# Dynamique de processus océaniques de méso- et de subméso-échelle à partir de simulations numériques et de données *in situ*

### Marion Kersalé Soutenance de Thèse – 15 Octobre 2013

*Sous la présidence de : Comité :* 

Ivan DEKEYSER Gilles REVERDIN Bruno BLANKE Annalisa GRIFFA Anne PETRENKO Andrea DOGLIOLI

Directeurs de thèse :

Institut Méditerranéen d'Océanologie



nstitut PYTHEAS bservatoire des Sciences de l'Univers ix#Marseille Université







## Dynamics of meso- and submesoscale oceanic processes from numerical simulations and *in situ* data

### Marion Kersalé PhD defense – October 15, 2013

*Under the presidence of : Committee :* 

Ivan DEKEYSER Gilles REVERDIN Bruno BLANKE Annalisa GRIFFA Anne PETRENKO Andrea DOGLIOLI

PhD advisors :

astitut PYTHEAS bservatoire des Sciences de l'Univers ix+Marseille Université





Institut Méditerranéen d'Océanologie



### Introduction – Mesoscale variability

#### Discovering Gulf stream variability from space



3

**Gulf Stream ©NASA** 

hydrographic and satellite data (1975)

#### Introduction - Time/space scale diagram

#### Numerous physical processes over a large range of scales

[Stommel, 1963 ; Dickey, 2003 ; Talley et al., 2011]



#### Introduction – Coastal processes scales

Smaller scales than the open ocean characterization



#### Forward transfer of energy



Processes involve in the forward transfer of energy

#### Forward transfer of energy



Processes involve in the forward transfer of energy

#### Introduction – Deep ocean vs coastal





### Hawaiian archipelago

- Deep ocean eddies
- Relative importance of the external forcings on the generation of mesoscale eddies

### Gulf of Lion

- Coastal eddies
- Process of generation
- Impact of meso- and submesoscale features on exchanges and turbulent mixing 8

### Introduction – Area of study I

### Hawaiian archipelago

- Complex circulation
- Effects of the archipelago topographic forcing on both the NEC and the trade winds
- The wake is responsible for the formation of the HLCC





#### Introduction – Area of study I

### Mesoscale activity in the lee of the islands

- Cyclonic/Anticylonic eddies North/South the HLCC [Lumpkin, 1998]
- Classical mechanism of formation of eddies in the lee of an obstacle
- The wind stress variations drive divergent and convergent Ekman transports in the upper layer of the ocean [Patzert, 1969; Chavanne, et al., 2002]



10

### Introduction – Area of study II

## Gulf of Lion (GoL)

- Hydrodynamics complex and highly variable *[Millot, 1990]*
- Influenced by the NC effective dynamical barrier
- Recurrent generation of mesoscale eddies [Petrenko, 2003; Hu et al., 2009; Allou et al., 2010; Schaeffer et al., 2011]





### Introduction – Area of study II

### Mesoscale activity in the western part of the GoL

- First observation of an anticyclonic circulation
- LATEX (<u>LA</u>grangian <u>Transport</u> <u>Experiment</u>) Project Understand influence of coastal mesoscale eddies



Scheme of the circulation using mooring data [Millot, 1979]



Sea Surface Temperature 12 Images (SST) [Millot, 1982]

#### Part I – Tools for study mesoscale features

Numerical codes In situ experiments

Strategies

#### Part II – Characteristics of mesoscale eddies

Eddy center detection Horizontal characteristics Vertical characteristics

### Part III – Forcings and generation

Forcing sensitivity – Wind sensitivity Process of generation Generation of submesoscale structures Impact on coast-offshore exchanges

#### Part IV – Study of turbulent mixing

In situ experiment Calculation of diffusion coefficients Lagrangian experiment

### **Conclusion & perspectives**

Mesoscale activity

#### Submesoscale

Turbulence

#### Part I – Tools for study mesoscale features

Numerical codes In situ experiments

Strategies

Part II – Characteristics of mesoscale eddies Eddy center detection Horizontal characteristics Vertical characteristics

#### Part III – Forcings and generation

Forcing sensitivity – Wind sensitivity Process of generation Generation of submesoscale structures Impact on coast-offshore exchanges

#### Part IV – Study of turbulent mixing

In situ experiment Calculation of diffusion coefficients Lagrangian experiment

### **Conclusion & perspectives**

| Mesoscale<br>activity |  |  |
|-----------------------|--|--|
|                       |  |  |
| Submososcalo          |  |  |
| Jubinesoscale         |  |  |
|                       |  |  |
|                       |  |  |

Turbulence

### Part I – Numerical codes

18°N 161°W

160°W 159°W

158°W

157°W

156°W

155°W

#### Gulf of Lion - Symphonie Hawaiian archipelago - ROMS 30' 4500 2500 KAUAI 44°N FRANCE 22°N 3 4000 СОАНИ 2000 30' 3500 Cape d'Agd MOLOKAI Marseil 21°N Gulf of Lion 3000 43<sup>0</sup>N 1500 Leucate 2500 30' **BIG ISLAND** 20°N 1000 2000 Cape Creus 42<sup>0</sup>N 1500 500 19°N

1000

500

154°W

Model domains with realistic bathymetry [m]

30'

4°E

3°E

5°E

6<sup>o</sup>E

7°E

|                      | ROMS                   | Symphonie                |  |
|----------------------|------------------------|--------------------------|--|
| Туре                 | Climatology — 10 years | Realistic – Year 2009    |  |
| Resolution           | 1/10° (~10km)          | 1km                      |  |
| Horizontal grid      | Arakawa C              |                          |  |
| Vertical grid        | 30 Sigma               | 40 sigma-z hybrid        |  |
| Bathymetry           | ETOPO                  | EPSHOM                   |  |
| Closure Scheme       | Large et al. [1994]    | Gaspar et al. [1990]     |  |
| Atmospheric forcings | COADS/QuikSCAT         | Météo-France Aladin      |  |
| Boundaries           | Radiation BC - WOA     | Radiation BC - MFS       |  |
| Initialization       | WOA                    | Restart Hu et al. [2009] |  |

### Part I – In situ experiments

#### Hawaiian archipelago – E-Flux III March 10–27, 2005



ADCP current vectors at 40m depth [Nencioli et al., 2008]

 Sampling of a cyclonic mesoscale eddy: Opal [Dickey et al., 2008]

#### Gulf of Lion – Latex09 campaign August 24–28, 2009



ADCP current vectors

at 15m depth

 Sampling of an anticyclonic mesoscale eddy: Latex-09 eddy

#### Part I – Strategies



## Part I – Tools for study mesoscale features

Numerical codes In situ experiments

Strategies

#### Part II – Characteristics of mesoscale eddies

Eddy center detection Horizontal characteristics Vertical characteristics

### Part III – Forcings and generation Forcing sensitivity – Wind sensitivity Process of generation Generation of submesoscale structures Impact on coast-offshore exchanges

#### Part IV – Study of turbulent mixing

In situ experiment Calculation of diffusion coefficients Lagrangian experiment

### **Conclusion & perspectives**

Mesoscale activity

#### Submesoscale

Turbulence

### Part II – Characteristics

Hawaiian archipelago – E–Flux III March 10–27, 2005



ADCP current vectors at 40m depth [Nencioli et al., 2008]

 Sampling of a cyclonic mesoscale eddy: Opal [Dickey et al., 2008]

#### Gulf of Lion – Latex09 campaign August 24–28, 2009



**ADCP current vectors** 

at 15m depth

- Sampling of an anticyclonic mesoscale eddy: Latex-09 eddy
- Ships, surface drifters, and satellite sensors

### Part II – Characteristics

#### Eddy center detection

Transect 1



#### Latex09 campaign ADCP 15m depth – SST (°C) August 28



#### Center of the eddy :

Grid point for which the mean tangential velocity computed from the nearest ADCP records is maximum [Nencioli et al., 2008]

#### **Horizontal Characteristics**

Transect 1-2-3-4

LatexO9 campaign ADCP 15m depth – SST (°C) August 28



#### **Horizontal Characteristics**



[Kersalé et al., 2013]

### Horizontal Characteristics Transect 3

Tangential component decomposition with respect to the position of the center [Nencioli et al., 2008]







Latex09 campaign ADCP 15m depth - SST (°C)

$$\mathbf{D}_{\mathbf{eddy}} = \mathbf{\bar{D}} \pm \sqrt{\mathbf{D}_{\mathbf{var}}}$$

 $\mathbf{D}_{\mathrm{eddy}} = 22.7 \pm 1.2 \ \mathrm{km}$ 

### Part II – Characteristics

#### **Vertical Characteristics**



Vertical section of the absolute tangential component

of the horizontal current (m s<sup>-1</sup>) for Transect 3



• Near real- time determination of eddy center

Local characterization of coastal mesoscale features

• Horizontal and vertical characteristics

Solid body rotation

Tilted axis of rotation

#### Part I – Tools for study mesoscale features

Numerical codes In situ experiments

Strategies

### Part II – Characteristics of mesoscale eddies

Eddy center detection Horizontal characteristics Vertical characteristics

### Part III – Forcings and generation

Forcing sensitivity – Wind sensitivity Process of generation Generation of submesoscale structures Impact on coast-offshore exchanges

Part IV – Study of turbulent mixing In situ experiment Calculation of diffusion coefficients Lagrangian experiment

### **Conclusion & perspectives**

Mesoscale activity

#### Submesoscale

Turbulence

#### **Strategies**



|       | Wind Forcing | Advection | Drag coeff. |
|-------|--------------|-----------|-------------|
| Run-A | none         | Ugeo      | Cd          |
| Run-B | none         | 2Ugeo     | Cd          |
| Run-C | QuikSCAT     | none      | Cd          |
| Run-D | QuikSCAT     | Ugeo      | none        |

### Inadequacies :

Run–A & Run–B (No wind forcing) Ocean circulation not realistic Intensity of the eddies is too low

**Run-C (No advection)** Stationary eddies- No expected westward drift

**Run–D (No Drag. Coeff)** Eddies too large



28

|       | Wind Forcing | Advection | Drag coeff. |
|-------|--------------|-----------|-------------|
| Run-A | none         | Ugeo      | Cd          |
| Run-B | none         | 2Ugeo     | Cd          |
| Run-C | QuikSCAT     | none      | Cd          |
| Run-D | QuikSCAT     | Ugeo      | none        |

#### Inadequacies :

#### Run-A & Run-B (No wind forcing)

Ocean circulation not realistic Intensity of the eddies is too low

**Run-C (No advection)** Stationary eddies- No expected westward drift

**Run-D (No Drag. Coeff)** Eddies too large

#### Relative vorticity field (s<sup>-1</sup>) at 20m depth



[Kersalé et al., 2011]

|       | Wind Forcing | Advection | Drag coeff. |
|-------|--------------|-----------|-------------|
| Run-A | none         | Ugeo      | Cd          |
| Run-B | none         | 2Ugeo     | Cd          |
| Run-C | QuikSCAT     | none      | Cd          |
| Run-D | QuikSCAT     | Ugeo      | none        |

### Inadequacies :

Run–A & Run–B (No wind forcing) Ocean circulation not realistic Intensity of the eddies is too low

#### Run-C (No advection)

Stationary eddies- No expected westward drift

**Run–D (No Drag. Coeff)** Eddies too large

#### Relative vorticity field (s<sup>-1</sup>) at 20m depth



[Kersalé et al., 2011]

|       | Wind Forcing | Advection | Drag coeff. |
|-------|--------------|-----------|-------------|
| Run-A | none         | Ugeo      | Cd          |
| Run-B | none         | 2Ugeo     | Cd          |
| Run-C | QuikSCAT     | none      | Cd          |
| Run-D | QuikSCAT     | Ugeo      | none        |

### Inadequacies :

Run–A & Run–B (No wind forcing) Ocean circulation not realistic Intensity of the eddies is too low

**Run-C (No advection)** Stationary eddies- No expected westward drift

## Run-D (No Drag. Coeff)

Eddies too large

#### Relative vorticity field (s<sup>-1</sup>) at 20m depth



[Kersalé et al., 2011]

31

|       | Wind Forcing | Advection | Drag coeff. |
|-------|--------------|-----------|-------------|
| Run-A | none         | Ugeo      | Cd          |
| Run-B | none         | 2Ugeo     | Cd          |
| Run-C | QuikSCAT     | none      | Cd          |
| Run-D | QuikSCAT     | Ugeo      | none        |

### Inadequacies :

#### Run-A & Run-B (No wind forcing)

Ocean circulation not realistic Intensity of the eddies is too low

#### Run-C (No advection)

Stationary eddies- No expected westward drift

#### Run-D (No Drag. Coeff)

Eddies too large

#### Relative vorticity field (s<sup>-1</sup>) at 20m depth



Cumulative effect of the three forcings

32

#### **Resolution of wind forcing**

|       | Wind Forcing    | Advection | Drag coeff. |
|-------|-----------------|-----------|-------------|
| Run-E | COADS (1/2°)    | Ugeo      | Cd          |
| Run-F | QuikSCAT (1/4°) | Ugeo      | Cd          |



Performed numerical experiments



stress values [Nm<sup>-2</sup>]

#### **Resolution of wind forcing**

|       | Wind Forcing    | Advection | Drag coeff. |
|-------|-----------------|-----------|-------------|
| Run-E | COADS (1/2°)    | Ugeo      | Cd          |
| Run-F | QuikSCAT (1/4°) | Ugeo      | Cd          |

23°N

 $22^{\circ}N$ 

21°N

 $20^{\circ}N$ 

19<sup>0</sup>N

**Performed numerical experiments** 

<sup>18°</sup>N 160°W 159°W 158°W 157°W 156°W 155°W 154°W

Relative vorticity field (s-1)

at 20m depth

QuikSCAT

x 10

3

2

0

-2



#### Ocean circulation realistic

 Focus on numerical cyclones chosen because they are spatially and temporally representative of cyclone Opal studied during the E-FLUX III<sup>34</sup>



Transect of density (kg m<sup>-3</sup>) + isopycnes

|                               | COADS                   | QuikSCAT                       | Opal                      |
|-------------------------------|-------------------------|--------------------------------|---------------------------|
| Isopycnal outcrop.            | σ <sub>t23.6/23.8</sub> | <b>σ</b> <sub>t23.6/23.8</sub> | <b>σ</b> <sub>t23.6</sub> |
| Depth impact (m)              | 130±70                  | >250                           | >250                      |
| Diameter (km)                 | 180±20                  | 180±30                         | 180-200                   |
| Velocity (m s <sup>-1</sup> ) | 0.3±0.05                | 0.53±0.09                      | 0.6                       |

Good representation of mesoscale features in the simulation forced by QuikSCAT



Importance of wind-forcing spatial resolution

### Hypothesis of generation

Mesoscale eddies in the western part of the GoL 2001-2008 [Hu et al., 2011]

2 conditions :  $\rightarrow$  Persistent & strong northwest wind





Process of generation [Hu et al., 2011]

#### **Strategies**





Eddy detected by wavelet analysis [Doglioli et al., 2007] – Relative vorticity [s<sup>-1</sup>] 15m depth August 27



Latex09 ADCP data August 27 +Buoys from August 26–29

|                  | Model            | Data             |
|------------------|------------------|------------------|
| Center           | 3°26'E – 42°36'N | 3°34'E – 42°33'N |
| Depth impact (m) | 37               | 35               |
| Diameter (km)    | 28.6±1.4         | 22.7±1.2         |

#### Similar eddy found in the numerical results

#### Eddy Generation Process July 20 August



Eddies detected by wavelet analysis - Sea Surface Height [m]

 Pushing and squeezing of an anticyclonic circulation between a meander of the NC and the coast

•Separation in two structures

New Generation Process of the Latex-09 eddy

[Kersalé et al., 2013]

### Post Generation dynamics

Latex09 feeds the Catalan eddy



### Latex09 – Loss of mass

Potential vorticity [kg.m<sup>-4</sup>.s<sup>-1</sup>] in 3D on September 3



Eddies detected by wavelet analysis



41

Interactions between the two eddies lead to a transfer of mass and vorticity from the GoL to the Catalan shelf

### **Conclusions – Part III**



Importance of wind forcing resolution

Synergy of model results and *in situ* data

• New generation process of eddies

in the western part of the Gulf of lion

- **Observation** of transient **submesoscale** structure
  - Exchanges between coastal areas

#### Part I – Tools for study mesoscale features

Numerical codes In situ experiments

Strategies

#### Part II – Characteristics of mesoscale eddies

Eddy center detection Horizontal characteristics Vertical characteristics

### Part III – Forcings and generation

Forcing sensitivity – Wind sensitivity Process of generation Generation of submesoscale structures Impact on coast-offshore exchanges

### Part IV – Study of turbulent mixing

In situ experiment Calculation of diffusion coefficients Lagrangian experiment

### **Conclusion & perspectives**

Mesoscale activity

#### Submesoscale

Turbulence

### In situ experiment – Field campaign Latex10

- Western part of the GoL
- September 1-24, 2010
- No anticyclonic eddy in the area



turbulent mixing in a coastal environment

44

#### [Kersalé et al., in review]

In situ experiment – Field campaign Latex10 Lagrangian float





### In situ experiment – Field campaign Latex10 Lagrangian float





### In situ experiment – Field campaign Latex10 Lagrangian float





In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride





### Artificial patch :

Release of seawater satured with SF6 Inert tracer

7500 L steel tank of seawater + Injection of pure SF6 gaz

= Satured SF6 solution

In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride Geographical





### In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride





#### Mapping 1

Concentration of SF6 [fmol I<sup>-1</sup>] <sup>50</sup> 1 day after the release

### In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride





#### Mapping 2

Concentration of SF6 [fmol I<sup>-1</sup>] <sup>51</sup> 2 days after the release

### In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride





#### Mapping 3

Concentration of SF6 [fmol I<sup>-1</sup>] <sup>52</sup> 5 days after the release

### In situ experiment – Field campaign Latex10 SF6 – Sulfur Hexafluoride





#### Mapping 4

Concentration of SF6 [fmol I<sup>-1</sup>] <sup>53</sup> 7 days after the release

### Atmospheric loss



 No external source Patch is supersaturated with respect to the atmosphere

 Loss of SF6 at the surface of the water column due to atmospheric loss

 Variation of SF6 with time due to atmospheric loss modeled as a negative exponential function :

$$C(t) = C_0 e^{\frac{-k}{z_{mix}}t}$$

- : released concentration SF6
- Z<sub>mix</sub> : Depth mixed layer
- k : 2 parameterizations for the transfer velocity 54

Hypothesis : SF6 homogeneous in the mixed layer

#### Atmospheric loss



- 2 modeled curves superimposed => Importance of the turbulent diffusivity related to the wind speed
- Good agreement of the observed quantities of SF6

### Calculation of the horizontal diffusion coefficient



Calculation of the vertical diffusion coefficient CTD – Niskin bottles used to sampled SF6





### Calculation of the vertical diffusion coefficient



- Gaussian shape for the tracer distribution with depth
- Evolution of the variance of the Gaussian

$$K_z = \frac{\sigma^2}{2\Delta t}$$

58

#### Calculation of the vertical diffusion coefficient



- Gaussian shape for the tracer distribution with depth
- Increase of the second moment M2 of the SF6 profiles with

59

#### Lagrangian experiment



#### Lagrangian experiment



- Good agreement between the positions of in situ and numerical patches
- Comparison of the total patch areas
  Numeric: 273 km<sup>2</sup>
  In situ: 381 km<sup>2</sup>

• Investigation of the **turbulent mixing** in a **coastal** environment

in the western part of the Gulf of Lion

Quantification & validation of the gas exchange

from the ocean to the atmosphere

- Estimation of turbulent mixing coefficients
- Test of the horizontal diffusivity coefficient

in Lagrangian experiments

- Comprehension of mesoscale dynamics on two areas
- Cumulative effects of external forcings Importance of wind resolution
- Local characterization & analysis of generation processes of mesoscale features
- Exchanges between coastal areas : Observation of transient submesoscale structure
- Synergy of model results and *in situ* data
- Estimation of turbulent mixing coefficients in a coastal environment

### PERSPECTIVES

### Short term perspectives

- Tracers distribution & connectivity between regions
- Quantification of coast offshore exchanges with Lagrangian tools
- New regional altimetry products => Precision on coastal areas

### Long term perspectives

- Use of numerical field output Symphonie test and validate the SWOT data (GoLSWOT)
- Latex campaign strategies applied in already scheduled campaigns : GoLSWOT and P2B2M



• Local & regional impact on ecosystems

### THANKS

