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Fig. 1. Circulation générale des océans, tiré de I'ouvrage L'océan planétaire de Michele Fieux
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conclusion

Table 1 — Variables des équations primitives calculées par CROCO.,

sur 'axe horizontal et 'axe verti-
cal

Variables | Noms Variables | Noms
€T, 1, Z Axes du référentiel terrestre w, U, W Composantes du vecteur vitesse
v
f Parametre de Coriolis 7 Pression
IZ Masse volumique q Force de gravitée
T Température S Salinité
Ay A, Coefhicient de viscosité turbulente K, K, Coethicient de diffusivité turbu-

lente
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