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Fig. 1 — Principaux courants du sud-ouest de I’Océan Indien (Pous et al. 2014)
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Modeles numériques en océanographie
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L Les équations o
Océanat L. Océanat + At
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Equations du mouvement
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L’équation de continuité : conservation de la masse
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Les équations de conservation : de la chaleur et de la salinité
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L’équation d’état de ’eau de mer
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Modeles numériques en océanographie
Conditions aux limites
YY) \’§ )
o Les équations
Océanat Océanat + At
primitives

Hypotheses :

* Approximation hydrostatique
» Approximation de Boussinesq: p = py + p’
* Mouvement quasi-horizontal

* Approche de Reynolds pour la fermeture turbulente
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Le modele CROCO : discrétisation numérique et stabilité

CROCO:
= Réaliste climatologique
= 3D
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Le modele CROCO : discrétisation numérique et stabilité

CROCO:
= Réaliste climatologique
= 3D

Fig. 2 — Coordonnées o (M. Baklouti, cours OPB204, 2022)

Discrétisation des équations primitives :
= Spatiale 2 32 niveaux o
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Le modele CROCO : discrétisation numérique et stabilité

CROCO:
= Réaliste climatologique
= 3D

Fig. 2 — Coordonnées o (M. Baklouti, cours OPB204, 2022)

Discrétisation des équations primitives :
= Spatiale 2 32 niveaux o

= Temporelle = grille d’Arakawa C

Ay

Fig. 3 — Grille de discrétisation d’Arakawa C (M. Baklouti, cours OPB204, 2022) 3
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Le modele CROCO : discrétisation numérique et stabilité

CROCO:
= Réaliste climatologique
= 3D

Fig. 2 — Coordonnées o (M. Baklouti, cours OPB204, 2022)

Discrétisation des équations primitives :
= Spatiale 2 32 niveaux o

= Temporelle = grille d’Arakawa C

Ay
Stabilité :
Lien entre Ax et At = critere CFL 1
1 . R
1 1 1 2 Ax
At < - Ar2 T A2
c | Ax ﬂ?j‘ Fig. 3 — Grille de discrétisation d’Arakawa C (M. Baklouti, cours OPB204, 2022) 3
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Parametres du modele et bathymétrie

Modele pluriannuel : 10 ans

Parametres Valeurs
Longitude min et max [*E] 45 | 60
Latitude min et max [°S] -26 | -12
Résolution |°] 1/9
Niveaux sigma verticaux N 32
LLm ; MMm 134 | 133
NTIMES ; NDTFAST 3600 | 60
dt [sec] 720

Tab. 1 — Parametres du modele pluriannuel
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Parametres du modele et bathymétrie

Modele pluriannuel : 10 ans

Parametres Valeurs
Longitude min et max [*E] 45 | 60
Latitude min et max [°S] -26 | -12
Résolution |°] 1/9

Niveaux sigma verticaux N 32 s
LLm ; MMm 134 | 133
NTIMES ; NDTFAST 3600 | 60

dt [sec] 720

Tab. 1 — Parametres du modele pluriannuel
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Fig. 4 — Bathymétrie du modele 4
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Forgcages et conditions aux limites

Conditions aux limites:
* Conditions cinématiques : surface et

fond
* Frontieres latérales : toutes ouvertes
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Forcages et conditions aux limites

wind stress - day: 15

Conditions aux limites:

* Conditions cinématiques : surface et
fond

* Frontieres latérales : toutes ouvertes

Forcages climatologiques :
T, vent, précipitation, ...

=>» Valeurs moyennées appliquées

48°E

Fig. 5 —Tension du vent :
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Diagnostiques du modele
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Fig. 6 — Diagnostiques du modele pluriannuel
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Courants de surface et surélévation n
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Fig. 7 — Variations de la surface libre et courants de surface en été (gauche) et en hiver (droite)
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Fig. 7 — Variations de la surface libre et courants de surface en été (gauche) et en hiver (droite)
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En surface :
- ldem température

—> Saisonnalité & zonation
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En surface:

- ldem température

Depth im)

—> Saisonnalité & zonation

En profondeur :
Section a 54°E
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Fig. 9 — Section de salinité en
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Fig. 10 — Sortie du modele pour mars de la 9¢ année

Modélisation :

e Circulation globale vers 'ouest
* Intensification SEMC
* Tourbillons cycloniques et anticycloniques

Recirculation dans le sillage des 2 iles

h

Littérature (Pous et al., 2014) :

e Similitudes

* Tourbillons dans le sillage des iles :
expérimentation avec bouées dérivante
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Circulation océanique dans I’Océan Indien
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Conclusions sur la circulation océanique et la modélisation

Circulation océanique du sud-ouest de I’Océan Indien:

* Globalement vers I'ouest : SEC

* Intensification c6te est malgache : SEMC
e Cyclones et anticyclones

e Saisonnalité
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Conclusions sur la circulation océanique et la modélisation

Circulation océanique du sud-ouest de I’Océan Indien:

Globalement vers I'ouest : SEC
Intensification cote est malgache : SEMC
Cyclones et anticyclones

Saisonnalité

Modélisation :

+ Bonneidée de la circulation océanique globale
+ Saisonnalité représentée

X Tourbillons entre les iles non représentés
X Evenements climatiques ponctuels non représentés

Fig.

12 — Cyclone dans la zone d’étude en février 2022 (Météo France)
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Conclusions sur la circulation océanique et la modélisation

Circulation océanique du sud-ouest de I’Océan Indien:

* Globalement vers I'ouest : SEC

* Intensification c6te est malgache : SEMC
e Cyclones et anticyclones

e Saisonnalité

Modélisation :

+ Bonneidée de la circulation océanique globale
+ Saisonnalité représentée

X Tourbillons entre les iles non représentés
X Evenements climatiques ponctuels non représentés

=> Affiner la bathymétrie proche des iles
=>» Prise en compte des vents réels

Fig. 12 — Cyclone dans la zone d’étude en février 2022 (Météo France)
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