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Introduction – Mesoscale variability

 Thermal infrared image of the 
Gulf Stream ©NASA 

Discovering Gulf stream variability from space

Path of the Gulf Stream from 
hydrographic and satellite data 

(1975) 
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Introduction – Time/space scale diagram  
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Introduction – Coastal processes scales
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Introduction – Transfer of energy

Forward transfer of energy
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Introduction – Transfer of energy
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Hawaiian archipelago

● Deep ocean eddies
● Relative importance of the 

external forcings on the generation 
of mesoscale eddies

Gulf of Lion 

● Coastal eddies
● Process of generation
● Impact of meso- and submesoscale 

features on exchanges and  
turbulent mixing

Introduction – Deep ocean vs coastal
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Introduction – Area of study I

Hawaiian archipelago
● Complex circulation
● Effects of the archipelago topographic forcing 

on both the NEC and the trade winds 
● The wake is responsible for the formation of 

the HLCC
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Introduction – Area of study I

Northern 
Hemisphere

Anticyclonic

Cyclonic

Mesoscale activity in the lee of the islands
● Cyclonic/Anticylonic eddies North/South the HLCC [Lumpkin, 1998]
● Classical mechanism of formation of eddies in the lee of an obstacle
● The wind stress variations drive divergent and convergent Ekman 

transports in the upper layer of the ocean [Patzert, 1969; Chavanne, 
et al., 2002]
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Introduction – Area of study II

Gulf of Lion (GoL)
● Hydrodynamics complex and highly variable 

[Millot, 1990]
● Influenced by the NC effective dynamical barrier 
● Recurrent generation of mesoscale eddies 

[Petrenko, 2003; Hu et al., 2009; Allou et al., 2010; 
Schaeffer et al., 2011]
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Introduction – Area of study II

Sea Surface Temperature 
Images (SST) [Millot, 1982]

Mesoscale activity in the western part of the GoL
● First observation of an anticyclonic circulation 
● LATEX (LAgrangian Transport Experiment) Project 

Understand influence of coastal mesoscale eddies

Scheme of the circulation using 
mooring data [Millot, 1979]
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Plan
Part I – Tools for study mesoscale features

Numerical codes
In situ experiments

Part II – Characteristics of mesoscale eddies  
Eddy center detection
Horizontal characteristics
Vertical characteristics

Part III – Forcings and generation
Forcing sensitivity – Wind sensitivity
Process of generation
Generation of submesoscale structures
Impact on coast-offshore exchanges

Part IV – Study of turbulent mixing
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Calculation of diffusion coefficients
Lagrangian experiment

Conclusion & perspectives

Strategies

Mesoscale 
activity

Submesoscale

Turbulence
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Part I – Numerical codes

ROMS Symphonie
Type Climatology – 10 years Realistic – Year 2009

Resolution 1/10° (~10km) 1km
Horizontal grid Arakawa C

Vertical grid 30 Sigma 40 sigma-z hybrid
Bathymetry ETOPO EPSHOM

Closure Scheme Large et al. [1994] Gaspar et al. [1990]
Atmospheric forcings COADS/QuikSCAT Météo-France Aladin

Boundaries Radiation BC - WOA Radiation BC - MFS
Initialization WOA Restart Hu et al. [2009]

Hawaiian archipelago - ROMS Gulf of Lion - Symphonie

Model domains with realistic bathymetry [m]



16

Part I – In situ experiments
Hawaiian archipelago - E-Flux III

March 10–27, 2005
Gulf of Lion – Latex09 campaign

August 24-28, 2009

● Sampling of a cyclonic mesoscale 
eddy: Opal [Dickey et al., 2008]  

ADCP current vectors at 40m depth 
[Nencioli et al., 2008]

ADCP current vectors
 at 15m depth

● Sampling of an anticyclonic 
mesoscale eddy: Latex-09 eddy
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Part I – Strategies
Hawaiian archipelago Gulf of Lion

Find a similar numerical 
eddy at the same period

What is the relative importance 
of the forcings on the 

generation of mesoscale eddies?

What is the generation process of
the Latex-09 eddy? 

Model

Numerical eddies
 characteristics

Wind Topo Currents

Opal 
characteristics

Validate the model and 
find the best set up

In situ data

Latex-09
 characteristics

Numerical eddy
characteristics

Realistic forcings
Year 2009

Climato. forcings

In situ data Model
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Hawaiian archipelago - E-Flux III
March 10–27, 2005

Gulf of Lion – Latex09 campaign
August 24-28, 2009

● Sampling of a cyclonic mesoscale 
eddy: Opal [Dickey et al., 2008]  

ADCP current vectors at 40m depth 
[Nencioli et al., 2008]

● Sampling of an anticyclonic 
mesoscale eddy: Latex-09 eddy

● Ships, surface drifters, and satellite 
sensors

Part II – Characteristics

ADCP current vectors
 at 15m depth
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Latex09 campaign
ADCP 15m depth   - SST (°C) August 28 

Part II – Characteristics

Eddy center detection

Center of the eddy :
Grid point for which the mean 
 tangential velocity computed 
from the nearest ADCP 
records is maximum
[Nencioli et al., 2008]

Transect 1



21

Transect 1-2-3-4

Part II – Characteristics

Horizontal Characteristics
Latex09 campaign

ADCP 15m depth   - SST (°C) August 28 
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Transect 1-2-3-4

Part II – Characteristics

Horizontal Characteristics

Anticyclonic
 circulation

V
max

 ~ 0.4 m.s-1

T ~ 3 days

Center:
3°34'E – 42°33'N 

Presence of the NC

Latex09 campaign
ADCP 15m depth   - SST (°C) August 28 

[Kersalé et al., 2013]
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Latex09 campaign
ADCP 15m depth   - SST (°C) 

Deddy = D̄ ± √Dvar

D
eddy

 = 22.7 ± 1.2 kmNC

Part II – Characteristics

Horizontal Characteristics
Transect 3

Tangential component decomposition with 
respect to the position of the center 

[Nencioli et al., 2008]
Tangential velocity [m s-1]

Temperature [°C]
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Vertical section of the absolute tangential component 
of the horizontal current (m s-1) for Transect 3

ADCP current at 
15 m depth 
27 m depth 

   Depth
 max

 

  30-35 m

Part II – Characteristics
Vertical Characteristics

NC
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Conclusions – Part II

● Near real- time determination of eddy center

● Local characterization of coastal mesoscale features

● Horizontal and vertical characteristics

Solid body rotation

Tilted axis of rotation
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Strategies
Hawaiian archipelago Gulf of Lion

Find a similar numerical 
eddy at the same period

What is the relative importance 
of the forcings on the 

generation of mesoscale eddies?

What is the generation process of
the Latex-09 eddy? 

Model

Numerical eddies
 characteristics

Wind Topo Currents

Opal 
characteristics

Validate the model and 
find the best set up

ModelIn situ data

Latex-09
 characteristics

Numerical eddy
characteristics

Realistic forcings
Year 2009

Climato. forcings

In situ data
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Part III – Forcings and generation

Inadequacies :
Run-A & Run-B (No wind forcing)
Ocean circulation not realistic
Intensity of the eddies is too low

Run-C (No advection)
Stationary eddies- No expected 
westward drift 

Run-D (No Drag. Coeff)
Eddies too large

Relative importance of the forcings

[Kersalé et al., 2011]

Wind Forcing Advection Drag coeff.
Run-A none Ugeo Cd

Run-B none 2Ugeo Cd

Run-C QuikSCAT none Cd

Run-D QuikSCAT Ugeo none
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Part III – Forcings and generation

Wind Forcing Advection Drag coeff.
Run-A none Ugeo Cd

Run-B none 2Ugeo Cd

Run-C QuikSCAT none Cd

Run-D QuikSCAT Ugeo none

Inadequacies :
Run-A & Run-B (No wind forcing)
Ocean circulation not realistic
Intensity of the eddies is too low

Run-C (No advection)
Stationary eddies- No expected 
westward drift 

Run-D (No Drag. Coeff)
Eddies too large

Relative importance of the forcings

[Kersalé et al., 2011]

Relative vorticity field (s-1) at 20m depth
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Part III – Forcings and generation

Wind Forcing Advection Drag coeff.
Run-A none Ugeo Cd

Run-B none 2Ugeo Cd

Run-C QuikSCAT none Cd

Run-D QuikSCAT Ugeo none

Inadequacies :
Run-A & Run-B (No wind forcing)
Ocean circulation not realistic
Intensity of the eddies is too low

Run-C (No advection)
Stationary eddies- No expected 
westward drift 

Run-D (No Drag. Coeff)
Eddies too large

Relative importance of the forcings

[Kersalé et al., 2011]

Relative vorticity field (s-1) at 20m depth
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Relative vorticity field (s-1) at 20m depth

Part III – Forcings and generation

Wind Forcing Advection Drag coeff.
Run-A none Ugeo Cd

Run-B none 2Ugeo Cd

Run-C QuikSCAT none Cd

Run-D QuikSCAT Ugeo none

Inadequacies :
Run-A & Run-B (No wind forcing)
Ocean circulation not realistic
Intensity of the eddies is too low

Run-C (No advection)
Stationary eddies- No expected 
westward drift 

Run-D (No Drag. Coeff)
Eddies too large

Relative importance of the forcings

[Kersalé et al., 2011]



32

Relative vorticity field (s-1) at 20m depth

Part III – Forcings and generation

Cumulative effect of the three forcings

Wind Forcing Advection Drag coeff.
Run-A none Ugeo Cd

Run-B none 2Ugeo Cd

Run-C QuikSCAT none Cd

Run-D QuikSCAT Ugeo none

Inadequacies :
Run-A & Run-B (No wind forcing)
Ocean circulation not realistic
Intensity of the eddies is too low

Run-C (No advection)
Stationary eddies- No expected 
westward drift 

Run-D (No Drag. Coeff)
Eddies too large

Relative importance of the forcings

[Kersalé et al., 2011]
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Wind Forcing Advection Drag coeff.
Run-E COADS (1/2°) Ugeo Cd

Run-F QuikSCAT (1/4°) Ugeo Cd

COADS QuikSCAT

Annually-averaged wind 
stress values [Nm 2−  ]

Part III – Forcings and generation

Performed numerical experiments

Resolution of wind forcing
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● Ocean circulation realistic 
● Focus on numerical cyclones chosen because they are spatially and 
temporally  representative of cyclone Opal studied during the E-FLUX III

Relative vorticity field (s-1)
 at 20m depth

Part III – Forcings and generation

Wind Forcing Advection Drag coeff.
Run-E COADS (1/2°) Ugeo Cd

Run-F QuikSCAT (1/4°) Ugeo Cd

COADS QuikSCAT
Performed numerical experiments

Resolution of wind forcing
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QuikSCAT Opal 

Transect of density (kg m-3) + isopycnes 

Good representation of mesoscale features in the simulation forced by QuikSCAT 

[Nencioli et al., 2008]

COADS QuikSCAT Opal
Isopycnal outcrop. σt23.6/23.8

σt23.6/23.8 σt23.6

Depth impact (m) 130±70 >250 >250

Diameter (km) 180±20 180±30 180-200

Velocity (m s-1) 0.3±0.05 0.53±0.09 0.6

Importance of wind-forcing spatial resolution

Part III – Forcings and generation
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Hypothesis of generation 
Mesoscale eddies in the western part of the GoL 

2001-2008 [Hu et al., 2011]
2 conditions :  Persistent & strong northwest wind→

 → Strong stratification 

Process of generation
[Hu et al., 2011]

Part III – Forcings and generation
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Strategies
Hawaiian archipelago Gulf of Lion

Find a similar numerical 
eddy at the same period

What is the relative importance 
of the forcings on the 

generation of mesoscale eddies?

What is the generation process of
the Latex-09 eddy? 

Model

Numerical eddies
 characteristics

Wind Topo Currents

Opal 
characteristics

Validate the model and 
find the best set up

ModelIn situ data

Latex-09
 characteristics

Numerical eddy
characteristics

Realistic forcings
Year 2009

Climato. forcings

In situ data
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Eddy detected by wavelet analysis 
[Doglioli et al., 2007] - Relative 
vorticity [s-1] 15m depth August 27

Latex09  ADCP data August 27 
+Buoys from August 26-29

Part III – Forcings and generation

Similar eddy found in the numerical results

Model Data
Center 3°26'E – 42°36'N 3°34'E – 42°33'N

Depth impact (m) 37 35

Diameter (km) 28.6±1.4 22.7±1.2
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July 20 August 8 August 16 August 27

●Pushing and squeezing of an anticyclonic 
circulation between a meander of the NC 
and the coast
●Separation in two structures

Eddies detected by wavelet analysis - Sea Surface Height [m]

Cape
Creus

Eddy Generation Process

Part III – Forcings and generation

New Generation Process
 of the Latex-09 eddy

[Kersalé et al., 2013]
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Post Generation dynamics

Relative vorticity [s 1− ]
 20m depth September 3 

SST (°C) September 12
 +Buoys from August 26- September 12

Drifter trajectories explained by the generation of a 
submesoscale transient structure

Cape
Creus Cape

Creus

Latex09 feeds the Catalan eddy

Part III – Forcings and generation

Longitude Longitude
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Latex09 - Loss of mass

  Loss of 
mass 41%

33% of the 
Latex09 

eddy's mass
Gain of 
mass?

Potential vorticity [kg.m-4.s 1− ] 
in 3D on September 3 

Eddies detected by wavelet analysis

Latex09
eddy

Latex09
eddy

Catalan
eddy

Catalan
eddy

Interactions between the two eddies lead to a transfer of 
mass and vorticity from the GoL to the Catalan shelf

Part III – Forcings and generation

Longitude
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Conclusions – Part III

● New generation process of eddies 

in the western part of the Gulf of lion

● Observation of transient submesoscale structure

● Exchanges between coastal areas

● Cumulative effects of external forcings

● Importance of wind forcing resolution

Synergy of model results and in situ data
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Plan
Part I – Tools for study mesoscale features

Numerical codes
In situ experiments

Part II – Characteristics of mesoscale eddies  
Eddy center detection
Horizontal characteristics
Vertical characteristics

Part III – Forcings and generation
Forcing sensitivity – Wind sensitivity
Process of generation
Generation of submesoscale structures
Impact on coast-offshore exchanges

Part IV – Study of turbulent mixing
In situ experiment
Calculation of diffusion coefficients
Lagrangian experiment

Conclusion & perspectives

Strategies

Mesoscale 
activity

Submesoscale

Turbulence
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SF6

Part IV – Study of turbulent mixing

2 Research Vessels 
ADCP

Thermosalinometer

Lagrangian 
floats

CTD

Satellite 
observations

In situ experiment - Field campaign Latex10
● Western part of the GoL
● September 1-24, 2010
● No anticyclonic eddy in the area

Further characterization of the 
turbulent mixing in a coastal environment

[Kersalé et al., in review]
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Part IV – Study of turbulent mixing

In situ experiment - Field campaign Latex10
Lagrangian float

Drogue

Surface
float

15m
depth
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Part IV – Study of turbulent mixing

Drogue

Surface
float

15m
depth

In situ experiment - Field campaign Latex10
Lagrangian float
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Part IV – Study of turbulent mixing

Northern 
Current

Drogue

Surface
float

15m
depth

In situ experiment - Field campaign Latex10
Lagrangian float
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Part IV – Study of turbulent mixing

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride

SF6

Artificial patch : 
Release of seawater satured with SF6
Inert tracer

7500 L steel tank of seawater 
+  Injection of pure SF6 gaz 
= Satured SF6 solution
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Part IV – Study of turbulent mixing

SF6

Lagrangian release
Latex tools package
Doglioli et al. [2013]

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride Geographical

Ref.

Lagrangian
Ref.
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Part IV – Study of turbulent mixing

Mapping 1
Concentration of SF6 [fmol l-1]
1 day after the release   

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride
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Part IV – Study of turbulent mixing

Mapping 2
Concentration of SF6 [fmol l-1]
2 days after the release   

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride
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Part IV – Study of turbulent mixing

Mapping 3
Concentration of SF6 [fmol l-1]
5 days after the release   

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride
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Part IV – Study of turbulent mixing

In situ experiment - Field campaign Latex10
SF6 – Sulfur Hexafluoride

Mapping 4
Concentration of SF6 [fmol l-1]
7 days after the release   
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Part IV – Study of turbulent mixing

Atmospheric loss

SF6

k = transfer
velocity

Hypothesis : SF6 homogeneous in the mixed layer

C (t )=C0e
−k
zmix

t

● No external source
Patch is supersaturated with 
respect to the atmosphere

● Loss of SF6 at the surface of the 
water column due to atmospheric 
loss

● Variation of SF6 with time due to atmospheric loss modeled as a 
negative exponential function : C0

zmix

k

: released concentration SF6
: Depth mixed layer

: 2 parameterizations for the 
transfer velocity
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Part IV – Study of turbulent mixing

Atmospheric loss

● 2 modeled curves superimposed => Importance of the turbulent diffusivity 
related to the wind speed

● Good agreement of the observed quantities of SF6
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Part IV – Study of turbulent mixing

Calculation of the horizontal diffusion coefficient

Determination for horizontal scale < 2.5 km
   for temporal scale < 2 days 

Calculation of the horizontal diffusion coefficient

σ l(t )=7.5km

Δ t=22h

K h=σw
2
δ=7.6m2 s−1

σ l(t+Δ t )=11.4km
δ

Release Mapping 1

Strain rate 

σw=2.5km

δ=

ln
σ l(t )

σ l(t+Δ t )

Δ t
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Part IV – Study of turbulent mixing

Calculation of the vertical diffusion coefficient
CTD – Niskin bottles used to sampled SF6
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Part IV – Study of turbulent mixing

Calculation of the vertical diffusion coefficient

K z=1.4±0.6 cm2 s−1

● Gaussian shape for 
the tracer distribution 
with depth

● Evolution of the 
variance of the 
Gaussian

K z=
σ

2

2Δ t
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Part IV – Study of turbulent mixing

Calculation of the vertical diffusion coefficient

M 2=
∫C (z−z0)

2
∂ z

∫C∂ z

● Gaussian shape for 
the tracer distribution 
with depth

● Increase of the 
second moment M2 of 
the SF6 profiles with 
time

K z=
1
2

∂M 2

∂ t
=1.2±0.7cm2 s−1
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Part IV – Study of turbulent mixing

Lagrangian  experiment

● Tracer release experiments 
simulated using a numerical 
model 

● Test estimates of horizontal 
diffusivities

● Motion of 10 000 particles
● Classic random walk model
● Input velocity field : 

interpolated ADCP velocities

Initial position of the particles (end of the release)

Final position of the particles (end of mapping 1)
Input velocity field
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Part IV – Study of turbulent mixing

Lagrangian  experiment

Gray scales [SF6]
in situ

 - Contour [SF6]
num.

Mapping 3

● Good agreement between 
the positions of in situ and 
numerical patches

● Comparison of the total 
patch areas 
   Numeric: 273 km2

In situ:     381 km2 
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Conclusions - Part IV

● Investigation of the turbulent mixing in a coastal environment

 in the western part of the Gulf of Lion

● Quantification & validation of the gas exchange

 from the ocean to the atmosphere

● Estimation of turbulent mixing coefficients 

● Test of the horizontal diffusivity coefficient

 in Lagrangian experiments
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MAIN CONCLUSIONS

● Comprehension of mesoscale dynamics  on two areas

● Cumulative effects of external forcings - Importance of wind 

resolution

● Local characterization & analysis of generation processes of 

mesoscale features

● Exchanges between coastal areas : Observation of transient 

submesoscale structure

● Synergy of model results and in situ data

● Estimation of turbulent mixing coefficients in a coastal environment
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PERSPECTIVES

Short term perspectives
● Tracers distribution & connectivity between regions 

● Quantification of coast offshore exchanges with Lagrangian tools

● New regional altimetry products => Precision on coastal areas

Long term perspectives
● Use of numerical field output Symphonie 

test and validate the SWOT data 
(GoLSWOT)

● Latex campaign strategies applied in 
already scheduled campaigns : GoLSWOT 
and P2B2M

● Local & regional impact on ecosystems
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