

UNIVERSITÉ du SUD

Toulon-Vai

Turbulence measurements with SCAMP in the Gulf of Lion

Turbintermed 2012 Toulon

R. Rainaud, A. Petrenko, A. Doglioli, D. Malengros, F. Nencioli

Introduction Calculation of K_z

$$K_{Z} = K_{Turb} + \kappa_{T}$$
 with $\kappa_{T} = 1.10^{-7} m^{2} s^{-1}$

Vertical profile of K₇

• Evaluation of turbulent intensity :

$$I_T = \frac{\epsilon}{v N^2}$$
 N : Brünt-Väisälä Frequency
v : Molecular kinematic viscosity = 1,9.10⁻⁶ m²/s

- Calculation of K_{Turb} with Shih et al. (2005) criterion :
- Shih et al. (2005) $I_T < 7$ $K_{Turb} = 0 \rightarrow K_z = \kappa_T$

Osborn (1980) $7 < I_T < 100$ $K_{Turb} = \Gamma \epsilon N^{-2}$ $\Gamma = 0,2$ Mixing efficiency

Shih et al. (2005) $I_T > 100$ $K_{Turb} = 2 \nu \sqrt{I_T}$

Introduction Calculation of K_z

$$K_{Z} = C_{0} \sqrt{E_{CT}} L$$

L : length scale C_0 : constant

Prandtl-Kolmogorov relation

Gaspar et al. (1990), in the hydrodynamical model

Determination method of ε

Batchelor method

- Determination with measurement of Batchelor wavenumber $k_{_{\rm B}}^{}({\rm cyc}/{\rm m})$
- Calculation of Batchelor length scale :

$$L_B = (2\pi \boldsymbol{k}_B)^{-1}$$

• Calculation of ε :

$$\varepsilon = \frac{\nu \kappa_T^2}{L_B^4}$$

Luketina and Imberger (2001)

SCAMP

Self Contained Autonomous MicroProfiler

Float

• Fine scale measurements (≈ 1 mm) of temperature and conductivity

- Frequency sampling : 100 Hz
- Weight : 6 kg
- Travel speed : between 10 and 20 cm/s (settings controlling the flotation)
- Maximum depth : 100 m
- Data analysis : Matlab and source codes (C langage) given by PME

Manufactured by PME-Precision Measurement Engineering, California

5

SCAMP Types of profile

Data process

Speed range : 10 - 15 cm/s

• Measurement frequency (Fast probe) : 100 Hz

- Segmentation : process pack of 1000 measurements (Modification with respect to PME default segmentation)
- Vertical profile of ϵ and Kz with segmentation every meter

Vertical gradient profile of temperature

Batchelor spectrum

Theoretical spectrum of temperature vertical gradient

Batchelor spectrum

Comparison of observed Batchelor spectrum with theoretical Batchelor spectra

→ Obtain Batchelor wavenumber k_в

Method summary

Database

Main stations of North Eastern of Gulf of Lion :

- SOFCOM : French national station network with measurements collected for decades
- JULIO : Station of the MOOSE system

SCAMP measurements 2011

SPECIMED Project

Dates of measurements :

- 08 February
- 10 March
- 19 April
- 03 May
- 22 June (SOFCOM)
- 11 July (JULIO)
- 13 September
- 18 October

Stations of measurements :

- SOFCOM : 5,29°E 43,24°N (60 m depth, bay)
- JULIO : 5,26°E 43,14°N (100 m depth, coast)

Objectives

To determine a seasonality of mixing in the study area

To characterize the difference between bay and coast

Wind rose on 2.5 days

Wind data given by Météo France and calculated with ALADIN model

Temporal resolution : 3 h

Spatial resolution : 10 km (interpolation to 1 km)

Temperature

SOFCOM (60 m depth, bay)

From 1 to 2 order of magnitude between bay and coast (above 20 m)

(between 10^{-10} and 10^{0})

SOFCOM (60 m depth, bay) 0 0 0 -5 -5 -5 -5 -5 -10 -10 -10 -10 -10 -10 -10 Depth (m) -15 -15 -15 -15 -15 -15 -15 -20 -20 -20 -20 -20 -20 -20 ¥ -25 -25 -25 -25 -25 -25 -25 -30 -30 -30 -30 -30 -30 -30 -35 -35 -35 -35 -35 -35 -35 -40 -40 -40 -40 -40 -40 -40 -45 -45 -45 -45 -45 -45 -45 -50 -50 -50 -50 10⁻¹⁰ -50 10⁻¹⁰ -50 10⁻¹⁰ -50 10⁻¹⁰ -50 10⁻¹⁰ 10⁻⁵ 10⁰ 10-5 100 **10⁻⁵** 10⁻⁵ -50 10⁻¹⁰ 10⁰ 10-5 10⁰ 100 10⁻⁵ 10⁰ March May September February April June July 0 0 0 0 0 0 1 -10 -10 -10 -10 -10 -10 -10 -20 -20 -20 -20 -20 -20 -20 -30 -30 -30 -30 -30 -30 -30 Depth (m) -40 -40 -40 -40 -40 -40 -40 -50 -50 -50 -50 -50 -50 -50 -60 -60 -60 -60 -60 -60 -60 -70 -70 -70 -70 -70 -70 -70 -80 -80 -80 -80 -80 -80 -80 -90 -90 -90 -90 -90 -90 -90 -100¹⁰⁰¹⁰⁻¹⁰ -100 10⁻¹⁰ -100[|] 10⁻¹⁰ 10⁰ -100 10⁻⁵ 10⁻⁵ 100 100 10⁻¹⁰ 10-5 10⁰ 10⁰ 10⁻⁵ $K_{z} (m^{2}/s)$

0

-5

0

10-5

October

10⁻⁵

10⁰

10⁰

JULIO (100 m depth, coast)

K_z : Comparison SCAMP/Model

K_z : Comparison SCAMP/Model

Conclusion and perspectives

- No seasonality of mixing during 2011
- Differences of ε don't impact K₇
- Presence of important gradient of $\rm K_z$ under 20 m when Shih et al. 2005 criterion is applied
- Important difference between $\rm K_z$ measured with SCAMP and $\rm K_z$ calculated with SYMPHONIE
- At bay, overestimation of mixing in SYMPHONIE probably due to the low spatial resolution of ALADIN wind forcing

- Other method to calculate ε , with Thorpe scale (in progress)
- Turbulence for wind typical scenario

Thank you for your attention

Extra slides

Another method to determine ε

Thorpe Method

- Measurement of Thorpe length scale $L_{_{Th}}$ with SCAMP
- Calculation of ϵ Thorpe (2005) formula:

$$\varepsilon = c_1 L_{Th}^2 N^3$$
 $c_1 = 0.8$: constant

SYMPHONIE

$$K_{Turb} = C_0 \quad \sqrt{E_{CT}} \quad L$$

$$L = l_{\varepsilon}$$
$$C_0 = 0,1$$

Gaspar et al. (1990)

Wind rose

Wind rose showing wind speed, direction and frequency on 2.5 days

Approximation :

Order of magnitude study:

z : Ekman depth where u(z) = 4% of u(0)

$$z = \pi \sqrt{\frac{2 K_z}{f}}$$

 \Box $T \approx 2.5 days$

Shih et al. 2005 criterion

