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Introduction

L’étude de la circulation de cette mer 
semi-fermée a été motivé par des 
enjeux financiers et environnementaux.

Communication avec la mer des 
Caraïbes au sud et avec l’océan 
Atlantique à l’est.

Présence d’un phénomène intéressant : 
le détachement de tourbillons 
anticycloniques

But du travail : modélisation et étude de la dynamique de cette 
région à l’aide du modèle ROMS.



La modélisation et le modèle ROMS

La modélisation permet en océanographie d’analyser des phénomènes
réels et de prévoir des résultats à partir de l’application d’une ou
plusieurs théories.

Science récente datant du Xxème siècle. Elle s’est généralisée avec le
développement des ordinateurs et l’augmentation de la puissance de
calcul.

Le modèle ROMS (Regional Ocean Modeling System) à été conçue de
manière à pouvoir observer des phénomènes se déroulant à petite
échelle. Outil puissant utilisant une base de données considérable.



Equations résolues

Le modèle ROMS part des équations primitives  en utilisant un certain ombre 
d’approximations (approximation de Boussinesq et hydrostatique notamment) .
On aboutit finalement aux équations en eaux peu profondes.

On complète le système par deux équations de conservation et l’équation de 
continuité. On a donc :



Fermeture du système

Nous avons donc un système de 5 équations. Il faut cependant ajouter des équations 
de fermeture. Elles vont exprimer l'indétermination qui reste dans les termes de flux 
turbulents des équations primitives.

Calcul du coefficient horizontal de viscosité : méthode de Smagorinski
Calcul du coefficient vertical de viscosité : approche de Large et al.
-> approche KPP (K profil parametrization)

Enfin, à ces équations de fermeture on ajoute des conditions aux frontières (ouvertes 
et fermées) et des conditions aux limites. 

Ainsi on aboutit à un système d’équations fermé que l’on va pouvoir discrétiser.



Discrétisation des équations

Le schéma numérique utilisé est un schéma implicite du second ordre.
On applique un certain nombre de techniques afin d’optimiser et de stabiliser le 
calcul.

• Intégration de type « Leapfrog » : intégration sur plusieurs pas de temps

• Utilisation d’un filtre : filtre d’Asselain

• Technique du « time-splitting » : séparation des termes des équations en fonction de 
leur vitesse d’évolution. On aura donc un pas de temps pour la dynamique 3D (mode 
interne, lent) et un pas de temps pour la dynamique 2D (mode externe, rapide).
Ces pas de temps seront calculés à l’aide du critère CFL.



Grille de calcul

Nous utiliserons dans notre cas une grille de calcul de type Arakawa C pour tous les 
calculs horizontaux.  Cette grille engendre une discrétisation décentrée de 
type « forward-backward ».

En ce qui concerne la grille verticale nous utiliserons une grille sigma qui 
présente l’avantage principal de mieux suivre les effets de la bathymétrie.



Application au Golfe du Mexique

La 1ere étape d’application du 
modèle à la zone étudiée :

confection de la grille

J’ai construit ma grille, à l’aide du 
script make_grid.m, avec les 
paramètres suivants :

Lonmax = -81°E
Lonmin = -98°E
Latmax = 18°N
Latmin = 30.4°N
Résolution = 1/6° soit dx=dy≈16.5km
N = 32
LLm = 101
MMm=81 

=>8181 points



Pré-Processing

Nous allons ensuite passer à la seconde étape qui sera d’exécuter un certain nombre de 
scripts nécessaires à l’initialisation du modèle.

Nous générons ainsi :

• Les forçages, à partir des différentes bases de données avec le script make_forcing.m

• Les conditions initiales, avec le script make_clim.m . Elles sont calculées à partir de 
données selon la méthode dynamique.

• Après avoir réalisé la grille on peut calculer les deux pas de temps à l’aide du critère CFL. 
Nous disposons d’un script Matlab nous facilitant le calcul.

On obtient:
Δte = 30s
Δti = 1800s



Outils de Diagnostique



Situations saisonnières

Nous avons dans un premier temps analysé les résultats en tentant de dégager des 
situations saisonnière. Ceci nous a été difficile étant donné la variabilité des 
phénomènes.



Température

On observe les mêmes déplacement des masses d’eau en s’intéressant aux 
températures de celles-ci.

1 2

3 4

1 : Situation hivernale
2 : Situation printanière
3 : Situation estivale
4 : Situation automnale



Salinité

En ce qui concerne la salinité on peut considérer que nous sommes dans une zone 
d’évaporation donc on aura une salinité plus ou moins oscillante autour de 36.

Cependant on observe aisément les apports du Mississipi.



Suivi d’un tourbillon

Comparaison avec la publication

On a des valeurs d’élévation variant de -
15 à 50 cm. Dans la publication les 
auteurs présentant une image satellite 
donnant des élévations allant de -30 à 
30 cm. Nous sommes donc dans la 
même gamme de valeur.

Concernant la vitesse de déplacement 
du tourbillon;
ils trouvent 4 km.j-1 et nous obtenons 
130 km par mois soit environ 4.5 km.j-1



Comparaison avec la publication:

Nous avons représente ici la 
vorticité relative alors que les 
auteurs ont choisi la vorticité 
potentielle ou des anomalies de 
vorticité.

Cependant nous avons le même 
ordre de grandeur car nous 
atteignons -3x10-5 alors qu’ils 
obtiennent -9x10-5.



Comparaison avec la publication

En ce qui concerne les vitesses;
les auteurs présentent des vitesses de 
courant de l’ordre de 15/20 cm.s-1 à           
-1000m tandis que nous obtenons  des 
valeurs de 10 cm.s-1 en surface.

Comme le montre la figure ci-contre nous 
avons à cette profondeur des vitesses de 
l’ordre de 0.5 cm.s-1. On observe toujours 
l’impact du tourbillon mais moins 
fortement que les auteurs.



Conclusion


