Multi-platform synergy for the direct investigation of ocean fronts: a case study in the North-western Mediterranean

Francesco Nencioli(1,2), Anne A. Petrenko(2), Andrea M. Doglioli(2) and Francesco d’Ovidio(3)

(1) Remote Sensing Group, Plymouth Marine Laboratory, United Kingdom
(2) Sorbonne Université (UPMC, Paris 6)/CNRS/IRD/MNHN, Laboratoire d’Océanographie et du Climat (LOCEAN), Institut Pierre Simon Laplace (IPSL), Paris, France

1. The Latex10 campaign

➔ Region of study
The Gulf of Lion (GoL)
- Large continental shelf
- Mistral/Tramontane main wind forcings:
- Northern Current dynamical barrier to cross-shelf exchanges

Latex10 campaign (1)
- September 1-24, 2010, western part of the GoL
- Adaptive sampling strategy to focus on (sub)mesoscale dynamics

➔ Remote sensing, Lagrangian and ship-based observations
• AVHRR pseudo-SST
• 14 SVP Lagrangian drifters (15-m drogue)
• Underway surface temperature and salinity
• Hull-mounted ADCP

➔ 3. Horizontal diffusivity

➔ Main hypothesis: front width from balance between two competing processes
1. Convergence by mesoscale straining \((\gamma) \)
2. Mixing by small-scale turbulence (parametrized by eddy diffusivity \(K_v \))

\[W(x) = \frac{T_r + T_i}{2} = \frac{T_r - T_i}{2} + \left(\frac{1}{\gamma^2} \frac{C_3}{2K_v} \right)(x - \mu) \]

Width parameter C3

➔ From front width \((C_3) \) and strain rate \((\gamma) \) is possible to quantify eddy diffusivity \((K_v) \)

➔ Estimate front width and strain rate
- Front widths estimated by fitting analytical solution to 19 observed cross-front profiles of SST and SSS (left)
- Strain rate computed from exponential separation rate of Lyap01 and Lyap02 Lagrangian drifters (bottom right)
- The two are combined to obtain 76 estimates of horizontal eddy diffusivity

➔ Quantify horizontal eddy diffusivity
- Log-normal distribution
- 70% of values between 0.4 – 5 m² s⁻¹
- Front widths range from 1 to 4 km
- \(K_v \) values similar for SST and SSS fronts

2. In-situ Lagrangian coherent structures

➔ Recursive drifter array deployments
- LCS computed in near-real time from AVISO velocities (daily, 1/8 degree)
- Deployment of 3 drifter arrays (Lyap01, Lyap02, Lyap03) to investigate LCS along continental slope
- In-situ LCS from dispersion patterns

➔ Migration of in-situ LCSs and hyperbolic point tracked for two weeks
- LCS reliable diagnostic also in coastal regions
- Altimetry-based LCS show same limitations in coastal regions
- In-situ LCS associated with a strong thermal front

➔ Characteristics of the Latex10 front
- Convergence of warmer (open NW Mediterranean) and colder (western GoL) shelf water masses
- Mostly compensated
- Coastal corridor through which shelf waters left the GoL
- Multiple sections collected across the front
- Used for direct quantification of:
 ➔ Cross-front eddy-diffusivity
 ➔ Along-front cross-shelf fluxes

3. In-situ Lagrangian coherent structures

➔ 2. In-situ Lagrangian coherent structures

➔ Estimate near-inertial oscillations (NIO)

Above: NIO from Lagrangian drifter velocities (gray); residual component (red) from moving average (blue)
Right: Strong NIO after Mistral/Tramontane events (wind speed > 15 knots; wind direction from -90 to 0)

➔ Identify outflow from continental shelf and inflow from open sea
- NIO velocities removed from ADCP observations (green)
- Outflowing shelf waters (U+C) and inflowing open waters (C) from SST and SSS observations along 4 sections of the LCS

➔ Quantify cross-shelf exchanges along the front
- Total volumes exchanged within the upper mixed layer (0 to 22.8 m) during front lifetime (2 weeks):
 ➔ Outflow of shelf waters 90 km³
 ➔ Inflow of open waters 25 km³
- 3 to 4 of such events are sufficient to completely renew the upper mixed layer of the whole GoL

Acknowledgments
This work was supported by the projects LITTLEDARD and LIFE17BD01 of the REGONat National des Sciences de la Terre and by the Region PACA-Provence-Alpes-Côte d’Azur in the framework of the PACA Plan for Research and Development. The authors gratefully acknowledge the support of the French Ministry of Higher Education and Research and the contribution of the GoL-OFES (2012-2015) project. They are grateful to the French and Italian Governments for their support. We thank the crews and technicians of the R/V Le Suroît and the R/V Téthys II and all the LATEX collaborators for their assistance at sea.

References

Sorbonne Université (UPMC, Paris 6)/CNRS/IRD/MNHN, Laboratoire d’Océanographie et du Climat (LOCEAN), Institut Pierre Simon Laplace (IPSL), Paris, France

1. The Latex10 campaign

➔ Region of study
The Gulf of Lion (GoL)
- Large continental shelf
- Mistral/Tramontane main wind forcings:
- Northern Current dynamical barrier to cross-shelf exchanges

Latex10 campaign (1)
- September 1-24, 2010, western part of the GoL
- Adaptive sampling strategy to focus on (sub)mesoscale dynamics

➔ Remote sensing, Lagrangian and ship-based observations
• AVHRR pseudo-SST
• 14 SVP Lagrangian drifters (15-m drogue)
• Underway surface temperature and salinity
• Hull-mounted ADCP

➔ 3. Horizontal diffusivity

➔ Main hypothesis: front width from balance between two competing processes
1. Convergence by mesoscale straining \((\gamma) \)
2. Mixing by small-scale turbulence (parametrized by eddy diffusivity \(K_v \))

\[W(x) = \frac{T_r + T_i}{2} = \frac{T_r - T_i}{2} + \left(\frac{1}{\gamma^2} \frac{C_3}{2K_v} \right)(x - \mu) \]

Width parameter C3

➔ From front width \((C_3) \) and strain rate \((\gamma) \) is possible to quantify eddy diffusivity \((K_v) \)

➔ Estimate front width and strain rate
- Front widths estimated by fitting analytical solution to 19 observed cross-front profiles of SST and SSS (left)
- Strain rate computed from exponential separation rate of Lyap01 and Lyap02 Lagrangian drifters (bottom right)
- The two are combined to obtain 76 estimates of horizontal eddy diffusivity

➔ Quantify horizontal eddy diffusivity
- Log-normal distribution
- 70% of values between 0.4 – 5 m² s⁻¹
- Front widths range from 1 to 4 km
- \(K_v \) values similar for SST and SSS fronts

2. In-situ Lagrangian coherent structures

➔ Recursive drifter array deployments
- LCS computed in near-real time from AVISO velocities (daily, 1/8 degree)
- Deployment of 3 drifter arrays (Lyap01, Lyap02, Lyap03) to investigate LCS along continental slope
- In-situ LCS from dispersion patterns

➔ Migration of in-situ LCSs and hyperbolic point tracked for two weeks
- LCS reliable diagnostic also in coastal regions
- Altimetry-based LCS show same limitations in coastal regions
- In-situ LCS associated with a strong thermal front

➔ Characteristics of the Latex10 front
- Convergence of warmer (open NW Mediterranean) and colder (western GoL) shelf water masses
- Mostly compensated
- Coastal corridor through which shelf waters left the GoL
- Multiple sections collected across the front
- Used for direct quantification of:
 ➔ Cross-front eddy-diffusivity
 ➔ Along-front cross-shelf fluxes

3. In-situ Lagrangian coherent structures

➔ Estimate near-inertial oscillations (NIO)

Above: NIO from Lagrangian drifter velocities (gray); residual component (red) from moving average (blue)
Right: Strong NIO after Mistral/Tramontane events (wind speed > 15 knots; wind direction from -90 to 0)

➔ Identify outflow from continental shelf and inflow from open sea
- NIO velocities removed from ADCP observations (green)
- Outflowing shelf waters (U+C) and inflowing open waters (C) from SST and SSS observations along 4 sections of the LCS

➔ Quantify cross-shelf exchanges along the front
- Total volumes exchanged within the upper mixed layer (0 to 22.8 m) during front lifetime (2 weeks):
 ➔ Outflow of shelf waters 90 km³
 ➔ Inflow of open waters 25 km³
- 3 to 4 of such events are sufficient to completely renew the upper mixed layer of the whole GoL