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Vitesses verticales et équation Oméga.

Les vitesses verticales sont généralement induites par des dynamiques de méso- ou submésoéchelles, dans

les couches superficielles de l’océan. Ces vitesses sont cruciales pour la compréhension de l’influence, à

fine échelle, de structures telles que les tourbillons, les fronts ou les méandres sur la distribution et la dyna-

mique des éléments biogènes. De ce fait, l’estimation des vitesses verticales est devenue un enjeu important

dans l’étude de systèmes méso- ou submésoéchelle.

Même si la vitesse verticale peut être directement déduite de l’équation de continuité, cette méthode

n’est pas à recommander car la divergence horizontale est principalement due aux faibles écarts du cou-

rant de l’équilibre géostrophique. Une erreur de 10% dans une composante du courant horizontal peut

facilement causer une erreur de 100% dans les divergences estimées en utilisant des approximations de dif-

férences finies[?]. De plus, comme le soulignent ces auteurs, le courant géostrophique n’est généralement

pas strictement non-divergeant en raison d’erreurs dans les données et d’erreurs associées à la méthode de

calcul qui induisent des signaux parasites dans le mouvement vertical. Dans de tels cas, il est suggéré de

dériver la vitesse verticale à partir de l’équation de vorticité. Dans ce papier, l’équation (6) calculant la va-

riabilité temporelle de la vitesse verticale est particulièrement bien adaptée pour établir une relation entre

la variabilité méso-échelle et le mouvement vertical induit, et peut être interprétée en termes de change-

ment de tourbillon relatif dans une parcelle de fluide (voir les belles explications physiques du papier et les

références qui y sont attachées).

Sinon, l’une des méthodes les plus couramment utilisées, pour des raisons de stabilité et de précision,

est la version Q-vector de l’équation-ω [FIEKAS et al., 1994; STRASS, 1994]. Cette méthode a été utilisée de

nombreuses fois avec succès pour estimer les mouvements verticaux, notamment aux niveaux de fronts

intenses [PIETRI et al., 2013; PINOT et al., 1996; RUDNICK, 1996]. Cette méthode requiert la connaissance

des champs de densité et de vitesses horizontales dans les trois dimensions d’espace (x,y,z). Ainsi, lorsque

les vitesses verticales doivent être estimées à partir de données synoptiques in situ, souvent en deux di-

mensions, il est nécessaire de passer par une étape de reconstruction d’un champ en 3D. L’estimation des

mouvements consiste donc en deux étapes : 1) une analyse, ex. analyse objective, à partir des données in

situ pour obtenir des champs 3-Dimensions (3-D) de densité et de vitesses horizontales ; 2) la résolution

numérique de l’équation-ω en utilisant les champs 3-D pour en déduire les vitesses verticales.

Pour l’étape 2, une fois les champs de densité et de vitesses horizontales "reconstruits" (étape 1), il est

possible d’utiliser la version Q-vector de l’équation-ω pour diagnostiquer les vitesses verticales à différents

niveaux. Cette méthode se base sur la théorie quasigéostrophique qui déclare que des vitesses agéostro-

phiques verticales vont se mettre en place pour rétablir l’équilibre du vent thermique que les déforma-

tions et le cisaillement des mouvements géostrophiques tendent à détruire. Ces vitesses verticales agéostro-

phiques peuvent être estimées grâce à la divergence du vecteur Q qui représente l’advection des gradients
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de densité par la variation horizontale du champ géostrophique [HOSKINS et al., 1978] :

Q = (Q1,Q2) =
(

g

ρ0

∂Vg

∂x
·∇ρ,

g

ρ0

∂Vg

∂y
·∇ρ

)

où Vg = (ug , vg ) représente les composantes horizontales ouest-est et sud-nord des courants géostro-

phiques et ρ la densité.

La démonstration pour trouver cette forme du vecteur Q utilise les équations de la section 3 de [Rudnick,

1996]. Elle est détaillée ci-dessous :

→ Nous nous plaçons dans l’hypothèse d’un écoulement quasi-géostrophique :

∂ug

∂t
+ ug

∂ug

∂x
+ vg

∂ug

∂y
− f va = 0 (1)

∂vg

∂t
+ ug

∂vg

∂x
+ vg

∂vg

∂y
+ f ua = 0 (2)

avec les vitesses horizontales géostrophiques Vg = (ug , vg ,0) et agéostrophiques Va = (ua , va , w).

→ On effectue ∂
∂z (1) ainsi que ∂

∂z (2) pour obtenir les 2 équations suivantes :

∂2ug

∂t∂z
+ ∂ug

∂z

∂ug

∂x
+ ug

∂2ug

∂x∂z
+ ∂vg

∂z

∂ug

∂y
+ vg

∂2ug

∂y∂z
− f

∂va

∂z
= 0 (1’)

∂2vg

∂t∂z
+ ∂ug

∂z

∂vg

∂x
+ ug

∂2vg

∂x∂z
+ ∂vg

∂z

∂vg

∂y
+ vg

∂2vg

∂y∂z
+ f

∂ua

∂z
= 0 (2’)

→ En utilisant l’équation hydrostatique et la fréquence de Brunt Väisälä (N), on peut écrire l’équation de

densité (3) :

Équation hydrostatique : ∂P
∂z = −ρg avec la pression P

Fréquence de Brunt Väisälä : N2 = − g
ρ0

∂ρ
∂z

Équation de continuité : 1
ρ0

dρ
dt + ∂u

∂x + ∂v
∂y + ∂w

∂z = 0

avec l’hypothèse de Boussinesq, d’ou ρ0

et avec l’hypothèse d’incompressibilité, les 3 derniers termes sont nuls donc :

⇐⇒ 1
ρ0


∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y︸ ︷︷ ︸
D

Dt (ρ)

+ w
∂ρ

∂z︸︷︷︸
− ρ0N2

g

 + ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z︸ ︷︷ ︸
0

= 0

⇐⇒ − 1
ρ0g

D
Dt

∂P
∂z − w N2

g = 0

note : on pouvait aussi indiquer directement que la dérivée lagrangienne de la masse volumique était

nulle avec l’hypothèse d’incompressibilité mise dans l’équation de conservation de la masse.

×(−g )−−−−→ 1

ρ0

D

Dt

∂P

∂z
+N2w = 0 (3)
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→ ∂
∂x (3) et ∂

∂y (3)

1

ρ0

[
∂

∂t

∂2P

∂x∂z
+ ∂ug

∂x

∂2P

∂x∂z
+ ug

∂3P

∂x2∂z
+ ∂vg

∂x

∂2P

∂y∂z
+ vg

∂3P

∂x∂y∂z

]
+ ∂

∂x
(N2w) = 0

(4)

1

ρ0

[
∂

∂t

∂2P

∂y∂z
+ ∂ug

∂y

∂2P

∂x∂z
+ ug

∂3P

∂x∂y∂z
+ ∂vg

∂y

∂2P

∂y∂z
+ vg

∂3P

∂y2∂z

]
+ ∂

∂y
(N2w) = 0

(5)

→ En utilisant l’équilibre géostrophique

f Vg = 1

ρ0

(
−∂P

∂y
,
∂P

∂x
,0

)

dans (4) et (5) pour remplacer P par Vg et en éliminant ρ0 et f :

∂

∂t

∂vg

∂z
= −∂ug

∂x

∂vg

∂z
− ug

∂2vg

∂x∂z
+ ∂vg

∂x

∂ug

∂z
− vg

∂2vg

∂y∂z
− 1

f

∂

∂x
(N2w) (4’)

∂

∂t

∂ug

∂z
= ∂ug

∂y

∂vg

∂z
− ug

∂2ug

∂x∂z
− ∂vg

∂y

∂ug

∂z
− vg

∂2ug

∂y∂z
+ 1

f

∂

∂y
(N2w) (5’)

→ En remplaçant ∂
∂t

∂ug

∂z dans (1’) et ∂
∂t

∂vg

∂z dans (2’) :

∂ug

∂z

∂ug

∂x
+ ∂vg

∂z

∂ug

∂y
+ ug

∂2ug

∂x∂z
+ vg

∂2ug

∂y∂z
− f

∂va

∂z
+ ∂ug

∂y

∂vg

∂z
− ug

∂2ug

∂x∂z

− ∂vg

∂y

∂ug

∂z
− vg

∂2ug

∂y∂z
+ 1

f

∂

∂y
(N2w) = 0

∂ug

∂z

∂vg

∂x
+ ∂vg

∂z

∂vg

∂y
+ ug

∂2vg

∂x∂z
+ vg

∂2vg

∂y∂z
+ f

∂ua

∂z
− ∂ug

∂x

∂vg

∂z
− ug

∂2vg

∂x∂z

+ ∂vg

∂x

∂ug

∂z
− vg

∂2vg

∂y∂z
− 1

f

∂

∂x
(N2w) = 0

→ En supprimant les dérivées secondes les unes avec les autres :

∂ug

∂z

∂ug

∂x
+ 2

∂vg

∂z

∂ug

∂y
− f

∂va

∂z
− ∂vg

∂y

∂ug

∂z
+ 1

f

∂

∂y
(N2w) = 0 (6)

2
∂ug

∂z

∂vg

∂x
+ ∂vg

∂z

∂vg

∂y
+ f

∂ua

∂z
− ∂ug

∂x

∂vg

∂z
− 1

f

∂

∂x
(N2w) = 0 (7)

→ D’après l’équilibre géostrophique :

∂ug

∂z
= g

ρ0 f

∂ρ

∂y

∂vg

∂z
= − g

ρ0 f

∂ρ

∂x
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On remplace alors
∂ug

∂z et
∂vg

∂z dans (6) et (7) :

g

ρ0 f

[
∂ug

∂x

∂ρ

∂y
− 2

∂ug

∂y

∂ρ

∂x
− ∂vg

∂y

∂ρ

∂y

]
− f

∂va

∂z
+ 1

f

∂

∂y
(N2w) = 0 (6’)

g

ρ0 f

[
2
∂vg

∂x

∂ρ

∂y
− ∂vg

∂y

∂ρ

∂x
+ ∂ug

∂x

∂ρ

∂x

]
+ f

∂ua

∂z
− 1

f

∂

∂x
(N2w) = 0 (7’)

→ L’équation de continuité pour la vitesse géostrophique nous donne :

∂ug

∂x
+ ∂vg

∂y
= 0 ⇐⇒ ∂ug

∂x
= −∂vg

∂y

En remplaçant alors dans (6’) et (7’) :

2
g

ρ0 f

[
−∂vg

∂y

∂ρ

∂y
− ∂ug

∂y

∂ρ

∂x

]
− f

∂va

∂z
+ 1

f

∂

∂y
(N2w) = 0

2
g

ρ0 f

[
∂ug

∂x

∂ρ

∂x
+ ∂vg

∂x

∂ρ

∂y

]
+ f

∂ua

∂z
− 1

f

∂

∂x
(N2w) = 0

⇐⇒

∂

∂y
(N2w) − f 2 ∂va

∂z
= 2

g

ρ0

(
∂ug

∂y

∂ρ

∂x
+ ∂vg

∂y

∂ρ

∂y

)
= 2Q2 (8)

∂

∂x
(N2w) − f 2 ∂ua

∂z
= 2

g

ρ0

(
∂ug

∂x

∂ρ

∂x
+ ∂vg

∂x

∂ρ

∂y

)
= 2Q1 (9)

en ayant défini Q :

Q = (Q1,Q2) =
(

g

ρ0

∂Vg

∂x
·∇ρ ,

g

ρ0

∂Vg

∂y
·∇ρ

)

Les vitesses verticales (w) peuvent ensuite être estimées à partir de l’équation-ω quasigéostrophique

obtenue en sommant ∂
∂x (9) et ∂

∂y (8) :

N2∇2
hw+ f 2 ∂

2w

∂z2 = 2∇h ·Q

où N2 = ∂b
∂z est le carré de la fréquence de Brunt Väisälä, avec b = −(g /ρ0)ρ la flottabilité.

En effet, apparait dans le terme de gauche le terme :

∂2ua

∂x∂z
+ ∂2va

∂y∂z

qui, en fait, est égal à :

−∂
2w

∂z2

puisque la divergence de la vitesse totale (V = Vg + Va) est nulle ainsi que que la divergence de la vitesse
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géostrophique.

Rappel : on a appelé Va la vitesse agéostrophique Va = (ua , va ,0).

Une solution de cette équation-ω quasigéostrophique peut être obtenue, par méthode itérative, en in-

versant l’opérateur :

L = N2∇2
h + f 2∂2/∂z2

et en résolvant w = 2L−1 ∇ · Q [GIORDANI et al., 2006]. Les estimations de w sur les bords du domaine

doivent cependant être prises avec précaution du fait de la condition aux frontières w = 0.
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