

Observed surface thermohaline variability at mesoscale to submesoscale in the Coral Sea, southwest Pacific Ocean

L.Rousselet¹, A.M.Doglioli¹, C.Maes²

¹MIO (Mediterranean Institute of Oceanography) Marseille, FRANCE ²LPO (Laboratoire de Physique des Océans) Brest, FRANCE

louise.rousselet@mio.osupytheas.fr

OUTLINE

- 1) General context
- 2) Data and methodology

3) Results

- Replacing TSG data in the flow field
- Inter-comparison between TSG, ISAS and SMOS products
- Application to the biogeochemistry
- 4) Conclusions and perspectives

In such a region, it is hard to detect and evaluate submesoscale structures due to the large presence of clouds \rightarrow *in situ* data

ThermoSalinoGraph data : SSS and SST at 4-m depth with high frequency sampling (5 min)

TSG (SeaBird SBE21) mounted on R/V Alis

R/V Alis from IRD

Using ThermoSalinoGraph (TSG) data to detect small scale variability (meso-) 4 and fronts (submesoscale)

1) General context

• Goal of this study :

How in situ TSG data (5 min, O(10km)) compared to the large scale Argo atlas and satellite SMOS estimates submesoscale features in the Coral Sea ?

2) Data and methodology

Listing of data used in this study :

Satellite data :

 \cdot SMOS \rightarrow Daily Sea Surface Salinity (35 to 50 km) (research products cec ifremer)

- · AVISO \rightarrow Daily Sea Surface Height (1/4°) for FSLE calculation
- · MODIS \rightarrow Daily surface chlorophyll-a concentration (4 km)

In situ data :

- \cdot ISAS \rightarrow Argo Atlas : Sea Surface Salinity monthly mean
- · ThermoSalinoGraph (TSG) 5 min \rightarrow surface salinity and temperature
- Diazotroph abundances (*Trichodesmium spp.* and *UCYN-A1*)

Bifurcation

campaign

Finite size Lyapunov exponents (FSLE) methodology : theoretical principle

FSLE permits to describe the flow :

 $\delta o = initial distance$ $\delta f = final distance$

Courtesy of Nencioli F.

Close particles (δo) at t \rightarrow backward integration \rightarrow distant particles (δf) at t-15 \rightarrow convergent front (red arrow) detection

In situ \rightarrow steep front in salinity

FSLE « software package »

[D'Ovidio et al., 2004]

3) Results

Replacing the cruise into the mesoscale context (derived from AVISO altimetry)

9 mesoscale structures on the route of Bifurcation

2) Results

Replacing surface salinity and temperature in the FSLE field

- \rightarrow stirring eddy that bring hot and desalted waters
- \rightarrow Backward FSLE match with some surface gradients

Consistent with Maes et al. (2013)

2) Results : Comparison TSG, ISAS (Argo atlas), SMOS Case study 1 : general « good » agreement between the different products

2) Results : Comparison TSG, ISAS (Argo atlas), SMOS

Case study 2 : *In situ* surface salinity variability > seasonal variability. « Good » agreement between SMOS and TSG

2) Results : Comparison TSG, ISAS (Argo atlas), SMOS

Case study 3 : ISAS and SMOS can not detect « accurately » submesoscale activity

FSLE vs sal 03-09-2012

3) Results : Application to the biogeochemistry

MODIS chl-a [mg.m⁻³] composite (15 days)

- FSLE
- 11 biogeochemistry stations
- Presence of *Trichodesmium spp.* [Bonnet et al., 2015, accepted]

3) Results : Application to the biogeochemistry

MODIS chl-a [mg.m⁻³] composite (15 days)

FSLE

- 11 biogeochemistry stations
- Presence of UCYN-A1 [Bonnet et al., 2015, accepted]

4) Conclusions and perspectives

 Satellite data SMOS start to be comparable to *in situ* observations in the Coral Sea, but some improvement is still needed, especially if we want to estimate the impact of small-scale features in SSS.

- Satellite derived FSLE allows to explain some submesoscale (O(10km)) surface gradients such as in salinity or temperature (TSG data).
- FSLE can help explain some species abundances in oligotrophic areas but we need more data.

4) Conclusions and perspectives Perspectives :

 OUTPACE campaign Feb-Mar 2015 : new *in-situ* data set on a larger domain (Coral Sea and south west Pacific)

Chl-a during OUTPACE cruise [mg.m-3]

https://outpace.mio.univ-amu.fr