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Le gyre subtropical du Pacifique Sud

Fig. 1. Circulation générale des océans, tiré de l'ouvrage L'océan planétaire de Michèle Fieux
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Modélisation du gyre

Fig. 2. Bathymétrie de la zone du gyre subtropical du Pacifique Sud modélisé 

Objectifs

(1) Vérification de la stabilité du 
modèle

(2) Comparaison des variations 
décennales du gyre

• Données simulées & de l’article de 
Roemmich et al.

(3) Estimation de l’évolution du 
gyre

(4) Détermination des futures 
améliorations

Received: 3 December 2015 ; Accepted: 21 March 2016
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Paramétrisation du modèle

Grille Spatiale Grille Temporelle

Coordonnées 
géographi-

ques

lonmin=-165, lonmax=-100, 
latmin=-37, latmax=-5

• ad_findgeocoord.m sur Matlab

Résolution 
horizontale 

1/5°

État des 
frontières

[S E N W] Ouvertes

Taille de la 
grille

LLm0=324, MMm0=174, N=32 

• make_grid sur Matlab

Nombre de 
mailles 
totale

1 804 032 mailles

Pas de 
temps 
interne 

dt = 1440 s

• ad_cfl.m sur Matlab

• Critère CFL (Courant, 
Friedrichs et Lewy)

Pas de 
temps 

externe 
NDTFAST = 60 s

Durée de la
simulation

NTIMES = 10 ans 

Fréquence 
de 

sauvegarde

Sorties instantanées NWRT    
Sorties moyennées NAVG       

Sorties restart NRST

Temps 
total 

d’exécution
1 semaine
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Simulation d’un gyre anticyclonique dans l’hémisphère sud, 
tournant autour d’une zone de convergence de haute pression
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situ, et l’évolution simulée par CROCO
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CROCO

→ Plateforme de modélisation 
3D 

→ Outil très performant 
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Merci pour votre attention 

Fig. 12 Gyre subtropical du Pacifique Sud modélisé sur CROCO
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