Meso and submeso-scale vertical velocity estimations in different dynamical regimes in preparation for the high resolution observations of the SWOT altimetry mission

A. PIETRI¹, X. CAPET¹, F. D'OVIDIO¹, J. LE SOMMER², J.M. MOLINES², A.M. DOGLIOLI³, H. GIORDANI⁴

1 LOCEAN-IPSL, CNRS/IRD/UPMC, Paris, France 3 Mediterranean Institute of Oceanography, Marseille, France 2 LGGE, Univ. Grenoble-Alpes / CNRS, Grenoble, France 4 Météo-France, CNRM-GAME/GMGEC/NEMO, Toulouse, France

Gulf Stream region of simulation NATL60

6. Dynamical regimes - regionality

The selected regions have very contrasted dynamics that affects the reconstruction of the vertical circulation by the Ω -equation.

<u>LMX</u>: in this region energetic mesoscale well IS but the represented, coherence decreases rapidly towards the small scales.

<u>AZO</u>: in general ω doesn't represent well the vertical circulation in this region, although w is generally weak everywhere.

here, including higher <u>REK</u> : order dynamics doesn't

7. Dynamical regimes - seasonality

the substantially improve solution.

<u>OSM</u>: the region where the small scales are reproduced best by ω but only when the ageostrophic velocity is also included.

Spectral coherence between w_{model} and ω below the mixed layer for the four regions in March

7. Summary and ongoing work

 \rightarrow The vertical velocity inferred from the Ω -equation <u>represents well</u> the mesoscale energetic patterns.

 \rightarrow It doesn't give good results at submesoscale (below few tens of kilometers) in any dynamical regime.

 \rightarrow the reconstruction from deformation has different skills depending on the region (and season)

 \rightarrow improvement due to the inclusion of the others terms is also region (and season) dependent

SWOT

• Lower the resolution of the subsurface data

 \rightarrow how is the solution impacted by a reduced resolution in subsurface coupled with a high resolution surface information?

 \rightarrow what kind of *in situ* information would be needed to resolve w depending on the regime?

• *Q* vertical variability

- \rightarrow how to propagate the information on the subsurface ?
- \rightarrow can vertical modes of variability be identified ?

Spectral coherence between w_{model} and ω below the mixed layer in the OSM region

