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OPB306 Approche lagrangienne

Vitesses verticales et équation Oméga.

Les vitesses verticales sont généralement induites par des dynamiques de méso- ou submésoéchelles, dans
les couches superficielles de 'océan. Ces vitesses sont cruciales pour la compréhension de l'influence, a
fine échelle, de structures telles que les tourbillons, les fronts ou les méandres sur la distribution et la dyna-
mique des éléments biogénes. De ce fait, I'estimation des vitesses verticales est devenue un enjeu important

dans I'étude de systémes méso- ou submésoéchelle.

Méme si la vitesse verticale peut étre directement déduite de 'équation de continuité, cette méthode
n’est pas a recommander car la divergence horizontale est principalement due aux faibles écarts du cou-
rant de I'équilibre géostrophique. Une erreur de 10% dans une composante du courant horizontal peut
facilement causer une erreur de 100% dans les divergences estimées en utilisant des approximations de dif-
férences finies[?]. De plus, comme le soulignent ces auteurs, le courant géostrophique n’est généralement
pas strictement non-divergeant en raison d’erreurs dans les données et d’erreurs associées a la méthode de
calcul qui induisent des signaux parasites dans le mouvement vertical. Dans de tels cas, il est suggéré de
dériver la vitesse verticale a partir de I’équation de vorticité. Dans ce papier, I'équation (6) calculant la va-
riabilité temporelle de la vitesse verticale est particulierement bien adaptée pour établir une relation entre
la variabilité méso-échelle et le mouvement vertical induit, et peut étre interprétée en termes de change-
ment de tourbillon relatif dans une parcelle de fluide (voir les belles explications physiques du papier et les

références qui y sont attachées).

Sinon, 'une des méthodes les plus couramment utilisées, pour des raisons de stabilité et de précision,
est la version Q-vector de I'équation-w [FIEKAS et al., 1994; STRASS, 1994]. Cette méthode a été utilisée de
nombreuses fois avec succes pour estimer les mouvements verticaux, notamment aux niveaux de fronts
intenses [PIETRI et al., 2013; PINOT et al., 1996; RUDNICK, 1996]. Cette méthode requiert la connaissance
des champs de densité et de vitesses horizontales dans les trois dimensions d’espace (x,y,z). Ainsi, lorsque
les vitesses verticales doivent étre estimées a partir de données synoptiques in situ, souvent en deux di-
mensions, il est nécessaire de passer par une étape de reconstruction d'un champ en 3D. Lestimation des
mouvements consiste donc en deux étapes : 1) une analyse, ex. analyse objective, a partir des données in
situ pour obtenir des champs 3-Dimensions (3-D) de densité et de vitesses horizontales; 2) la résolution
numérique de 'équation-w en utilisant les champs 3-D pour en déduire les vitesses verticales.

Pour I'étape 2, une fois les champs de densité et de vitesses horizontales "reconstruits" (étape 1), il est
possible d’utiliser la version Q-vector de I'équation-w pour diagnostiquer les vitesses verticales a différents
niveaux. Cette méthode se base sur la théorie quasigéostrophique qui déclare que des vitesses agéostro-
phiques verticales vont se mettre en place pour rétablir I'équilibre du vent thermique que les déforma-
tions et le cisaillement des mouvements géostrophiques tendent a détruire. Ces vitesses verticales agéostro-

phiques peuvent étre estimées grace a la divergence du vecteur Q qui représente 'advection des gradients



de densité par la variation horizontale du champ géostrophique [HOSKINS et al., 1978] :
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ou Vg = (ug, Vg) représente les composantes horizontales ouest-est et sud-nord des courants géostro-

phiques et p la densité.

La démonstration pour trouver cette forme du vecteur Q utilise les équations de la section 3 de [Rudnick,

1996]. Elle est détaillée ci-dessous :

— Nous nous placons dans ’hypothése d'un écoulement quasi-géostrophique :
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avec les vitesses horizontales géostrophiques Vg = (ug, Vg, 0) et agéostrophiques V, = (g, Vg, W).

— On effectue % (1) ainsi que % (2) pour obtenir les 2 équations suivantes :
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— En utilisant I'équation hydrostatique et la fréquence de Brunt Viisild (N), on peut écrire I'équation de

densité (3) :

Equation hydrostatique : g—g = —pg aveclapression P
Fréquence de Brunt Viisdld: N> = — £ %
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avec I'hypothese de Boussinesq, d’ou pg

et avec I'hypothese d'incompressibilité, les 3 derniers termes sont nuls donc :
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note : on pouvait aussi indiquer directement que la dérivée lagrangienne de la masse volumique était

nulle avec I'hypothese d'incompressibilité mise dans I'équation de conservation de la masse.
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— En utilisant I'équilibre géostrophique
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dans (4) et (5) pour remplacer P par V, et en éliminant pg et f :
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— En supprimant les dérivées secondes les unes avec les autres :
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— D’apres I'équilibre géostrophique :
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On remplace alors aa% et % dans (6) et (7) :
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— Léquation de continuité pour la vitesse géostrophique nous donne :
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Les vitesses verticales (w) peuvent ensuite étre estimées a partir de 'équation-w quasigéostrophique

obtenue en sommant % (9) et % 8):
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En effet, apparait dans le terme de gauche le terme :
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qui, en fait, est égal a :
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puisque la divergence de la vitesse totale (V = Vg + Va) est nulle ainsi que que la divergence de la vitesse



géostrophique.

Rappel : on a appelé Va la vitesse agéostrophique V, = (14, 4, 0).

Une solution de cette équation-w quasigéostrophique peut étre obtenue, par méthode itérative, en in-
versant 'opérateur :

L=N?V; + f29°/02°

etenrésolvantw = 2L~' V - Q [GIORDANI et al., 2006]. Les estimations de w sur les bords du domaine

doivent cependant étre prises avec précaution du fait de la condition aux frontiéres w = 0.



BIBLIOGRAPHIE BIBLIOGRAPHIE

Bibliographie

FIEKAS, V., H. LEACH, K. MIRBACH et J. WOODS. 1994, «Mesoscale instability and upwelling. Part 1 : Observations at the
North Atlantic intergyre front», J. Phys. Oceanogr., vol. 24, n° 8, p. 1750-1758. 1

GIORDANI, H., L. PRIEUR et G. CANIAUX. 2006, «Advanced insights into sources of vertical velocity in the ocean»,
Ocean Dynam., vol. 56, n° 5-6, p. 513-524. 5

HosKINS, B., I. DRAGHICI et H. DAVIES. 1978, «A new look at the w-equation», Quarterly Journal of the Royal Meteoro-
logical Society, vol. 104, n° 439, p. 31-38. 2

PIETRI, A., P. TESTOR, V. ECHEVIN, A. CHAIGNEAU, L. MORTIER, G. ELDIN et C. GRADOS. 2013, «Finescale vertical struc-
ture of the upwelling system off southern Peru as observed from glider data», J. Phys. Oceanogr., vol. 43, n° 3, p.
631-646. 1

PINOT, J.-M., J. TINTORE et D.-P. WANG. 1996, «A study of the omega equation for diagnosing vertical motions at ocean
fronts», J. Mar. Res., vol. 54, n° 2, p. 239-259. 1

RUDNICK, D. L. 1996, «Intensive surveys of the Azores Front : 2. Inferring the geostrophic and vertical velocity fields»,
J. Geophys. Res-0., vol. 101, n° C7, p. 16291-16303. 1

STRASS, V. H. 1994, «Mesoscale instability and upwelling. Part 2 : Testing the diagnostics of vertical motion with a three-
dimensional ocean front model», J. Phys. Oceanogr., vol. 24, n° 8, p. 1759-1767. 1



	Bibliographie

