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INTRODUCTION: BIOGEOCHEMICAL KEY ROLE OF PHYTOPLANKTON

Phytoplankton play a critical role in:
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Key role in the global carbon cycle

o “50% of the world's total primary production
(Field et al., 1998)

o Biological carbon pump helps regulate the
planet's atmospheric CO2 (Takahashi et al., 2009)
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Phytoplankton play a critical role in:

Key role in the global carbon cycle

o “50% of the world's total primary production
(Field et al., 1998)

o Biological carbon pump helps regulate the
planet's atmospheric CO2 (Takahashi et al., 2009) alatet

Basis of the trophic interactions
- impact on the upper trophic levels

These processes are subject to large spatio-temporal variability
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INTRODUCTION: PHYSICAL AND BIOGEOCHEMICAL PROCESS
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INTRODUCTION: PHYSICAL AND BIOGEOCHEMICAL PROCESS

Signorini et al. (2015)
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Signorini et al. (2015)
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INTRODUCTION: PHYSICAL AND BIOGEOCHEMICAL PROCESS
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Various dynamical systems, e.g:

e Subtrocial gyres
e Subpolar gyres

6 2N, (eters)_ « Equatorial upwelling
.

Coastal upwelling

Signorini et al. (2015)
FIGURE 1| Global maps of 9km MODISA OCI Chl-a mission climatology. The transition to the yellow color in (B) indicates that
composite (A) and the depth of the 0.2uM (ZNO3) nitrate the 0.2uM nitrate horizon has reached the surface. The polygons
concentration (B) derived from the World Ocean Atlas monthly represent the study areas of the 5 gyres.
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Phytoplankton temporal variabilit

2010-01-01

https://svs.gsfc.nasa.qov/30786
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INTRODUCTION: BIOGEOCHEMICAL KEY ROLE OF PHYTOPLANKTON

Large uncertainties remain, in particular

O

O

Global estimates of annual primary production within a factor of 2
(35-78 Gt C yr-1; Carr et al. 2006)

Inability to resolve interannual variability of primary production

Critically limit our ability to

O

Quantify contribution of biological carbon pump to carbon
sequestration

Predict response of marine ecosystems and subsequent carbon
cycling to environmental and climate changes
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Large range of spatio-temporal variability
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INTRODUCTION: HOW CAN WE OBSERVE/UNDERSTAND
PHYTOPLANKTON VARIABILITY?

+: vertical resolution

. +: Global coverage
+: more variables

. e Hi io- [
- spatio-temporal cove High spatio-temporal resolution

Oceanicolorsatellitent

In situ autonomous
platforms
I~§ g

: Surface only (1St optical depth)

A. Petrenko

+: both “+” of satellites and in situ obs.
+: allow to separate the process

-: hard to validate
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Coastal Zone Colour Sensor (CZCS) (1978-1986)

Satellite Nimbus 7 @
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1. HISTORICAL RADIOMETRIC SATELLITE OBSERVATIONS

Coastal Zone Colour Sensor (CZCS) (1978-1986)

e Date predominately designed for water remote sensing

* Measured reflected solar energy in six channels, at a resolution of
800m

* was operated on an intermittent schedule and collected data only 2h/d

AGENCY NASA (USA)
SATELLITE Nimbus-7 (USA)
OPERATING DATES 24/10/78 - 22/06/867
SWATH (km) 1556

RESOLUTION (m) 825

# OF BANDS 6

SPECTRAL COVERAGE(nm) 433-12500
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Coastal Zone Colour Sensor (CZCS) (1978-1986)

https://oceancolor.gsfc.nasa.gov/data/czcs/datacollect/
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1. HISTORICAL RADIOMETRIC SATELLITE OBSERVATIONS

Coastal Zone Colour Sensor (CZCS) (1978-1986)
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Coastal Zone Colour Sensor (CZCS) (1979-1986)
e bR What did we learned? (some examples)

Research Papers
Volume 39, Issue 10, October 1992, Pages 1669-1694

ELSEVIER

Rapid response paper

New production in the North Atlantic derived
from seasonal patterns of surface chlorophyll

Janet W. Campbell *, Thorkild Aarup

(b) Cmax

Chlorophyll, mg

1

Fig. 5. Mini and i hlorophyll b January and August based on the 5-year
average monthly composite CZCS images.
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Coastal Zone Colour Sensor (CZCS) (1979-1986)

esearch Papers . What did we learned? (some examples)

Deep Sea Research Part A. Oceanographic

ELSEVIER Volume 39, Issue 10, October 1992, Pages 1669-1694

New production in the North Atlantic derived
from seasonal patterns of surface chlorophyll

Janet W. Campbell , Thorkild Aarup

(b) Cmax

Chlorophyll, mg m

4

Fig. S. Minimum and maximum chlorophyll between January and August based on the 5-year
average monthly composite CZCS images.

ZONES

Maximum Winter Spring/Fall Summer
Minimum Summer Summer Winter

Fig. 7. Geographic distribution of the three zones as defined in Fig. 1. The white line marks the
Tropic of Cancer (23°27'N) as the northern edge of the tropics. Areas excluded from zones 1, 2 and
3 are marked in grey (Cpyi > 0.27 mgm™3),
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1. HISTORICAL RADIOMETRIC SATELLITE OBSERVATIONS

Coastal Zone Colour Sensor (CZCS) (1979-1986)

What did we learned? (some examples)

Joumal of Plankton Research Vol.17 no.6 pp.1245-1271, 1995

An estimate of global primary production in the ocean from
satellite radiometer data

Alan Longhurst, Shubha Sathyendranath', Trevor Platt and Carla Caverhill
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Fig. 2. The 57 biogeochemical provinces used as the compartments for computing seasonal primary production at the global scale; see the text for an
bt ions. For the purposes of this computation, boundaries were established on a 2° grid to represent the approximate mean annual

planation of the i
shape and location of each province. This approximation suffices for this demonstration, but is a simplification easily improved upon when the method is
hlorophyl! fields obtained inely by orbiting radi in the future.

applied to global sea-surface



OUTLINE

INTRODUCTION

1. PREMICES DE LA
RADIOMETRIE SPATIALE

2. CAPTEURS MODERNES

3. RECONSTRUCTION
DECENNALES

4. APPROCHES
COMPLEMENTAIRES

Le phytoplancton, importance biogéochimique
Pertinence de la télédétection de la couleur de 'océan

1979-1985: apports de la mission Nimbus7 et du
capteur CZCS (les prémices d’une vision
globale et de la variabilité saisonniére)

1997-....: apports des capteurs radiométriques modernes
et des produits combinées : du saisonnier a
I'interannuel

Les produits reconstruits pour tenter d’appréhender la
variabilité décennale

Combinaison des observations et intelligence artificielle:

vers de nouvelles perspectives!? -
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)
Satellite SeaStar— NASA

OLﬁI-S
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2. MODERN RADIOMETRIC SATELLITE OBSERVATIONS

Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)

Biogeosciences, 6, 139-148, 2009
https://doi.org/10.5194/bg-6-139-2009

© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

0 Article Peer review
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Fig. 4. Spatial distribution of the clusters obtained from the k-means
analysis.
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)

nature O &

Letter | Published: 07 December 2006

Climate-driven trends in contemporary ocean productivity

Michael J. Behrenfeld &, Robert T. O'Malley, David A. Siegel, Charles R. McClain, Jorge L. Sarmiento, Gene C. Feldman, Allen J. Milligan, Paul G.
Falkowski, Ricardo M. Letelier & Emmanuel S. Boss 1 3 000
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)

nature O &

2
+
w

Letter \ Published: 07 December 2006
Climate-driven trends in contemporary ocean productivity

Michael J. Behrenfeld £5, Robert T. O'Malley, David A. Siegel, Charles R. McClain, Jorge L. Sarmiento, Gene C. Feldman, Allen J. Milligan, Paul G.

Falkowski, Ricardo M. Letelier & Emmanuel S. Boss

Nature 444,752-755(2006) | Cite this article
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o
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Figure 3 | Climate controls on ocean productivity cause NPP to vary
inversely with changes in SST. Global changes in annual average SST (a) and
NPP (b) for the 1999 to 2004 warming period (Fig. 2). ¢, For 74% of the
permanently stratified oceans (that is, regions between black contour lines),
NPP and SST changes were inversely related. Yellow, increase in SST,
decrease in NPP. Light blue, decrease in SST, increase in NPP. Dark blue,
decreases in SST and NPP. Dark red, increases in SST and NPP. A similar -60
inverse relationship is observed between SST and chlorophyll changes. (See

Supplementary Fig. 4 for additional information.)

NPP changes (%)
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)
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Figure 3 | Climate controls on ocean productivity cause NPP to vary
inversely with changes in SST. Global changes in annual average SST (a) and
NPP (b) for the 1999 to 2004 warming period (Fig. 2). ¢, For 74% of the
permanently stratified oceans (that is, regions between black contour lines),
NPP and SST changes were inversely related. Yellow, increase in SST,
decrease in NPP. Light blue, decrease in SST, increase in NPP. Dark blue,
decreases in SST and NPP. Dark red, increases in SST and NPP. A similar
inverse relationship is observed between SST and chlorophyll changes. (See
Supplementary Fig. 4 for additional information.)
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« Aside 1 »:
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)

nature

Access provided by Inst. Univ
News & Views | Published: 06 December 2006
Oceanography
Plankton in a warmer world
Scott C. Doney

Nature 444, 695-696 (07 December 2006) =~ Download Citation &

Tropics and mid-latitudes (nutrient-limited)

Climate
warming

Reduced mixing,
lower nutrient
supply, decrease
in plankton near
the surface
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)

nature

Access provided by Inst. Univ
News & Views | Published: 06 December 2006
Oceanography
Plankton in a warmer world
Scott C. Doney

Nature 444, 695-696 (07 December 2006) =~ Download Citation &

Tropics and mid-latitudes (nutrient-limited)

Climate
warming

Higher latitudes (light-limited)

Climate
e warming, N
© freshening

—

Reduced mixing,
lower nutrient
supply, decrease
in plankton near
the surface

Reduced mixing,
increase in
plankton in the
illuminated
surface waters
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Sea-viewing Wide Field-of-View Sensor (SeaWiFS) (1997-2010)
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Combined satellite observations
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LroaM) = 1r (1) +1a(R) + t(1).L4(0) Radiances :

R

Lr +La= radiation part from
molecules and aerosols backscatterd
from the atmosphere

Lg+Lf= specular reflexion
at the ocean surface + seawater foam

Rayeigh + Aepbsol

Traitment :
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« Aside 2 »:

Lroa(A) = L (A) +1a(A) + t(X).1,(0)

. j@‘-\ S LT o ?ﬁ'\'?r;‘

e

-

2- Bi

LTOA=Top of atmosphére

1- Atmospheric correction

io-optical algorithms

~

Lw= Marine radiance 7 () 94!/
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Globcolour : - Ave (L2)
- GSM (L1)
OC-CClI: - (L1)
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|
Some of them: Globcolour : - Ave (L2)
- GSM (L1)
OC-CCl: - (L1)

- Increase spatio-temporal coverage (i.e. high frequency)

- Allow studying long-term trends (i.e. low frequency)
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2. MODERN COMBINED SATELLITE OBSERVATIONS

Increase spatio-temporal coverage
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concentration on 29 July 2019
effects of gap-filling data proc

Chl-a (mg m-3)
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Sequence of global maps of chlor:

shc
ess

Fig. 1. This sequence of global maps shows VIIRS-measured chlorophyll a (Chl a) concentrations on 29 July 2019 from (a) SNPP, (b) NOAA-20, (c) the

merged Chl a image, and (d) the gap-free Chl a image. Chl a concentrations are in milligrams per cubic meter.
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2. MODERN COMBINED SATELLITE OBSERVATIONS

Increase spatio-temporal coverage

- Allow investigating regional and high frequency
(daily) dynamics

- Climate quality time-series

Sequence of global maps of chlor¢
concentration on 29 July 2019 shc¢
effects of gap-filling data process

e g

Merged VIIRS SNPP/NOAA-20  Chl-a (c)
Chl-a (mg m-3)
Cland SO— s i No Data
0.01 0.1 1.0 10

Fig. 1. This sequence of global maps shows VIIRS-measured chlorophyll a (Chl a) concentrations on 29 July 2019 from (a) SNPP, (b) NOAA-20, (c) the

merged Chl a image, and (d) the gap-free Chl a image. Chl a concentrations are in milligrams per cubic meter.
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Challenge to build climate quality time-series

—biais due to observations consistency
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Challenge to build climate quality time-series

2002-2021 trend analysis of merged Chl product : contrasted results
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Challenge to build climate quality time-series
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2002-2021 trend analysis of merged Chl product : contrasted results
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Challenge to build climate quality time-series

[50S,50N], and ocean with bathymetry deeper than 200m
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Challenge to build climate quality time-series
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2. MODERN COMBINED SATELLITE OBSERVATIONS

Challenge to build climate quality time-series

Recent trends seems not supported by environmental changes
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Challenge to build climate quality time-series

48

Conclusion

Challenge/biais due to observations consistency
Be cautious
Try to double check using different ways
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