coriolis ;

P est la pression ;
po est la densité de référence de I'eau de mer au sens de I'hypothese de Boussinesq.



Fermeture Newtonienne

ou

"u'=—A_ —
“ *0x
ov

'w'=—A —
v'u 3y

ou ou
: Vi=—A 2% Wi=—A "
; u'v "3y u'w Z‘gz
ov %
. 'VI=—A — 'w'=—A — .
’ vy Yoy ° vy ‘0z

A, A, et A, sont des coefficients de viscosité turbulente



Les équations de conservation de la chaleur et de la

température
P o o(T'u') o(T'v') o(T'w') H, oI
S—+v.VT = - - -~ e
Thid ox 3y oz p,C,0z

a_swvs _ _0(S'u")_o(S'v')_o(S'w’)
ot 0x oy 0z
Ou Hc est le flux solaire incident.
Cp est le coefficient de chaleur massique: Cp = 3950 J/kg.K
I(z) est la fraction de ce flux qui parvient au niveau z : I(z)= exp(-Az) avec A

=0.05m1




Coefficients turbulents verticaux

Q. - To alloy) o) dp 0Q 0Q), 0 [,0Q
ot Y= A (a Hoa) |TorAa, T 371452 ¥ 55| o ay( hay)
o) @ ® T @

La production d’énergie turbulente par cisaillement de la vitesse est représenté par
le terme (1), la production par la flottabilité par le terme (2), la redistribution de
I’énergie par diffusion turbulente est représenté par le terme (3) dans la verticale et
par le terme (4) dans I'horizontale (diffusion).

La dissipation de I'’énergie turbulente € est paramétrée en fonction de la longueur de
dissipation Le :

CE'Q3/2
L

€




Principe du modéle CROCO

Vs " ,
L'état initial de le I'océan au temps t Principle:
contient les conditions initiales et aux
limites
Boundary

A wditio/
Les forcages atmosphériques
contiennent la friction du vent et sa -
quantité de mouvement, I'"humidité, le o Ocean at time t + dt

flux de chaleur et d’eau douce



Modéles mensuels pour 1999 de janvier a juin, SLA provenant d'une interpolation

fusionnée de l'altimétre et du marégraphe cotier (m) (en bas), anomalie de la SST
(milieu) et SST (°C) (haut) (Ridgway, K.R., 2007).




