In-situ estimate of submesoscale horizontal eddy diffusion coefficients across a front

F. Nencioli ${ }^{1}$, F. d'Ovidio ${ }^{2}$, A.M. Doglioli ${ }^{1}$, A.A. Petrenko ${ }^{1}$

(1) Aix-Marseille Université, Mediterranean Institute of Oceanography (MIO), 13288, Marseille, Cedex 9, France ; Université du Sud Toulon-Var; CNRS-INSU/IRD UM 110
(2) Laboratoire d'Océanographie et du Climat: Experimentation et Approches Numeriques, IPSL, Paris, France

(from http://oceanservice.noaa.gov/)

(from Dickey et al., J. Mar. Syst,. 2003)
\Rightarrow Fronts, jets and eddies: Horizontal scales $\sim(100 \mathrm{~m}-10 \mathrm{~km})$ Time scales ~(days - week)

- Key role for: Energy transfer

Horizontal and vertical transport Biogeochemical cycles
\Rightarrow Numerical model studies
Favored by:
Advances in computational power Development of regional models
\rightarrow Numerical model studies
Favored by:
Advances in computational power Development of regional models
\rightarrow In-situ observations
Challenging due to small spatial and temporal scales

Limited estimates of key physical parameters

\Rightarrow Numerical model studies
Favored by:
Advances in computational power Development of regional models
\rightarrow In-situ observations
Challenging due to small spatial and temporal scales

Limited estimates of key physical parameters
Focus of this study
New approach to estimate horizontal eddy diffusion coefficients (Kh) from in-situ observations
\rightarrow Latex10 campaign (September 1-24, 2010)

- Western part of Gulf of Lion (NW Mediterranean)
- Main goals : (Sub)mesoscale dynamics Cross-shelf exchanges
- Adaptive sampling strategy based on :
- Satellite data
- Ship-based current measurements
- Iterative Lagrangian drifter releases

Example:
\rightarrow Drifter array deployment "Lyap01" (Sep. 15, 2010)

(from Nencioli et al., GRL, 2011)

- Identified in-situ Lagrangian Coherent Structures (LCSs)
- Evidenced inaccuracy of altimetry in coastal region
- LCS associated with a frontal structure
\rightarrow AVHRR SST + 3-day drifter trajectories (Sep. 8 to 15, 2010)

\rightarrow AVHRR SST + 3-day drifter trajectories (Sep. 8 to 15, 2010)

image AVHRR du 15/09/2010 01h42

Convergence of warmer (eastern outer shelf) and colder (western inner shelf) water masses
\rightarrow Colder and warmer water masses converging along attractive LCS

\rightarrow Colder and warmer water masses converging along attractive LCS

- Shape of T and S profile across the front results from balance between convergence and horizontal mixing

3. Equation

In-situ approach
\Rightarrow Colder and warmer water masses converging along attractive LCS

- Shape of T and S profile across the front results from balance between convergence and horizontal mixing
$\frac{\partial T}{\partial t}+u(x) \frac{\partial T}{\partial x}=K_{H} \frac{\partial^{2} T}{\partial x^{2}}$
- Analytical solution to 1 D advection diffusion equation for a tracer T
\Rightarrow Analogous to Flament et al. 1985, Ledwell et al. 1998 (from satellite)

3. Equation

1D equation for a tracer T

$$
\frac{\partial T}{\partial t}+u(x) \frac{\partial T}{\partial x}=K_{H} \frac{\partial^{2} T}{\partial x^{2}}
$$

3. Equation
 Advection-diffusion equation

1D equation for a tracer T

Assumptions:

- Front is at equilibrium (steady state)
- x is the across LCS direction

3. Equation Advection-diffusion equation 1D equation for a tracer T

Assumptions:

- Front is at equilibrium (steady state)
- x is the across LCS direction
γ : Strain rate (Lyapunov exponent)
with μ : Position of LCS axis

1D equation for a tracer T

Assumptions:

- Front is at equilibrium (steady state)
- x is the across LCS direction
γ : Strain rate (Lyapunov exponent) μ : Position of LCS axis

Boundary Conditions

$$
\begin{gathered}
T(x=-\infty)=T_{1} ; \\
T(x=+\infty)=T_{2} ;
\end{gathered}
$$

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

C1

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

C1 C2

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

C1
C2
C4

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t
$$

3. Equation

Analytical solution

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

$\begin{array}{llll}\text { C1 } & \text { C2 } & \text { C3 } & \text { C4 }\end{array}$

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t
$$

$W_{\text {foot }}=2 \sqrt{\frac{K_{H}}{\gamma}}$
68% of T
variation
3. Equation Analytical solution

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

| C1 | C2 | C3 | C4 |
| :--- | :--- | :--- | :--- | :--- |

$W_{\text {foot }}=2 \sqrt{\frac{K_{H}}{\gamma}}$
68% of T variation

- Coefficients computed by best fitting T and S sections

$$
K_{H}=\frac{\gamma}{\left(2 \mathrm{C} 3^{2}\right)}
$$

3. Equation Analytical solution

$$
T(x)=\frac{T_{2}+T_{1}}{2}+\frac{T_{2}-T_{1}}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}(x-\mu)\right)
$$

| C1 | C2 | C3 | C4 |
| :--- | :--- | :--- | :--- | :--- |

$W_{\text {foot }}=2 \sqrt{\frac{K_{H}}{\gamma}}$
68% of T variation

- Coefficients computed by best fitting T and S sections

$$
K_{H}=\frac{\gamma}{\left(2 \mathrm{C} 3^{2}\right)} \quad \text { from drifter } \begin{gathered}
\text { fispersion!! } \\
\text { dis. }
\end{gathered}
$$

SST and SSS from ship

 thermosalinograph

SST and SSS from ship thermosalinograph

SST and SSS from ship thermosalinograph

SST and SSS from ship thermosalinograph

SST and SSS from ship thermosalinograph

SST and SSS from ship thermosalinograph

- Identified 30 cross-front transects
- Transects projected on the direction normal to the LCS axis

Example: Transect 11

Example: Transect 11

Front equation

$$
T(x)=C_{1}+C_{2} \operatorname{erf}\left(C_{3}\left(x-C_{4}\right)\right)
$$

Initial fit

$$
\begin{gathered}
C_{1}=\frac{T_{2}+T_{1}}{2} \\
C_{2}=\frac{T_{2}-T_{1}}{2} \\
C_{3}=1 \\
C_{4}=\frac{D i s t}{2}
\end{gathered}
$$

Example: Transect 11

Front equation

$$
T(x)=C_{1}+C_{2} \operatorname{erf}\left(C_{3}\left(x-C_{4}\right)\right)
$$

Final fit: 19.972-0.450*erf(1.375*(x-2.474))

Final fit: 38.050-0.125*erf(1.261*(x-2.406))

Example: Transect 11

\rightarrow Parameters from least square estimation using Nelder-Mead simplex direct search

Front equation

$$
T(x)=C_{1}+C_{2} \operatorname{erf}\left(C_{3}\left(x-C_{4}\right)\right)
$$

Final fit: 19.972-0.450*erf(1.375)(x-2.474))

Final fit: 38.050-0.125*erf(1.261)(x-2.406))

$$
C_{3}=\frac{1}{\sqrt{2}} \sqrt{\frac{\gamma}{K_{H}}}
$$

- No fit for 11 out of 30 transects: limits of starting assumptions
i.e. impact of vertical dynamics

Dispersion patterns of drifter arrays

Dispersion patterns of drifter arrays

- For each deployment, computed fastest separation rate between buoy couples (analogous to Lyapunov exponent)

Dispersion patterns of drifter arrays

- For each deployment, computed fastest separation rate between buoy couples (analogous to Lyapunov exponent)

Dispersion patterns of drifter arrays

- For each deployment, computed fastest separation rate between buoy couples (analogous to Lyapunov exponent)

T Front

S Front

Strain rate Lyap1 : $0.239^{*} \exp \left(1.268^{*} t\right)$
Lyap2 : $6.337^{*} \exp \left(0.696^{*} t\right)$

T Front

S Front

Strain rate

Eddy diffusivity coefficients

T Front

S Front

Strain rate

$$
K_{H}=\frac{\gamma}{\left(2 \mathrm{C} 3^{2}\right)}
$$

Eddy diffusivity coefficients

\rightarrow New approach relatively simple and cheap (i.e. compared to passive tracer release experiments)
\rightarrow In-situ estimates of Kh at the submesoscale in line with values used in high-resolution numerical models
\rightarrow Tail of high values affects Kh statistics (mean and standard deviation) $=>$ check starting assumptions:

- Steady state
- Uniform strain rate
- Vertical motions
- ...
\Rightarrow Further dedicated in-situ experiments
\rightarrow Test approach from high-resolution models
\rightarrow Extend analysis of Kh over wider regions/the global ocean using remote sensed datasets
\rightarrow Further dedicated in-situ experiments
\rightarrow Test approach from high-resolution models
\rightarrow Extend analysis of Kh over wider regions/the global ocean using remote sensed datasets

Surface Water and Ocean Topography

NASA - CNES mission

- New generation, high-resolution (1Km) altimeter
- Launch: Fall 2020

This work has been developed within the project:

Lyapunov Analysis in the CoaSTal Environment (LACOSTE)

Marie Curie Intra-European Fellowship Call: FP7 - PEOPLE - 2011 - IEF Leading PI: F. Nencioli

F. Nencioli, F. d'Ovidio, A. Doglioli, A. Petrenko

Surface coastal circulation patterns by in-situ detection of Lagrangian Coherent Structures.
Geophysical Research Letters, 38, L17604, doi:10.1029/2011GL048815

LATEX website: www.com.univ-mrs.fr/LOPB/LATEX

EXTRA SLIDES

First order upwind scheme

First order upwind scheme

- Fast adjustment to equilibrium (within 1 day)
- However Kh proportional to square of width
- Even small errors in width could affect estimate of Kh

