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1979-1985: apports de la mission Nimbus7 et du 
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globale et de la variabilité saisonnière)
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variabilité décennale
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Combinaison des observations et intelligence artificielle:
vers de nouvelles perspectives!?
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C Z C S  ( 1 9 7 9 - 1 9 8 6 )  v s .  S e a W i FS ( 1 9 9 7 – 2 0 0 0 )  

CZCS vs .  modern satell ite mission
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à Leve l -2  b lended with in  s i tu  data  
to  reduce res idua l errors
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à Leve l -2  b lended with in  s i tu  data  
to  reduce res idua l errors

but global means decreased over 
the two observational segments 
(≈6%)

C Z C S  ( 1 9 7 9 - 1 9 8 6 )  v s .  S e a W i FS ( 1 9 9 7 – 2 0 0 0 )  

CZCS vs .  modern satell ite mission
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à Globa l  spat ia l  d i st r ibut ions  and  
seasona l var iab i l i ty of  ocean Chl  
were s imi lar
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CZCS vs .  modern satell ite mission

C Z C S  ( 1 9 7 9 - 1 9 8 6 )  v s .  S e a W i FS ( 1 9 9 8 – 2 0 0 2 )  

9

à A comprehens ive rev i s ion of  the  
Leve l 1  data-process ing
a lgor i thms

( i d e nt i c a l a t m o s p h e r i c c o r re c t i o n  a n d  a  
s i n g l e  b i o - o p t i c a l a l g o r i t h m ,  a d j u s te d
c a l i b ra t i o n )
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CZCS vs .  modern satell ite mission

C Z C S  ( 1 9 7 9 - 1 9 8 6 )  v s .  S e a W i FS ( 1 9 9 8 – 2 0 0 2 )  

Global mean increased over the two
observational segments (≈ 22%)

à Intert rop ics large  increases
( s e a s o n a l c y c l e s  a l s o c h a n g e d )

à High  lat i tude  increase
( n o  c h a n g e  i n  s e a s o n a l c y c l e s )  

à Ol igotrophic gyres  decrease
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à A comprehens ive rev i s ion of  the  
Leve l 1  data-process ing
a lgor i thms

( i d e nt i c a l a t m o s p h e r i c c o r re c t i o n  a n d  a  
s i n g l e  b i o - o p t i c a l a l g o r i t h m ,  a d j u s te d
c a l i b ra t i o n )
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CZCS vs .  modern satell ite mission

Importance of « climate quality » time-series and multi-
sensor reprocessing

Gregg & Conkright (2002)  ↘ 6%

Antoine et al. (2005) ↗ 22%
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CZCS vs .  modern satell ite mission
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1979-1983   vs.    1998-2002
(CZCS) (SeaWiFS)

Martinez et al., (2009)
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At lan t i c : A M O   
( A t l a n t i c  M u l t i - d e c a d a l O s c i l l a t i o n )

Pac i * i c : I P O    
( I n t e r d e c a d a l P a c i f i c  O s c i l l a t i o n )

Decada l cyc les  impr int on  SST:

1979-1983   vs.    1998-2002
(CZCS) (SeaWiFS)

Martinez et al., (2009)
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At lan t i c : A M O   
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IPO index
(Behrenfeld et al. Nature 2006)

1979-1983   vs.    1998-2002
(CZCS) (SeaWiFS)

àDecada l cyc les  impr int on  Ch lChl-SST

Importance of decadal cycles in trend interpretation

Martinez et al., (2009)
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1979-1983   vs.    1998-2002
(CZCS) (SeaWiFS)

àSST-Ch l  inverse  re lat ionsh ip

Martinez et al., (2009)
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Martinez et al., (2009)1979-1983   vs.    1998-2002
(CZCS) (SeaWiFS)

àSST-Ch l  inverse  re lat ionsh ip

↗ SST ↘ ML D (↘ nutr ient) ↘C hl

• à SST-Chl inverse relationship
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àWhat about the postulate? Other processes involved? 
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àWhat about the postulate? Other processes involved? 
1998–2002 mean Chl (mg.m-3)
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Subtrop ica l  gyre
Nutr ient l imi ted

Subpolar gyre
L igth l imi ted

22
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modern satell ite mission
Aside 3: 

Sverdrup (1953); Yoder et al. (1993); Ducklow and Harris (1993); Sathyendranath et al. (1995); Kennelly et al. (2000); 
Williams et al. (2000); Dutkiewicz et al. (2001); Siegel et al. (2002); Follows and Dutkiewicz (2002); Williams and Follows 

(2003); Lévy et al. (2005); Platt et al. (2005); Ueyama and Monger (2005); Behrenfeld (2010)……..

C h l ( S e a W i F S )  ( mg/m3)  
f r o m S e p t e m b e r  2 0 0 0  t o  O c t o b e r  2 0 0 1  

( 1 6 – 2 2 ° W  z o n a l  a v e r a g e )

Spr ing bloom

23
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1979 1983

SST Winter MLD Spring Chl Fall Chl

1980 à 2000 ↗ ↗ ↘

Chl (mg.m-3) 

1998–2002 mean Chl (mg.m-3) 

Martinez et al. (2011)
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1979 1983

1998 2002
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1979 1983

1998 2002

MLD (m) 

1979 1983

1998 2002

SST Winter MLD Spring Chl Fall Chl

1980 à 2000 ↗ ↗ (↗ wi nds ) ↗ ↘

Chl (mg.m-3) 

1998–2002 mean Chl (mg.m-3) 

Martinez et al. (2011)
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SST Winter MLD Spring Chl Fall Chl

1980 à 2000 ↗ ↗ (↗ wi nds ) ↗ ↘

Martinez et al. (2011)
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D o n e y ( N a t u r e ,  2 0 0 6 )

↗ ""# ↘ MLD ↗Chl

SST Winter MLD Spring Chl Fall Chl

1980 à 2000 ↗ ↗ (↗ wi nds ) ↗ ↘

CZCS vs .  modern satell ite mission
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CZCS vs .  modern satell ite mission

Diff icu l t to c lear ly interpret the impact  of  oceanic changes on Chl
because:

1- i t l ies in the t ransi t ion zone between the
subtropical  ( l imi ted nutr ient)  and subpolar gyre ( l ight  l imi ted)

2- Do these changes ref lect interannual var iabi l i ty
or  longer- term changes?

29
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à These changes were confirmed at decadal scales
thanks to the  combinat ion of  

satel l i te  Chl  & an extensive in s itu dataset (the CPR)
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From si lk to  sate l l i te ,  the  Cont inuous P lankton Recorder  (CPR,  s ince 1960)

• On board of opportunity boats
• Deployed at the surface layer
• Silk filter mesh: 270μm
• Filter replacement rate = 10 cm/ 10 nautical mile
• "store" between 2 silk strips in a chamber containing

formaldehyde
• Relative concentration in phytoplankton :Color index--> 

defined from color map
• Analysis of some phytoplankto, and zooplankton species

31



3. DECADAL VARIABILITY OF PHYTOPLANKTON
From si lk to  sate l l i te ,  the  Cont inuous P lankton Recorder  (CPR,  s ince 1960)

• On board of opportunity boats
• Deployed at the surface layer
• Silk filter mesh: 270μm
• Filter replacement rate = 10 cm/ 10 nautical mile
• "store" between 2 silk strips in a chamber containing

formaldehyde
• Relative concentration in phytoplankton :Color index--> 

defined from color map
• Analysis of some phytoplankto, and zooplankton species

32

Raitsos et al. (2014)
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From si lk to  sate l l i te ,  the  Cont inuous P lankton Recorder  (CPR,  s ince 1960)
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Mult i -decadal changes
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From si lk to  sate l l i te ,  the  Cont inuous P lankton Recorder  (CPR,  s ince 1960)
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What about secular trend?

36



⇘ Chl 1% /year
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What about secular trend?



⇘ Chl 1% /year
= 30% over the last century

38

3. DECADAL VARIABILITY OF PHYTOPLANKTON
What about secular trend?



However…. 

There is an over-estimation of Chl from 
transparency vs. in situ measurements

->  methodology can biased trend !

39

3. DECADAL VARIABILITY OF PHYTOPLANKTON
What about secular trend?



40
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Large uncerta int ies  remain,  in  part i cu lar  
o Inab i l i ty  to  reso lve  decada l  var iab i l i ty  of  phy top lankton  b iomass

Cr i t i ca l ly  l imi t  our  abi l i ty  to  
o Quant i fy  contr ibut ion  of  b io log ica l  carbon pump to  carbon sequest rat ion  
o Pred ict  response  of  mar ine  ecosystems and  subsequent  carbon cyc l ing  to  

env i ronmenta l  and  c l imate  changes  

Problematic about the low-frequency uncertainties
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How can we study the low frequency cycles & trends?

- Radiometric observations  à limited in time

- In situ observations à data too sparse (and limited in time)

- Physical-biogeochemical numerical modelling
à uncertainties in processes & model parametrization of biogeochemical parameters

Henson et al. (2009)

Difficulties to solve regime shift

H e n s o n e t  a l .  ( 2 0 1 6 )
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Combinaison des observations et intelligence artificielle:
vers de nouvelles perspectives!?

1997-….: apports des capteurs radiométriques modernes 
et des produits combinées: du saisonnier à 
l’interannuel



4. COMPLEMENTARY/ALTERNATIVE APPROACHES
Artif icial Intell igence & Deep learning
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Arti f icial intel l igence i s the capaci ty of an algor i thm to assimi late
informat ion to perform tasks that are character is t ic of human
inte l l igence, such as recogniz ing objects and sounds, contextual iz ing
language, learning from the envi ronment, and problem solv ing.

Machine learning i s a f ie ld of stat is t ica l research for t ra in ing
computat ional a lgor i thms that spl i t , sor t and transform a set of data to
maximize the abi l i ty to c lass i fy, predict , c luster or discover pat terns in
a target dataset .

Deep learning refers to machine learning algor i thms that construct
h ierarchical archi tectures of increasing sophist icat ion.
Art i f ic ia l neural networks wi th many layers are examples of deep
learning algor i thms.

• Some def in i t ions:
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a. Reconstruct & understand long-term satellite derived Chl

b. Improve our understanding of physical-biological
interactions (in situ)
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a. Reconstruct & understand long-term satellite derived Chl

b. Improve our understanding of physical-biological
interactions (in situ)
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a- Reconstruct & understand long-term satell ite derived Chl
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phytoplankton zooplanktonnutr ients

l ight

graz ing

phys ica l  process Temperature
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a- Reconstruct & understand long-term satell ite derived Chl
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Ch l

Pred ictors :  SST,  SLA ,  sur face  
currents ,  PAR,  winds

1 9 9 8 2 0 2 01900’s
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Ch l

Pred ictors :  SST,  SLA ,  sur face  
currents ,  PAR,  winds

Numer ica l  Schemes

1 9 9 8 2 0 2 01900’s

1 TRAIN
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Ch l

Pred ictors :  SST,  SLA ,  sur face  
currents ,  PAR,  winds

Numer ica l  Schemes

1 9 9 8 2 0 2 01900’s

2 APPLY
1 TRAIN
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Ch l

Pred ictors :  SST,  SLA ,  sur face  
currents ,  PAR,  winds

Numer ica l  Schemes

1 9 9 8 2 0 2 01900’s

2 APPLY
1 TRAIN

2b

RECONSTRUC T

à ChlRecons truc ted
Data analysis
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a- Reconstruct & understand long-term satell ite derived Chl
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( p h y s i c a l &  B G C  d a t a  
o v e r  1 9 7 9 - 2 0 1 0
m o n t h l y ,  2 ° x 2 ° )

Martinez et al. (2020)

i )  Proof  of  concept  on  the  phys ica l -BGC model  NEMO-PISCES

Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR (Support Vector Regression)
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( p h y s i c a l &  B G C  d a t a  
o v e r  1 9 7 9 - 2 0 1 0
m o n t h l y ,  2 ° x 2 ° )
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i )  Proof  of  concept  on  the  phys ica l -BGC model  NEMO-PISCES

Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR (Support Vector Regression)

Tra i n i n g : 1 9 9 8 - 2 0 1 0 ,  ra n d o m l y s e l e c te d o n  7 , 2 %  o f  t h e  f u l l  d a ta s e t

Re c o n st r u c t i o n :  1 9 7 9 - 2 0 1 0    à w e h ave  b o t h C h l  P I S C E S  &  C h l re c o n s t r u c te d
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Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR (Support Vector Regression)
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Re c o n st r u c t i o n :  1 9 7 9 - 2 0 1 0    à w e h ave  b o t h C h l  P I S C E S  &  C h l re c o n s t r u c te d

( p h y s i c a l &  B G C  d a t a  
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Martinez et al. (2020)
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i )  Proof  of  concept  on  the  phys ica l -BGC model  NEMO-PISCES

1 s t  E O F  o f  i n t e r a n n u a l C h l  

Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR (Support Vector Regression)

Martinez et al. (2020)
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i i )  App l i cat ion  to  sate l l i te  obs

Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR

NEMO-PISCES model Satellite SVR

Tra i n i n g : 1 9 9 8 - 2 0 1 0 ,  ra n d o m l y s e l e c te d o n  7 , 2 %  o f  t h e  f u l l  d a ta s e t
Re c o n st r u c t i o n :  1 9 7 9 - 2 0 1 0    à C h l re c o n s t r u c te d

1998-2010

Lo
g(

Ch
l SV

R)

Log(ChlOC-CCI)

Martinez et al. (2020)
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i i )  App l i cat ion  to  sate l l i te  obs

Martinez et al. (2020)

Linear trends (in % year –1) in ln(Chl)           [1998-2010]
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i i )  App l i cat ion  to  sate l l i te  obs

Martinez et al. (2020)

Linear trends (in % year –1) in ln(Chl)           [1998-2010]

Sa
te

lli
te

SV
R

• C apt ur e  s e as ona l ,  i n t e r annua l v ar i ab i l i t y
and  t r e nds  

• Reg i onal b i as ,  

• Ampl i t ude  under es t i mat i on

Physical predictors from NEMO model vs. Chl satellite



4. COMPLEMENTARY/ALTERNATIVE APPROACHES
a- Reconstruct & understand long-term satell ite derived Chl

59

i i )  App l i cat ion  to  sate l l i te  obs

Martinez et al. (2020)

PI
SC

ES
-m

od
el

Linear trends (in % year –1) in ln(Chl)           [1998-2010]

Sa
te

lli
te

SV
R

Same physics from the NEMO numerical model

• C apt ur e  s e as ona l ,  i n t e r annua l v ar i ab i l i t y
and  t r e nds  

• Reg i onal b i as ,  

• Ampl i t ude  under es t i mat i on

Physical predictors from NEMO model vs. Chl satellite
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Physical predictors Chl Method
NEMO-PISCES model NEMO-PISCES model SVR (Support Vector Regression)

NEMO-PISCES model Satellite SVR

Satellite Satellite SVR & Multi-Layer Perceptron

Satellite Satellite Convolutional Neural Network & Multi-mode CNN

M
EI

 in
de

x
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Physical predictors Chl Method
Satellite Satellite Convolutional Neural Network & Multi-mode CNN

Roussillon et al., submitted
Percentage of variance explained by each 8 modes of  CNNMM8. Isolines of percentile-90 of the values are superposed in green. 



Physical predictors Chl Method
Satellite Satellite Convolutional Neural Network & Multi-mode CNN

4. COMPLEMENTARY/ALTERNATIVE APPROACHES
a- Reconstruct & understand long-term satell ite derived Chl
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Percentage of variance explained by each 8 modes of  CNNMM8. Isolines of percentile-90 of the values are superposed in green. 
Roussillon et al., submitted
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Normalized distribution (y-axis) of the relative importance of each predictors computed over the percentile-90 area for each mode (x-axis) 

Not  on ly a  b lack  box  f rom which we can’ t obta in any informat ions

Roussillon et al., submitted
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• I t  i s a  hard  task to  caracter i ze decada l var iab i l i ty of  phy top lankton
biomass due  to  the  unava i lab i l i ty of  long  enough t ime ser ies

• I t  i s a  cr i t i ca l i s sue  to  ex tend the  t ime ser ies of  obser vat ions!  

• I t  i s a  rea l  cha l lenge  today,  whatever the  data  are ,  to  make
cons i stent  dataset f rom di fferent means of  obser vat ion

• There  are  la rge  number of  uncerta int ies regard ing phys ica l and  
b io log ica l forc ing  that inf luence  the  long-term var iab i l i ty of  
phy top lankton biomass

a- Reconstruct & understand long-term satell ite derived Chl
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a. Reconstruct & understand long-term satellite derived Chl

b. Improve our understanding of physical-biological
interactions (in situ)
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b- Improve our understanding of  phys ical -b iological interact ions  ( in  s i tu)

2020

Stat ion du c l imat BATS (Bermude) 

EXAMPLE 1
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Séries  temporel les  des  variables  
environnementales  et  bio logiques à 

BATS 

EXAMPLE 1

b- Improve our understanding of  phys ical -b iological interact ions  ( in  s i tu)
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Séries  temporel les  des  variables  
environnementales  et  bio logiques à 

BATS 

EXAMPLE 1

b- Improve our understanding of  phys ical -b iological interact ions  ( in  s i tu)
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EXAMPLE 2

b- Improve our understanding of  phys ical -b iological interact ions  ( in  s i tu)
I n  s i t u  o b s .

Co n t i n u o u s P l a n k t o n R e c o r d e r  ( CP R )

M a r t i n e z  e t  a l .  ( 2 0 1 6 )

n u t r i e n t s

Phytoplankton
communities

Zooplankton
communities

P h y s i c a l  p r o c e s s e s
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EXAMPLE 2

b- Improve our understanding of  phys ical -b iological interact ions  ( in  s i tu)
I n  s i t u  o b s .

Co n t i n u o u s P l a n k t o n R e c o r d e r  ( CP R )

M a r t i n e z  e t  a l .  ( 2 0 1 6 )

n u t r i e n t s

Phytoplankton
communities

Zooplankton
communities

P h y s i c a l  p r o c e s s e s
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Always  going further….

• Data-dr iven:  (1)  Y= f (X)  à not  be ing constrained by a  pr ior i  knowledge
Y = C h l ,  X =  p r e d i c t o r s

• Ordinary and Par t ia l  Diffe rent ia l Equat ions :

(2) !"# = %(!"') à role of the physical preconditioning 

(3) !"# = %(!"', !"#) à take into account biological processes

(4)	!"# = %(!" ,', !"#) à include explicit representation of hidden processes 

Imp rove th e  d eep lear n in g arc h i tec tu res  th ro u g h 4  em u lato rs :
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